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Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field
of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in muscu-
loskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing
extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation
through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown
manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and
cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature
on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and
magnetic fields, ultrasound, shock waves, and substrate stimuli, to promote the repair and regeneration of bone and
cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these
stimulations for bone and cartilage regeneration.

Lay Summary
Bone and cartilage regenerative engineering aims to create stable, bioactive, and native tissue-like scaffolds which can repair
bone and cartilage damages. These scaffolds are often combined with chondrogenic/osteogenic cells or stem cells to create
replacement tissue grafts with enhanced regenerative capability. In this approach, physical stimulations such as ultrasound,
mechanical force, electrical charge, and magnetic field have significant impacts on cell fate and behavior through regulating
various intracellular signaling pathways. The review provides a comprehensive understanding and broad overview of literature
on effects of different physical stimulations on cellular behaviors and signaling pathways, which have been reported to induce
growth of bone and cartilage. The knowledge lay a strong foundation for the development of future Bsmart^ tissue grafts that can
effectively repair bone and cartilage under physical stimulations. Other future works will focus on combining different physical
stimulations and fine-tuning parameters of such stimulations to obtain optimal cartilage and bone regeneration.
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Introduction

Classical tissue regenerative engineering is an interdisciplinary
field of advanced material science, cell biology, and develop-
mental biology, with the aim of promoting the regeneration of
complex tissues and organs [1]. In this process, natural or syn-
thetic scaffolds, cells, and growth factors combine to form a

construct, structurally, functionally, and mechanically similar
to the native tissue that requires repair [2]. It is well known that
bone disorders such as osteoporosis, bone fractures, and carti-
lage disease, like osteoarthritis, commonly occur due to abnor-
mal physiology or physical injury. Several techniques and strat-
egies have emerged to promote their regeneration. For example,
guided bone regeneration (GBR) has been widely utilized as a
simple therapeutic technique for effective bone reconstruction
[3–5]. Autologous chondrocyte implantation (ACI) and human
mesenchymal stem cell (hMSC)-based treatments are promis-
ing strategies for cartilage regeneration. However, for bony de-
fects and cartilage degeneration, reconstructing tissues with suf-
ficient mechanical strength and native tissue-like function is
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one of the major challenges. In bone regeneration, a common
obstacle is fibrous connective tissue rapidly occupying the bony
defect rather than normal bone formation (osteogenesis) occur-
ring. The resulting fibrous connective tissue buildup, with its
low mechanical strength and cartilage-like structure, creates
defective bone. In cell-based cartilage regenerative therapies,
both ACI and hMSC-based treatments have shown critical
drawbacks for clinical use. Dedifferentiated chondrocytes form
fibrocartilage instead of hyaline cartilage after transplantation in
ACI and endochondral ossification following hypertrophic dif-
ferentiation of hMSCs frequently occurs in hMSC-based oste-
oarthritis treatments [6–12].

To address these issues, people have extensively researched
biochemical stimuli including platelet-rich plasma, novel bio-
material scaffolds, and various growth factors; however, most
attention was put into the chemical and biological behaviors
[13–17]. Since bone and cartilage are exposed to multiple
internal and external physical forces, biomechanical environ-
ment plays an important role in maintaining, repairing, and
remodeling their respective tissues to meet functional de-
mands and maintain the tissue homeostasis. In fact, the phys-
ical properties of the cell micro-environment are equally im-
portant as the biochemical properties. For example, it was
shown that altering the stiffness of the extracellular matrix
(ECM) could direct stem cell differentiation, with increasing
stiffness directing differentiation toward more mechanically
competent tissues, such as cartilage and bone, and away from
the more delicate adipose and neuronal tissues [18].

Physical stimuli (cyclic strain, electricity, electromagne-
tism, ultrasound, shock wave, and laser) have already shown
active roles in bone and cartilage regeneration in vitro and in
vivo [19–23]. In cell-based musculoskeletal tissue engineer-
ing, these physical stimuli (Fig. 1) have been found to induce
hMSC proliferation, modulate their behaviors, and support
their differentiation by modulating their intracellular signaling
pathways. This suggests that the use of such stimuli can be a
promising strategy to improve bone fracture healing and car-
tilage regeneration. To date, some physical manipulations
have already been introduced into clinical applications for
bone and cartilage regeneration. The objective of this review
is to identify the main physical stimulation methods that have
been utilized in bone and cartilage repair and elucidate possi-
ble mechanisms of cellular response.

Physical Stimulation for Bone Regeneration
and Fracture Healing

Mechanical Forces

It is well known that both extrinsic and intrinsic mechanical
forces can induce tissue resistance and adaptation. The induced
tissue forces are transmitted to the micromechanical environ-
ment of resident cells and thus influence the intracellular forces.
Cells can subsequently modify their micromechanical environ-
ments via cytoskeletal rearrangement or molecular cascade

Fig. 1 Schematic of cell-based bone and cartilage regeneration from different physical stimulations. ES electrical stimulation, US ultrasound, MSCs
mesenchymal stem cells
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transduction activation. This ultimately alters synthesis or deg-
radation of the extracellular matrix and feeds back to alter cel-
lular sensitivity to incoming mechanical forces [24]. Studies
have demonstrated that appropriate mechanical forces are im-
portant for bone cell localization, orientation, metabolism, and
homeostasis [25]. The most common mechanical forces that
benefit this are cyclic strain and fluid shear stress.

Cyclic Strain

Cycles of loading and unloading cause the compression and
relaxation of the ECM, which induce strain on the cells of
bone or cartilage. Cyclic strain includes repeated tensile strain
as well as cyclic compressive strain. Cartilage and bone are
constantly exposed to cyclic strain when an individual body is
moving in daily life. Tensile strain is clinically used for bone
engineering in distraction osteogenesis (a surgical procedure
used to repair bone by creating a fracture between two bone
segments, then moving the segments slowly apart from each
other). The magnitude of tensile strain is important in bone
development and in the fate determination of MSCs. For ex-
ample, the magnitude of tensile strain was reportedly related
to inhibition of adipogenesis (a process balancing osteogene-
sis and chondrogenesis) and the introduction of interruptions
(rests) in strain application showed no significant effect [26].
The equi-biaxial cyclic tensile strain significantly reduced ad-
ipogenesis in mouse adipose-derived mesenchymal stem cells
(ASCs) [27]. Studies have shown cyclic strain could increase
bone-to-adipose ratio via Wnt pathways and upregulate the
expression of palladin (an actin-associated protein), to pro-
mote the osteogenesis. Stretch-activated cation channels may
also contribute to osteogenesis [28]. Forces acting on cells
may change protein conformation and thus expose the binding
sites in a functionally relevant way [29]. Elements of the cy-
toskeleton bridging actin fibers (including lamin proteins) to
the nuclear membrane also show an important role in osteo-
genesis during this mechanical stimulation [29].

In addition, the piezoelectric properties of bone make it
generate electricity in response to mechanical stress. The
amplitude of the electrical potential generated in stressed
bone is determined by the rate and magnitude of the ap-
plied load and the resulting bone deformation. The electri-
cal polarity is dependent upon the directions of loading and
bending. Normally, when bone is bent, the concave sides
(under compression) become negatively charged and the
convex sides (under tensile) become positively charged,
which make the bone grow more on the compressive side
and degrade more on the stretched side [30]. In this case,
the mechanical stress is also capable of stimulating bone
regeneration through electrical-induced pathways, the
mechanism of which is detailed in the following electrical
stimulation section.

Fluid Shear Stress

The circulatory system (e.g., flow of blood) also produces
pulsatile or oscillating shear stress on musculoskeletal cells.
The shear stress induced by fluid flow plays a significant role
in bone development, especially in the osteogenic differentia-
tion process of stem cells. Studies have shown the application
of both continuous flow and pulsating fluid flow (PFF) to
increase osteogenic differentiation of ASCs as compared to
static cultures. The greatest osteogenic induction was seen
with PFF. Tjabringa et al. state that 3 h after PFF application,
gene expression of Runx2 was increased, while that of osteo-
pontin (OPN) did not change, suggesting PFF may affect the
early stages, but not the late stages of osteogenic differentia-
tion. This is because Runx2 expression is an indicator of early
osteogenesis and OPN expression is an indicator of late oste-
ogenesis. The enhancement of osteogenesis from fluid flow
may relate to the distribution of nutrient and growth factors in
the cell. Fröhlich et al. found enhanced expression of bone-
specific markers in perfusion cultures with uniform distribu-
tion, as compared with static culture only present at the outer
regions in static culture [31]. Thus, the improved osteogenesis
from fluid flow may be attributed to the better distribution of
nutrients and growth factors.

The flow stimulation of ASC osteogenesis may be ex-
plained by an indirect mechanism via polyamines, the enzyme
Cox-2, and nitric oxide (NO). Studies have shown PFF to
increase the gene expression of spermidine/spermine-N(1)-
acetyltransferase (SSAT), an enzyme associated with poly-
amine activity [32]. Higher intracellular calcium activity
may also be involved in shear-induced osteogenesis through
PKC and ERK 1/2 pathways, downstream of NO production,
in PFF-activated ASC osteogenesis [33]. Fluid shear stress
can also upregulate the expression of integrin α5β1, which
has been identified as an important factor in promoting oste-
ogenesis through ERK 1/2 activation [33]. ERK activation is
proven to be important in determining osteoblast survival,
proliferation, and differentiation [34].

The Molecular Mechanism of Mechanical Force Transduction

Once the cell has detected a local mechanical stimulus, the
signal needs to be converted into a biochemical response.
For the general pattern of mechanical force sensing machin-
ery in the musculoskeletal system, the ECM-integrin-
cytoskeletal signaling axis has gained the most attention
(Fig. 2). Transmembrane receptors called integrins connect
the ECM to intracellular cytoskeleton elements consisting of
actin filaments, non-muscle myosin, and associated proteins
[35]. The cytoskeleton achieves structural cohesion by creat-
ing a dynamic balance between the counteracting forces of
compression and tension [36]. The force-induced conforma-
tional changes of the cytoskeleton directly alter chromatin
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structure and thus modulate gene transcriptional activity.
This occurs via direct connections of cytoskeletal elements
to DNA [37] or by activating integrin-mediated intracellular
pathways that involve focal adhesion kinases (FAKs) or Src
tyrosine kinases [38]. Neighboring cells that are attached to
the affected cell via cadherin-containing adhesion complexes

could be mechanically transferred, accordingly inducing mo-
lecular changes [39].

On the other hand, integrin-mediated transmission of mem-
brane strain induces activation of Akt, resulting in down-
stream activation of both β-catenin and Ras homolog gene
family member A (RhoA). This increases cell stiffness, which

Fig. 2 Possible pathways involved in the biological response to
mechanical stress, ES, US, and shock wave stimulations on bone cells.
Several pathways of MAPK/ERK, Wnt/β-catenin, PI3K/Akt, TGF-β/
BMP, NF-κB, PKA, PKC, and Ca2+ signaling could be regulated in
response to biophysical stimulations, to enhance the cell proliferation
and differentiation and to modulate the inflammatory response by
modulating the expressing of bone markers Rux2, BMP2/4, OCM, Osx,
etc. or other related regulators. GSK-3β glycogen synthase kinase-3 beta;
TRK tyrosine kinase receptor; TCF/LEF T cell factor/lymphoid enhancer
factor; PI3K phosphatidylinositide 3-kinases; TGF-β transforming

growth factor beta; BMP bone morphogenetic proteins; AKT protein
kinase B; mTOR mechanistic target of rapamycin; NF-κB nuclear factor
kappa-light-chain-enhancer of activated B cells; PGE2 prostaglandin E2;
AC adenylyl cyclase; cAMP cyclic adenosine monophosphate; PKA pro-
tein kinase A; CREB cAMP response element-binding protein; PKC
protein kinase C; MAPK mitogen-activated protein kinase; ERK extra-
cellular signal-regulated kinases; FAK focal adhesion kinase; GPCR G
protein-coupled receptor; OCN osteocalcin; Osx osterix; ES electrical
stimulation; US ultrasound; TRK tyrosine kinase
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results in repression of adipogenic genes [38]. As an effect of
force, calcium influx is frequently regulated by voltage-
sensitive calcium channels (VSCC). These channels are par-
tially anchored in the cell membrane and, thus, are capable of
attaching to the ECM and responding to mechanical stimula-
tion in osteoblasts [40]. In vitro inhibition of T type VSCC
significantly reduces the expression of both early and late
mechanoresponsive genes in osteoblasts [41]. However, the
mechanism of mechanical force transduction is complex and
not clear, warranting further investigation.

Electrical and Electromagnetic Stimulation

Electrical Stimulation

Physiological electric fields (EFs) serve as an efficient tool to
control and adjust the cellular and tissue homeostasis. The
human body generates a biological EF ranging between 10
and 60 mV at various locations [42]. Bioelectricity is very
important in the wound healing process. When a wound is
created, a steady direct current (DC) EF is initiated. This en-
dogenous EF guides cell migration toward the wound edge.
On the contrary, wound healing is compromised when the EF
is inhibited [43]. In 1953, Yasuda et al. applied continuous
electrical current to a rabbit femur for 3 weeks and demon-
strated new bone formation around the cathode [44]. Since
then, use of EFs for bone healing applications has been widely
researched [45]. Capacitive coupling electric field (CCEF)
and inductive coupling electromagnetic field (EMF) are also
being used more frequently in recent years. Both DC and
alternating current (AC) have been observed to enhance oste-
ogenesis when cells at the cathode are stimulated with a cur-
rent of 5–100 μA [46].

Electrical potentials have been proven to play an important
role in bone cell proliferation, migration, and remodeling both
in vitro and in vivo [47, 48]. Some implant materials, such as

electrically active ceramics, including polarized hydroxyapa-
tite (HA), and piezoelectric ceramics, which produce an elec-
trical potential under mechanical loading, have been found to
induce bone ingrowth and improve bone formation around
implants respectively. The mechanism by which electrical ac-
tivity influences biological responses is likely to result from
preferential adsorption of proteins and ions onto the charged
surface. Numerous studies have emphasized the importance of
surface charge species on cell behavior at the biomaterial in-
terface [47, 49, 50]. In calvarial bones of rats, after implanting
electrically polarized HA plates, improved bone ingrowth and
enhanced osteoblast activity were observed, with complete
bone penetration into polarized implants occurring as early
as 3 weeks [47]. In this study, the bone formation increase that
occurred on the negatively charged surfaces (N-surfaces) of
the polarized implants was likely due to accumulating Ca2+

ions on the surfaces. Molecules such as fibronectin,
osteocalcin, and bone morphogenetic proteins (BMPs), on
the other hand, adhere to the positively charged surfaces (P-
surfaces) to improve osteoblast migration [47]. Nakamura et
al. also observed the surface charge of polarized HA influenc-
ing protein adsorption onto the HA surface and thus enhanc-
ing the osteoconductivity of HA. Fibrin was presented as a
key protein in the early stages of osteoconduction. Its adsorp-
tion was accelerated on both N-surfaces and P-surfaces
through ionic and pH changes via attracting calcium ions
and –COOH groups of fibrin respectively. Specifically, –
COOH groups of fibrin were attracted to the P-surfaces, while
calcium ions were attracted to the N-surfaces. The resulting
positively charged ion layer further encouraged fibrin adsorp-
tion (Fig. 3). Subsequently, a network scaffold is formed by
absorbed fibrin, platelets, and osseous cells. After adhesion to
the fibrin on the P-surface occurs through integrin α2bβ3, the
activated platelets further release a variety of growth factors
that stimulate the osseous cells. The coagulation components
played an important role in the early stages of osteoconduction

Fig. 3 The biological mechanism
of fibrin-mediated
osteoconduction on a negatively
and b positively charged surfaces
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[49]. In addition, hyaluronan, an extracellular matrix compo-
nent, also plays a key role in the cellular interactions with
charged surfaces. The negatively charged surface of osteo-
blasts that hyaluronan induced has been shown to mediate
initial contact between cell and metal surfaces [51].

The exact mechanism underlying the intracellular signal
transduction of ES in bone repair is still unclear. Several hy-
potheses are shown in Fig. 2. (1) External EFs could alter the
ion flux via cell membrane proteins (such as ion channels,
transporters, pumps, and enzymes) and subsequently lead to
an ion concentration (such as Ca2+, Na+, Cl−, and K+) change,
whichmay cause a depolarization of excitable cells and trigger
the related cellular signaling [52]. For example, electrical
stimulation (ES) could activate the phosphatidylinositol-3-
kinase (PI3K) and mammalian target of rapamycin (mTOR)
pathways, which lead to the transcription of transforming
growth factor-β (TGF-β) family factors such as BMP-4. (2)
Applied current could change the cell gap junctions, which
affect the exchange of certain signaling molecules such as
calcium, cyclic nucleotides, and inositol phosphates [53].
Much evidence indicates that gap junction communication is
necessary for the development and maintenance of a differen-
tiated osteoblast phenotype, including the production of alka-
line phosphatase, osteocalcin (OCN), bone sialoprotein, and
collagen [54]. (3) EFs may also affect ligand-receptor binding
by changing the conformation or expression of receptors. For
example, EFs could increase the expression of adenosine A2A
receptors (A2ARs) or integrin-β molecules, both of which in-
fluence their related intracellular pathways with roles in anti-
inflammatory and differentiation processes [55]. (4) EFs may
also stimulate higher metabolic activity, which could induce
intracellular ATP depletion and thus alter the membrane char-
acteristics such as endo- and exocytosis, adhesion, and motil-
ity [56]. (5) EFs could change ECM compositions by affecting
the ECM components including soluble ions and charged
groups in glycosaminoglycans (GAGs) and proteins [57].

Electromagnetic Stimulation

Pulsed electromagnetic fields (PEMFs), which are generated
from an unsteady current being passed through a coil, have
been approved by the FDA to treat nonunions of bone frac-
tures and related problems since 1979 [58]. Under PEMF
stimulation, osteoblasts were found to exhibit increased oste-
ogenesis caused by elevated expression of TGF-β1 [59] and
BMP-2/4 [60] and reinforced intracellular calcium transients
[61]. In an ovariectomized rat model, PEMFs were found to
prevent ovariectomy-induced bone loss through activation of
the Wnt/ β-catenin signaling pathway [62]. In an identical
model, long-term PEMF stimulation treatment alleviated lum-
bar vertebral osteoporosis by increasing bone formation and
suppressing bone resorption through regulation of the Wnt3a/
LRP5/β-catenin and OPG/RANKL/RANK signaling

pathways [63]. Ehnert et al. identified a specific extremely
low-frequency pulsed electromagnetic field (ELF-PEMF)
(10 to 90.6 Hz) that supports human osteoblast function in
an ERK1/2-dependent manner. The ELF-PEMF by producing
non-toxic amounts of reactive oxygen species (ROS) induced
anti-oxidative defense mechanisms in these cells [64, 65].

In bone tissue engineering, PEMFs were found tomodulate
the cell cycle of MSCs of different origins and enhance their
differentiation and proliferation. This could be seen by their
enhanced production of ECM and growth/differentiation fac-
tors including TGF-β and BMPs [23, 66]. A wide range of
electromagnetic stimulation frequencies (between 2 and
123 Hz) have been shown to be effective in improving osteo-
genic stimulation of ASCs [67], characterized by increased
intracellular calcium and Alizarin Red S staining after 14 days
induction [68]. The stimulation increased alkaline phospha-
tase activity and cytoskeleton tension. It also induced higher
expression of ALP, OPN, collagen type I (Col I), and Runx2
after 21 days induction [67]. PEMFs were also used as an
adjuvant element in many studies, along with osteoinductive
medium. However, which PEMF parameters (dose, frequen-
cy, and intensity) enable the most optimal repair in a clinical
setting is still an unanswered question.

Similar to the mechanism of mechanical stress, that of
PEMFs on bone regeneration is more complicated than initial-
ly expected [69]. PEMFs may play roles through (1) changing
the physical and chemical properties of a cell membrane by
altering the ion flux and membrane potentials [70, 71]; (2)
affecting the assembly and arrangement of the actin cytoskel-
eton; (3) modulating the intracellular Wnt/β-catenin and
TGF-β/BMP signaling pathways, leading to upregulated ex-
pression of key cytokines such as TGF-β1 and BMP 2/4 [59,
60, 62]; and (4) regulating the oxidative state of cell [72, 73].
However, the precise cellular mechanism is still unclear. More
mechanistic investigations are needed.

Ultrasound

Ultrasound (US) usually refers to a longitudinal wave propa-
gation, a special type of sonic wave with a frequency greater
than 20 kHz (this is the upper limit of human audibility), that
causes local oscillation of particles. Ultrasound with a fre-
quency around 3~10 MHz is widely used in clinical settings
for diagnostic and therapeutic purposes. It is also one of the
well-established therapeutic physical stimuli for bone healing.
Since ultrasound was first reported to stimulate bone healing
in 1950 [74], numerous efforts have been spent over the past
several decades to prove its therapeutic effects in animal
models [75, 76]. In particular, low-intensity pulsed ultrasound
stimulation (LIPUS), using intensities less than 50 mW/cm2,
was reported to improve ECM synthesis, accelerate bone
healing, and reactivate failed healing processes [75, 77]. The
use of ultrasound in improving bone regeneration was recently
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approved by the FDA for human application. Ultrasound-
based non-viral gene delivery was also recently found to in-
duce bone formation in vivo [78]. In in vitro cell studies,
ultrasound was found to enhance the expression of osteoblast
maturation markers, such as OCN, bone sialoprotein (BSP),
and Ca2+ [79–84].With treatment of LIPUS, the expression of
chemokines such as monocyte-chemoattractant protein
(MCP)-1, macrophage-inflammatory protein (MIP)-1, and
receptor-activator of nuclear factor kappa-Β ligands
(RANKL) is enhanced, and mechanoreceptor angiotensin II
type I receptor (ATI) is activated on the surfaces of osteoblasts
[85]. Under LIPUS exposure, the production of NO and pros-
taglandin E2 (PGE2) was upregulated. The former is a free
radical gas involved in the regulation of vascular endothelial
growth factor (VEGF) expression and is important to bone
formation [86]; the latter is an arachidonic acid-derived me-
tabolite, associated with bone formation and resorption. In
differentiating murine osteoblasts, LIPUS has been found to
enhance RANKL gene expression 10-fold compared to
unstimulated controls after 3 weeks of LIPUS treatment
[85]. It was also reported that LIPUS combined with growth
factors such as calcium-regulating hormones, 1,25-
dihydroxyvitamin D3 (1,25-(OH)2D3) [87], BMP2 [88], or
BMP7 [89] can stimulate bone repair.

LIPUS-induced bone healing can be influenced by the pro-
cesses of (1) inflammation, (2) soft callus formation, (3) an-
giogenesis, (4) early osteogenesis, (5) bone formation, and (6)
bone remodeling [90]. There are several theories to illustrate
these mechanisms (Fig. 2). In the first theory, oscillatory dis-
placement of the cell membrane caused by the ultrasound
wave triggers oscillatory displacement between intracellular
elements of different densities [91]. The very low strains in-
duced by the ultrasound on cells in vitro have been reported to
induce a prompt fluidization of the cytoskeleton together
with an acceleration of cytoskeletal remodeling events [92].
The second theory is the bilayer sonophore model. In this
model, ultrasound application periodically pulls the two lipid
layers apart and back, leading to intramembranous hydropho-
bic spaces expanding and contracting accordingly [93]. In the
third theory, integrins play a key role in converting LIPUS
signals into biochemical responses [94]. The type of integrins
including α2, α5, β1, and β3 integrins varies in response to
different cell origins [81, 95, 96]. In the fourth theory, ultra-
sound induces intracellular stress and strain which are maxi-
mized within the cell at two distinct resonant frequencies.
Stimulated load-inducible gene expression, therefore, is max-
imized when the excitation frequency matches the cell’s reso-
nant frequency [97]. The fifth theory is related to P2Y receptor
activation. P2Y receptors are G protein-coupled receptors
(GPCRs) that are activated by adenine and uridine nucleotides
and nucleotide sugars. Studies have shown LIPUS treatment
to induce osteoblastogenesis by releasing purines, such as
ATP, and activating P2Y receptors [98]. The sixth theory

involves calcium signaling regulation. Ca2+ signals are oscil-
latory and these signals (also generated via the RhoA GTPase
pathway) are crucial for bone marrow-derived mesenchymal
stem cell (BMSC) differentiation [99]. Finally, the last theory
is about the connexin-mediated gap junction. Studies have
shown that gap junctions are essential for LIPUS’s effect on
osteogenic differentiation of MSCs [84, 100].

In addition, ultrasound can modulate the micro-
environment by heating, cavitation, acoustic streaming, or
triggering delivery of growth factors to engineered cells
[101]. The physical effects of LIPUS that induce biological
responses can be divided into thermal and non-thermal cate-
gories. Temperature increases can regulate thermo-sensitive
enzymes like metalloproteinase, which are important for bone
matrix remodeling. Non-thermal effects include oscillatory
strains induced by ultrasonic waves (which can directly affect
the mechanosensitive elements at very high frequencies),
acoustic radiation forces (resulting in a low-frequency cyclic
mechanical stimulus), strain gradients, and fluid flow (such as
acoustic streaming and micro-streaming). Radiation force, flu-
id flow, and strain gradients can create shear stresses on cell
membranes. Acoustic streaming and micro-streaming can
play important roles in vitro. The former results in nutrient
redistribution via improved circulation of molecules in the
culture medium or via increased fluid flow in vivo [102]; the
latter is generated in response to oscillating gas bubbles or
other small acoustic inhomogeneities and causes circulatory
movement of fluid [101].

The involved pathways in US treatment are complex. In
murineMC3T3-E1 pre-osteoblasts, COX-2 expression, which
is important for PGE2 production, was regulated via FAK and
mitogen-activated protein kinases (MAPKs), Erk1/2, PI3K,
and Akt kinase signaling in response to ultrasound treatment
[95]. The expression of iNOS (in charge of the NO produc-
tion) was found to be induced by ultrasound through the ca-
nonical NF-κB pathway which is preceded by activation of
Ras, Raf-1, MEK, Erk, and IKKα/β kinases [103]. LIPUS
induced p38 MAPKs and Erk1/2 MAPKs which were found
to be crucial in the process of osteogenic differentiation in
human periodontal ligament cells (HPDLCs) and the murine
pluripotent mesenchymal cell line C2C12 [84, 104]. However,
more investigations are needed to illustrate the involved sig-
naling transduction cascade under ultrasound exposure.

Shock Wave

A shock wave is a kind of short-duration, acoustic pressure
wave consisting of two phases, the positive phase evoking
compressive stress (peak pressure: 30–100 MPa) and the neg-
ative phase arousing tensile and shear stress (negative pres-
sure). These waves can be produced by various generators
such as electro-hydraulic, electromagnetic, piezoelectric, or
pneumatic generators [105]. After propagating into tissue,
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shock waves may lead to micro-bubbles of liquid molecules
and cavitation effects on the focal area. Shock waves were
introduced to increase cell membrane permeability and facil-
itate the delivery of macromolecules into cells [106]. Use of
shock waves, referred to as extracorporeal shock wave therapy
(ESWT), is normally looked as Bextracorporeal^ and Bnon-
invasive^ stimulation mainly focused on the treated area. It
is known that ESWT is able to relieve pain, reduce inflamma-
tion, induce neo-angiogenesis, and stimulate stem cell activi-
ties, thus improving tissue regeneration and healing. ESWT
has been applied in the musculoskeletal field as orthotripsy
and regenerative medicine to promote bone remodeling
[107–109], restore the healing process in cases of non-
unions [110], loosen the bone cement during revision
arthroplasty [111], and enhance bone callus formation during
bone lengthening [112]. Shock waves also can promote oste-
oblast growth and differentiation as well as their expression of
TGF-β1 in a dose-dependent manner [113]. In osteoarthritis
(OA) treatment, ESWTwas used to regulate subchondral bone
remodeling and improve trabecular microarchitecture.
Compared to the non-treatment OA group, the ESWT-
treated group showed an increased osteocyte count and a
higher percentage of subchondral trabecular bone [114].
Increased proliferation and migratory capacity were also
shown in human BMSCs when exposed to shock waves
[115]. ASCs exposed to ESWT have shown enhanced produc-
tion of osteogenic markers such as RUNX2, ALP, and miner-
alized matrix. However, the production of reactive oxygen
species (ROS) was also increased [116]. ESWT could also
affect the growth ratio of bone marrow osteoprogenitor cells
to bone nodules, which is related to the induction of TGF-β1
molecules [117].

The acoustic shock wave induces tissue to absorb, reflect,
refract, and propagate the mechanical pulsed energy. The
mechanisms of shock waves’ effects on bone healing are pos-
sibly related to the micro-fractures and cavitation they induce
[118]. The micro-fractures and cavitation may trigger the ini-
tiation of remodeling cycles and neovascularization [108,
119]. Thus, they regulate the growth and maturation of
osteoprogenitor cells, membrane polarization, expression of
BMPs, and activation of the so-called mechanotransduction
pathways that are related to acoustic stimulations [107,
120–123]. During the mechanotransduction process,
mechanosensory components in cell membranes such as
integrins, ion channels, and various sensors and growth factor
receptors may be activated by shock wave-induced forces.
Several signaling pathways (e.g., MAPK-ERK pathway,
P13K-Akt-iNOS pathway) may be involved in the corre-
sponding biological events of cytoskeletal rearrangement
and nuclear expression modulation [124]. ESWTcan also reg-
ulate the sub-membrane reduction-oxidation (redox) reactions
elicited by early O2 production for tyrosine kinase-mediated
ERK activation, resulting in phosphorylation of CBFA1 (core-

binding factor alpha1), the transcription factor for osteoblastic
differentiation [125]. However, the overlap of several path-
ways and interactions between them make it more complicat-
ed to illustrate the exact signal transduction. More investiga-
tion needs to be done to clarify the precise molecular mecha-
nism before translating it to clinic use.

Substrate Stimulus

The nature of growth surfaces, scaffold or substrate, always
plays a significant role in influencing the cell behavior. Good
osteoconductivity and osteogenic ability are prerequisites for
scaffolds used in bone engineering to promote the new bone
formation. The idea is that scaffolds should provide a good
environment to guarantee secure attachment, survival, and
distribution of osteogenic cells grown into or surrounding
them. The substrate stimulus could directly affect the structur-
al changes of bone or cartilage cells through integrins, focal
adhesions, or the actin cytoskeleton. Indirect mechanisms via
G proteins or ion channels are also possible. In scaffold-
induced osteogenesis, increased phosphorylation by FAKs at
tyrosine 397 was observed [126]. Stimulation by scaffold ions
may drive osteogenesis of ASCs through an indirect mecha-
nism in which signals are transduced through receptors, ion
channels, or G proteins to the nucleus where the expression of
related genes was regulated. For example, the calcium ions
could enter the cell via calcium receptors which interact with
G proteins. Calcium ions have been shown to stimulate pro-
liferation of osteoblasts and magnesium ions have been asso-
ciated with increased mineralization [127]. McCullen et al.
also showed that ionic calcium enhanced mineralization in
human ASCs [128]. Additionally, nanoscale topographical
features in growth substrates influence stem cell behavior
[29]. Elasticity also has a plausible effect on the osteogenesis
of ASCs [18, 26, 68, 129].

The area of cell adhesion onto the matrix substrate has been
also shown to regulate cell behavior. For example, stem cells
forced to attach on large fibronectin islands show an elongated
morphology, different from the more rounded shape that oc-
curs when attached on smaller islands. The enhanced osteo-
genic commitment was due to increased RhoA and Rho-
associated protein kinase (ROCK) activity [130].

Other Physical Factors

Besides the aforementioned physical stimulations on bone
regeneration, some other physical methods have also been
introduced into bone regeneration and healing. Laser peri-
odontal therapy (LPT) is a laser-based procedure developed
as an effective debridement technique to treat periodontitis
[131]. Low-level laser therapy (LLLT) with proper doses
and output powers was also reported to stimulate cellular me-
tabolism, increase protein synthesis, and subsequently
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enhance bone regeneration [132]. Temperature could rise in a
surgical operation like osteotomies and the elevated tempera-
ture could disrupt the bone healing [133]. Heat generation
during osteotomy is one of the important factors influencing
the development of osseointegration [134]. One recent study
showed ultraviolet (UV)/O3 irradiation for ≥ 5min significant-
ly decontaminating H3PO4-modified hydroxyapatite surfaces
and improving their wettability, thus facilitated osteoblast
growth and function [135].

Physical Stimulation for Cartilage
Regeneration

Mechanical Forces

Mechanical load is an important regulator of chondrocyte me-
tabolism and is required for maintaining normal cartilage ma-
trix properties. The natural environment of articular
chondrocytes in the body is a dynamic mechanical one involv-
ing various biomechanical forces including compression, ten-
sile stretching, shear stress, hydrostatic pressure, and osmotic
stress [136]. These forces have varying origins. The direct
contact between joint surfaces can produce both static and
dynamic compression. Tensile loading can result from physi-
cal activities such as gymnastics. The synovial fluid in articu-
lar cavities generates shear stress. Charged proteoglycan (PG)
in the cartilage matrix makes hydrostatic pressure in
chondrocytes. Lastly, osmotic stress is the result of the influx
and efflux of fluid within the cartilage matrix during joint
loading [136, 137]. Overall, both catabolic and anabolic fac-
tors contribute to ECM synthesis and remodeling in response
to mechanical stimulation [138, 139].

Extra mechanical stimuli can also influence the metabolism
and gene expression patterns of normal and osteoarthritic
chondrocytes. For example, chondrocytes from OA cartilage
can benefit from optimized compressive stimulation by enhanc-
ing the biosynthetic activity reflected by greater ECM produc-
tion. One in vitro study has shown short-term compressive
stimulation can significantly induce aggrecan (ACAN),
COL2A1, COL1A1, proteoglycan 4 (PRG4), and COL10A1
gene expression in a zone-dependent manner, while long-term
compression can increase collagen type II, ACAN immuno-
staining, and total GAG content [140]. Dynamic compression
upregulates the gene expression of ACAN and type II collagen,
while static compression downregulates it in chondrocytes
[141]. It is known that mechanical stimulation not only changes
the biosynthesis of load-bearing ECM molecules (e.g.,
aggrecan and collagen type II) but also regulates articular car-
tilage lubrication molecules (e.g., PRG4, lubricin, superficial
zone protein (SZP)) [142, 143]. A high shear strain can induce
extensive rearrangements of the focal adhesions and the actin
cytoskeleton of the chondrocytes [144]. Cyclic hydrostatic

pressure was reported to stimulate the chondrogenic differenti-
ation of BMSCs in pellet cultures [145]. Under intermittent
hydrostatic pressure, inhibited matrix metalloproteinase and
pro-inflammatory mediator release was observed in human os-
teoarthritic chondrocytes in vitro [146].

Mechanical stimulation can also be exerted on MSC-
seeded constructs for cartilage tissue engineering applica-
tions. For example, dynamic compression combined with
exogenous SOX-9 promotes chondrogenesis of ACSs in a
poly(lactic-co-glycolic acid) (PLGA) scaffold [147].
Compressive loading upregulated the expression levels of
chondrogenic genes in MSC-seeded porous hyaluronan-
gelatin constructs [148]. Cyclic tensile loading enhanced
PG synthesis rates in MSC-seeded collagen-PG scaffolds
[149]. A combination of shear and dynamic compression
leads to chondrogenesis of human MSCs [150]. Some re-
search has shown chondrogenesis of human BMSCs in
fibrin-polyurethane composites could be modulated by fre-
quency and amplitude of dynamic compression and shear
stress [151]. However, the responses of MSCs to mechan-
ical stimulation sometime are different from those of
chondrocytes. Huang et al. demonstrated that 21 days of
compressive loading significantly reduces the compressive
mechanical properties and biochemical contents of bovine
MSC-seeded agarose constructs [152]. Thorpe et al. re-
cently showed that both the compressive modulus and PG
content of porcine MSC-seeded agarose constructs were
significantly reduced in a long-term, dynamic mechanical
compression application, compared to free-swelling con-
trols [153]. It is important to highlight that mechanical
loading could synergistically improve the composition
and mechanical properties of neocartilage when integrated
with growth factors, such as TGF-β and insulin-like
growth factor-1 (IGF-1) [154].

The molecular mechanisms of mechanical signal transduc-
tion in chondrocytes are complex and not fully understood. The
physical properties of chondrocytes are related to this mechan-
ical force transduction. For example, the pericellular matrix
(PCM) of chondrocytes was proven to transfer forces between
the cell cytoskeleton and its ECM. The viscoelasticity of
chondrocytes, which is determined by the integrity and organi-
zation of their actin filaments and intermediate filaments, is also
very important in cartilage’s response to the mechanical force.
Mismatches in viscoelastic properties could result in further car-
tilage degradation due to the disparities between neocartilage
and adjacent tissues. The actin and intermediate filaments bear
the cytoskeletal tension and the microtubules serve as struts to
resist compression. Chondrocytes could respond to mechanical
stimuli by remodeling their actin cytoskeleton, which is linked
to the ECM through focal adhesions. These focal adhesions
transfer the signal of external physical forces into the appropriate
biochemical events in a Rho kinase-dependent manner [155].
Specifically, the Rho GTPases activate ROCKs, which
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phosphorylate and activate Lim kinases, which in turn phos-
phorylate and inhibit the actin-depolymerizing protein, cofilin.
Studies have shown the actin cytoskeleton was changed by dy-
namic compression acting on agarose-embedded chondrocytes.
Rho kinase activity is required for this actin reorganization and
the change in gene expression that occurs [155]. Chondrocyte
nuclei and their nucleoskeletons also play a vital role in
mechanotransduction. A 15% compressive strain greatly de-
creases the height and volume of the chondrocyte and its nucle-
us. The actin cytoskeleton plays an important role in this

deformation behavior [156]. The signal transduction mecha-
nisms of these force-induced biochemical responses are still
obscure. There are several pathways involved as shown in
Fig. 4.

Integrin Signaling Fibronectin and integrin receptors provide
the vital connection between the ECM and the cytoskeleton
[157] involved in cell adhesion, ECM remodeling, and chon-
drocyte metabolism [158]. Studies have shown that human ar-
ticular chondrocytes use α5β1 integrins as mechanoreceptors.

Fig. 4 Possible pathways are regulated in response to extra biophysical
stimulations on chondrocytes. Biophysical stimulations could act through
one or a combination of MAPK/ERK, PKA/CREB, Wnt/β-catenin,
PI3K/Akt, TGF-β/BMP, NF-κB, PKA, PKC, and Ca2+ signaling

pathways to enhance cell proliferation, survival, and differentiation and
to modulate the inflammatory response by regulating the expressing of
cartilage markers Sox9, TGF-β1, collagen type II, ACAN, etc
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Stimulation of this integrin modulates ion channels, the actin
cytoskeleton, focal adhesion, paxillin, and β-catenins. As a
result, IL-4 is secreted in an autocrine manner via type II recep-
tors, to induce membrane hyperpolarization, increase levels of
aggrecan, and decrease matrix metalloproteinase 3 expression.
However, healthy chondrocytes show a different response than
osteoarthritic cartilage [159].

Purinergic Signaling Extracellular purines, such as ATP, aden-
osine, and pyrimidine, which act as extracellular signaling
molecules, activate related purinergic receptors [160]. ATP is
involved in the mechanotransduction signaling cascade in
chondrocytes by paracrine, upregulate matrix production,
and decrease MMP 3 activity after mechanical stimulation.
The purinergic pathway that ATP induces activates intracellu-
lar Ca2+ signaling [161, 162].

Calcium Signaling The calcium signaling includes the intracel-
lular PLC-inositol 1,4,5-trisphosphate pathway, stretch-
activated ion channels, and the transient receptor potential
vanilloid 4 (TRPV4) pathway. Under mechanical press, an
influx of Ca2+ could induce a wave of Ca2+ uptake through
mechanosensitive ion channels from the extracellular medi-
um. The Ca2+ concentration transiently increasing in the intra-
cellular site may be one of the earliest events in the response of
chondrocytes to mechanical stimulation [163]. TRPV4 not
only regulates SOX9 expression, but it also mediates the re-
sponse to osmotic stress, especially for hypoosmotic stress
[164, 165]. Through Src kinases, Ca2+ also regulates the
integrin-mediated signaling pathway, converged on ERK-
MAPK by a single application of cyclic compression (1 kPa,
1 Hz, 30 min). Mechanical stimuli including compression,
fluid flow, hydrostatic pressure, and osmotic stress can influ-
ence Ca2+ signaling in chondrocytes [162, 166–171].

MAPK/ERK Pathway Several studies have shown downstream
activation of MAPK pathways when chondrocytes were sub-
jected to mechanical stimulation. MAPK signaling was found
to be force-dependent in intact cartilage.Mechanical compres-
sion activated ERK1/2, JNK, and p38 pathways by stimulat-
ing phosphorylation in distinct temporal patterns [172]. Shear-
and compression-induced chondrocyte transcription requires
MAPK activation in cartilage explants [173]. One microarray
study has shown that hyperosmotic stress leads to regulation
of a wide variety of genes, which involves transduction
through p38 MAPK and ERK1/2 pathways [174].

TGF-β Signaling TGF-β signaling has been shown to be in-
volved in the responses of chondrocytes and MSCs to mechan-
ical stimuli. For example, dynamic compression transiently ac-
tivates Smad2/3 in chondrocyte-agarose constructs [175] and
bovine bone marrow stromal constructs during chondrogenesis
[176]. Mechanical load promotes chondrogenesis of hMSCs

through the TGF-β pathway by upregulating TGF-β gene ex-
pression and protein synthesis [177].

Electrical Stimulation

The electrochemical properties of articular cartilage occur
from the electrically charged nature of the tissue. Electric po-
tentials develop in cartilage by the flow of charged particles
across negatively charged PG in and out of the ECM [178,
179]. Applying an external electric potential or current to car-
tilage can produce stress and deformation in the tissue [179]. It
has been hypothesized that the electric fields associated with
the dynamic loading of cartilage may affect its growth, remod-
eling, and biosynthesis [180]. Two modes of electrical stimu-
lation are commonly utilized: (1) direct current (DC) and (2)
capacitive coupling (CC). DC (5 mA) was reported to stimu-
late the differentiation of MSCs into chondrocytes and en-
hance the proliferation of differentiated chondrocytes [181].
Chondrocytes exhibiting cathodal migration when subjected
to applied DC electric fields have also been reported [182,
183]. As early as 1978, the effect of a capacitively coupled
electric field (CCEF) on chondrocyte DNA synthesis via Na+

and Ca2+ fluxes was reported [184]. Selective capacitively
coupled electrical signals could upregulate the gene expres-
sion of cartilage matrix proteins (e.g., ACAN and type II col-
lagen), in which the duration, response time, amplitude, duty
cycle, and frequency could affect matrix production
[185–187]. Even in the presence of interleukin (IL)-1β, a de-
fined capacitively induced electrical signal could result in sig-
nificant upregulation of cartilage matrix proteins while signif-
icantly attenuating the upregulation ofMMPs in full-thickness
osteoarthritic adult human articular cartilage explants [187].

However, how the electrical signals transform and influ-
ence cell behavior is still unclear. There are several pathways
that are potentially involved: (1) adenosine receptors—evi-
dence has shown that adenosine receptors have been implicat-
ed in the electrotransduction process for cartilage [188].
Stimulation of both the high-affinity A2a and low-affinity
A2b adenosine receptors resulted in elevated cyclic AMP
and subsequent activation of anti-inflammatory pathways via
protein kinase A (PKA) and exchange protein-activated di-
rectly by cyclic AMP (EPAC). This, in turn, leads to the sup-
pression of NO and PGE2 and downstream feedback inhibi-
tion of tumor necrosis factor (TNF)-α and IL-1β [189]. (2)
Calcium signaling—studies have shown CCEF (60 kHz,
20 mV/cm) to increase the expression of cartilage matrix pro-
tein genes and suppress the expression of the MMP gene in
bovine articular chondrocytes. This occurs by an influx of
Ca2+ through voltage-gated calcium channels rather than from
intracellular Ca2+ repositories and has downstream conse-
quences on calmodulin, calcineurin, and nuclear factor of ac-
tivated T cells (NF-AT) rather than on phospholipase C and
IP(3) [190]. The transduction pathway of pulsed CCEF
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stimulates human chondrocyte proliferation, which involves
calcium, calmodulin, cGMP, and nitric oxide synthase [191].

Magnetic Stimulation

There are two modes of magnetic stimulation: (1) static mag-
netic fields (SMFs), which are generated from the material
properties of a permanent magnet, and (2) PEMF. It is well
established that cellular responses to magnetic stimulation de-
pend on the intensity, frequency, type of field (static or oscilla-
tory), waveform (sinusoidal, square, etc.), cell status (precursor
or differentiated), and type of cell exposed [192, 193]. In in
vitro human chondrocyte cultures, 0.6 T SMFs significantly
increase chondrocyte proliferation and viability [194].
Additionally, 0.4 T SMFs were also reported to promote PG
synthesis of primary bovine and human articular chondrocytes
and potentiate the chondrogenic differentiation of human bone
marrow stromal cells. The differentiation was synergistically
augmented in the presence of TGF-β3 [195]. However, there
have been relatively few studies on the effect of SMFs on
chondrocytes, compared to using PEMFs. PEMFs have been
clinically investigated in OA patients with encouraging results
[196, 197]. In in vitro studies, PEMFs have been found to cause
a number of physiological effects in both monolayer chondro-
cyte cultures and tissue explant models. These benefits include
enhanced proliferation [198–200], anabolic activities, PG syn-
thesis [201–204], and anti-inflammatory responses [188, 205].
After surgical implantation of neocartilage in vivo, PEMFs pre-
vent the catabolic effects of inflammation by upregulation of
A2A receptors. The combination of EMFs and IGFs has been
reported in vivo to provide amore chondroprotective effect than
any single treatment alone [202]. In stem cell-based tissue en-
gineering for chondrogenesis, studies both in vitro and in vivo
have shown that EMF exposure may promote chondrogenic
differentiation [206, 207], increase ECM component synthesis,
and control the inflammatory events, all while downregulating
the expression of inflammatory mediators such as IL-1 and
MMPs [22, 208–210].

As for the mechanisms of magnetic stimulation, studies
have shown that MFs (e.g., PEMFs) alter ion channels,
ligand-binding sites, and receptor density and distribution in
the cell membrane, consequently affecting transmembrane sig-
naling [211]. To date, there is no identified magnetoreceptor or
even a magnetotransduction theory to clarify the cellular re-
sponses to MF stimulation. Lorentz force that is produced by
the movement of charged ions in anMFmay play a key role in
the biological behaviors that MFs induce. Several intracellular
molecular signaling pathways are involved in the stimulation:
(1) calcium signaling—two studies have shown the involve-
ment of the Ca2+ signaling pathway in chondrogenesis under
the stimulation ofMFs. One study has shown strongMFs (3 T)
significantly increase the intracellular Ca2+ concentration after
6 h of exposure and cause deleterious effects on human

chondrocytes [212]. Another study has shown moderate
strength (0.4 T) SMFs induce chondrogenic differentiation of
human BMSCs and increases intracellular Ca2+ within 20 s of
exposure [195]. (2) TGF-β signaling—the enhancement of
chondrogenesis by a PEMF is associated with an increase in
TGF-β1 synthesis, mediated by binding of AP-1, which may
be modulated by phosphorylation of JNK. Moderate-strength
magnetic fields (0.4 T) can induce chondrogenesis of BMSCs
by upregulating the expression of the cartilage maker gene
SOX9, type II collagen, and aggrecan through a TGF-β-
dependent pathway. SMFs alone cause TGF-β secretion in
BMSC chondrogenic culture and these effects of SMFs could
be abrogated by the TGF-β receptor blocker SB-431542
[195]. (3) adenosine A2AR-mediated pathway—PEMFs have
been shown to reduce the concentration of TNFα and IL-1β
via the upregulation of A2AR and regulation of the NF-κB
pathway [189, 213]. (4) MAPK signaling—Hsieh et al. found
that strong (3 T)MFs upregulate the phosphorylation of ERK1
and ERK2 after 8- to 96-h exposure times [212].

Ultrasound

LIPUS is a non-invasive, efficient, and cost-effective meth-
od of improving the healing of osteochondral defects [214]
and is a good supporter of cartilage regeneration [215].
These effects of US are showed by enhancing the viability
of cells, matrix protein synthesis, and matrix integrity with
no need for exogenous TGF-β. Both in vitro and in vivo
studies have reported that LIPUS induces the expression of
type II collagen and PG in chondrocyte cells and cartilage
tissue [216–221]. Choi et al. have shown that LIPUS of
200~300 mW/cm2 increases the expression of type II col-
lagen by 50% and PG by 30% in a 3D alginate culture of
human articular chondrocyte [222]. In the same culture,
LIPUS treatment could reduce the matrix degradation by
inhibiting the catabolic gene expression (e.g., MMP1)
[215]. In the early stages of papain-induced arthritis in rats
and full-thickness osteochondral defects in rabbits, LIPUS
was shown to promote the repair process of arthritic carti-
lage [221]. In a rabbit OA model, LIPUS was reported to
significantly reduce the severity of OA-induced structural
damage in the cartilage and synovium when combined with
hyaluronate treatment [223].

Furthermore, LIPUS has been tested to efficiently induce
the chondrogenic differentiation of MSCs both in vitro and in
vivo. For example, LIPUS treatment of 200 mW/cm2 has been
found to promote the chondrogenic marker expressions of
COL2A1, ACAN, and Sox-9 in the early stages of rabbit
MSC chondrogenesis [224]. The chondrogenesis of human
MSCs seeded in a 3D scaffold was also enhanced when ex-
posed to LIPUS [225]. In in vivo studies, LIPUS treatments
greatly enhanced the chondrogenic differentiation of MSCs,
reflected by increased total collagen and GAG content,
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compared to the control [226, 227]. LIPUS has also been
reported to enhance the chondrogenesis process even without
exogenous TGF-β, which is a well-known inducer of chon-
drogenesis [215]. The combined use of LIPUS and growth
factor, TGF-β3, has been reported to improve the
chondrogenic differentiation of a pellet culture of hMSCs
[228]. In monolayer cultures, the synergistic use of ultrasound
and TGF-β1 was observed to greatly enhance the expression
of Sox9, aggrecan, and COL2A1 expression [229]. In addi-
tion, LIPUS was found to accelerate the proliferation of
chondrocytes (harvested from rats and pigs) in monolayer
cultures [230, 231].

Understanding of the effect of ultrasound on the biological
behaviors of chondrocytes is still elusive. Many theories have
been postulated: (1) the calcium pathway—even at low inten-
sities, ultrasounds could increase the intracellular concentra-
tion of Ca2+ and that blocking this rise with intracellular cal-
cium chelating agents, or inhibiting Ca2+/ATPase, abolishes
the stimulatory effect of ultrasound on PG synthesis [21]. (2)
The MAPK/ERK pathway [97, 232]—the phosphorylation of
FAK, Src, p130Cas, CrkII, and Erk1/2 may be increased in
primary human chondrocytes under continuous LIPUS stim-
ulation [232]. (3) The integrin/PI3K/Akt pathway—this path-
way was found to be linked with the increased proliferation
rate of primary pig articular chondrocytes in response to
LIPUS [230].

Shock Wave

An increasing number of studies have demonstrated the ther-
apeutic effects of ESWT on the treatment or management of
OA. ESWT has been shown to possess chondroprotective
effects and cartilage repair roles [114, 233–235], and to reduce
the concentration of interleukin-10 and TNF-α in OA
chondrocytes [236]. ESWT has also been shown to inhibit
the expression of MMP1 and MMP3 in a rabbit OA model
[237]. Furthermore, in this model, the chondroprotective ef-
fects of ESWT show time-dependence [235]. The application
of 600 impulse shockwaves at 1.5 × 105 Pa each on the knee
joint of OA rabbit models decreased the production of NO and
rate of chondrocyte apoptosis [238]. However, excessive
bouts of ESWT treatments or overdose of ESWT treatments
may cause negative effects on OA cartilage repair, instead of
inducing the favorable promotion [106, 239]. Studies have
shown smaller denudations greater enhance chondrocyte for-
mation and density for osteochondritis dissecans of rabbit
knees when they are exposed to ESWT [240]. In addition,
ESWT has also been reported to attenuate pain in human
OA, enhancing the functional ability and decreasing the
Western Ontario and McMaster University Osteoarthritis
Index (WOMAC) pain score in the ESWT treatment group
[241, 242]. ESWT has also been shown to enhance the

expression of crucial factors for chondrogenesis such as
TGF-β, IGF, and fibroblast growth factors (FGFs) [243].

Although ESWT has shown positive effects of
chondroprotection, subchondral bone remodeling, pain reduc-
tion, and motor function improvements, the exact mechanism
remains unclear. The reduced expression of catabolic genes
and inflammatory factors such as IL-1, IL-10, and TNF-αmay
partly contribute to the benefits of ESWT on OA patient.
Greater investigation is required.

Other Physical Factors

Han et al. [171] found that Ca2+ signaling in chondrocytes
occurs more quickly and with greater magnitude when the
temperature is increased. This fact suggests that Ca2+ signal-
ing of chondrocytes is also regulated by other, cellular, phys-
ical environments, such as ECM topography and temperature.
Periodic heat shock at 41 °C for 1 h was found to significantly
accelerate the chondrogenic differentiation of human mesen-
chymal stem cells in a pellet culture [244]. However, thermal
stimulations of chondrogenesis have not been well explored.
Studies also indicate that low-energy light could directly stim-
ulate chondrogenesis. LLLT using 660 and 780 nm wave-
lengths benefits the regeneration of OA by accelerating the
initial breakdown of cartilage, destroyed by collagenase, and
stimulating fibroblasts to synthesize the repairing collagen III
[245]. UV irradiation is also normally used on engineered
cartilage. A number of studies have shown the substrate’s
physical properties and its topological structures to be critical
for the chondrocyte’s differentiation, redifferentiation, and
maturation [246]. A suitable substrate for seeding cells may
help cartilage regeneration through mechanical, biological,
and chemical effects in cartilage regeneration [247].

Conclusion

This review has elaborated on the application of physical stim-
ulation, including electrical and electromagnetic field, me-
chanical force (tensile strain and fluid flow), ultrasound, shock
wave, and others on bone and cartilage regeneration. A better
understanding of how these factors act on the cells of bone and
cartilage will allow better prediction and control in bone and
cartilage tissue engineering approaches. In the review, the ef-
ficacy and mechanism of these biophysical stimulations were
displayed. Pathway analyses among diverse classes of stimuli
were described. The combination of different stimuli can re-
sult in synergistic therapeutic effects for the treatment of bone
and cartilage diseases. Many pathways were postulated to
explain the cell response to physical stimulation. Some path-
ways were complementary and overlapped, making it chal-
lenging to decipher the precise contribution and timing of
activation of individual pathways. Yet, it is clear that the

228 Regen. Eng. Transl. Med. (2018) 4:216–237



physical factors play very critical roles in the biological pro-
cesses. The applications of tensile strain, shear stress, electro-
magnetic fields, and ultrasound are among many options to
enhance osteogenesis and chondrogenesis of human stem cell.
Therefore, direct physical intervention is an appealing ap-
proach and should be profoundly exploited to improve clinical
outcomes in bone and cartilage regeneration.

However, when treating bone and cartilage disorders by
physical intervention, both the positive and negative effects
should be taken into consideration. There still exist the follow-
ing major challenges in clinical use.

(1) The specific forms of physical stimulation and their dose
effects and application timings must be carefully deter-
mined and validated.

(2) Advanced techniques and devices must be addressed in
achieving focalized stimulus delivery with adjustable
signal type and intensity. Emphasis should especially
be placed on how to monitor the healing process. The
development of effective and reliable treatment protocols
is a prerequisite.

(3) Efficient in vivo assessing technologies must also be
obtained. Although the positive effects of some physical
factors have been identified in vitro, the exact value of
these factors in native bone and cartilage tissues has not
been determined. Well-designed animal experiments
need to be conducted as physical stimulation signal and
dose effects on regeneration and repair of tissue should
be firmly established and quantified.

(4) An optimal strategy for bone and cartilage engineering
may be to incorporate different physical stimuli with
growth factors and biomaterials. How do the physical
factors influence each other and what are the underlying
mechanisms should be further investigated.

(5) For cartilage repair, the low friction properties, collagen
organization and crosslinking, and the related test stan-
dards should gain more emphasis.

Compared to bone, with its multiple cell types, vascularity,
and high capability for innate repair, regeneration of cartilage
faces more challenges [11]. Although the biochemical com-
ponents of neocartilage (e.g., PG and collagen) can be con-
trolled and modified, to date, no tissue-engineered
neocartilage has been able to simultaneously match native
cartilage’s compressive, friction, and tensile properties under
large deformations and motions [11, 193]. Joint forces over a
large range of motion can take a devastating toll on
neocartilage [11]. Therefore, the synthetic cartilage should
have sufficient mechanical strength and compliance to sustain
various forces and act as a cushion, respectively. In addition,
the biomechanical response of native cartilage to loading
varies widely and is time-dependent. Thus, a big challenge
is defining, evaluating, and determining the specific

mechanical properties, required for the replacement cartilages
at specific implantation sites. Even if proper compressive
properties match those of native tissues, the properties may
not maintain when transplanted in vivo. Another challenge is
how to properly integrate replacement tissues with the adja-
cent cartilage to provide stable, biologic fixation, load distri-
bution, and proper mechanotransduction [248].

To some extent, within bone and cartilage cells, the signals
from diverse stimuli overlap and the cells show a coordinated
response. The combination of multiple stimuli may be better
than any single stimulation to facilitate bone and cartilage
regeneration. For example, enhanced differentiation of pre-
osteoblasts was observed when simultaneously stimulating
cells with cyclic strain and ultrasound [249]. To date, a com-
binatory and continuous application of strain, fluid shear, or
electromagnetic fields with soluble small molecules is increas-
ingly popular to supplement standard in vitro methods of in-
ducing osteogenesis and chondrogenesis. Altogether, the suc-
cess in repairing and regenerating musculoskeletal tissues de-
pends on creating a musculoskeletal tissue with optimized
mechanical, biological, and chemical characteristics. This re-
quires interdisciplinary approaches and collaborative work
between biologists, physicists, medical doctors, and engineers
to develop novel, effective regenerative therapies.
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low-intensity pulsed ultrasound; BSP, bone sialoprotein;MCP,monocyte-
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chemoattractant protein; MIP, macrophage-inflammatory protein;
RANKL, receptor activator of nuclear factor kappa-Β ligand; ATI, angio-
tensin II type I receptor; NO, nitric oxide; PGE2, prostaglandin E2;
VEGF, vascular endothelial growth factor; GPCRs, G protein-coupled
receptors; BMSCs, bone marrow-derived mesenchymal stem cells;
ESWT, extracorporeal shock wave therapy; CBFA1, core-binding factor
alpha1; ROCK, RhoA and Rho-associated protein kinase; PG, proteogly-
can; ACAN, aggrecan; PRG4, proteoglycan 4; SZP, superficial zone pro-
tein; PCM, pericellular matrix; TRPV4, transient receptor potential
vanilloid 4; CC, capacitive coupling; EPAC, exchange proteins activated
directly by cyclic AMP; TNF-α, tumor necrosis factor-α; NF-AT, nuclear
factor of activated T cells; SMFs, static magnetic fields; WOMAC,
Western Ontario and McMaster University Osteoarthritis Index; LLLT,
low-level laser therapy
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