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Abstract
In this paper, motivated by aspects of preregistration plans we discuss issues that 
we believe have important implications for how experiments are designed. To make 
possible valid inferences about the effects of a treatment in question, we first illus-
trate how economic theories can help allocate subjects across treatments in a man-
ner that boosts statistical power. Using data from two laboratory experiments where 
subject behavior deviated sharply from theory, we show that the ex-post subject 
allocation to maximize statistical power is closer to these ex-ante calculations rela-
tive to traditional designs that balances the number of subjects across treatments. 
Finally, we call for increased attention to (i) the appropriate levels of the type I and 
type II errors for power calculations, and (ii) how experimenters consider balance in 
part by properly handling over-subscription to sessions.

1 Introduction

To help improve research transparency a number of initiatives including pre-analy-
sis plans, hypothesis registries, and replications have recently sprung into operation 
across multiple disciplines including political science, neuroscience and economics. 
These initiatives have been announced by specific academic journals, professional 
associations and funding agencies to deal with concerns ranging from specification 
search and failure to replicate.1 Coffman and Niederle (2015) recently summarize 
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the pros and cons of these initiatives and claims that the benefits of preanalysis plans 
are likely limited for experimental economists, since there is a strong opportunity for 
replication by recruiting new subjects.2 Our paper will make a case that the reverse 
is true even for lab experimenters by showing the statistical benefits from aspects 
involved in pre-designing the study. After all, a central component of a pre-specified 
analysis plan is that it can allow researchers to take advantage of all the statistical 
power of well-designed statistical tests and to reduce concerns related to robustness 
to specifications.

To make this case we consider laboratory experiments that adopt a between sub-
ject design to inform on economic theories.3 The general design of such an experi-
ment is to create a controlled environment in the lab where a single specific theo-
retical parameter varies between sessions, thereby providing a direct test of some 
comparative static prediction(s) of a theory.4 Similar to randomized controlled 
experiments in medicine and other fields within economics, using a between-session 
design is intuitive and easy to explain. Researchers generally focus their interpreta-
tion of findings from their experiments through the lens of the outcome of hypoth-
esis tests that compare subject behavior between treatments.

In this paper, we show that thoughtful design of a laboratory experiment may 
present a host of potential benefits to lab experimenters by improving the overall 
experimental design prior to its implementation. These benefits are not related to 
concerns such as “p-hacking” or specification searching, which could be handled by 
carrying out additional sessions, nor motivated by multiple testing issues.5

This paper complements List et  al. (2011) and Czibor et  al. (2019), who each 
provide concrete guidance on how to improve lab studies. We extend their guidance 
in three distinct ways. First, we show how ex-ante statistical power calculations can 
utilize economic theories to inform on optimal research designs. Second, we discuss 

3 Roth (1986) summarizes other possible objectives for laboratory experiments including investigating 
anomalies and pilot testing of policies. In many other applied fields of economics, policy concerns are 
the primary motivation to undertake an experiment. Further, lab studies could alternatively employ a 
within subject design, where the treatment in a session could vary over time allowing additional control 
for a individual subject specific fixed effect. (Charness et al. 2012) argues that there is a threat to internal 
validity from sequentially exposing subjects to different treatments, since it may cause order effects.
4 For example, to test the predictions of the Abreu and Gul (2000) bargaining theory with obstinate 
behavioral types, (Embrey et al. 2015) vary the number of behavioral types between sessions.
5 To avoid temptations for data mining, in a pre-analysis plan one can list the multiple hypotheses that 
will be tested and the statistical tests for each hypothesis would be adjusted for multiple inference. See 
(List et al. 2019) for a detailed discussion targeting experimental economics. Among others, Ding and 
Lehrer (2011) point out that making statistical corrections for these issues is important in practice when-
ever there is an opportunity to select the most favorable results from an analysis.

Footnote 1 (continued)
ness Promotion (TOP) Guidelines (https ://cos.io/our-servi ces/top-guide lines /). Last, among professional 
organizations, the American Economics Association has created a registry for all randomized controlled 
trials.
2 Related, (Camerer et  al. 2016) and (Maniadis et  al. 2017) also cast doubt on the value of research 
transparency initiatives for experimental economists. They conclude from their literature surveys that 
selective reporting of statistically significant results occurs less frequently in experimental economics 
relative to other applied fields in economics.

https://cos.io/our-services/top-guidelines/
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the challenge presented by oversubscription of subjects into a session, an issue that 
has received little attention in the experimental literature. This final contribution 
extends Slonim et al. (2013) by making an additional recommendation on how to 
reduce potential sources of selection bias that could arise during the implementation 
of the experiment itself.

The rest of the paper is organized as follows. In the next section, we review how 
statistical power is calculated and discuss how lab experimenters interested in test-
ing economic theories can use knowledge of these models to help their experimental 
design. We illustrate this approach with data from two experimental studies in which 
subject behavior deviated greatly from the quantitative predictions of the underlying 
theory. We find that the ex-post subject allocation to maximize statistical power is 
closer to these proposed by ex-ante calculations based on the underlying economic 
theories as compared to traditional designs that simply balance the number of sub-
jects across treatments.6 Section 3 examines how pre-analysis plans can further help 
determine how many sessions to undertake, in which sessions specific treatments 
should be carried out, and why having a plan to handle over-subscription of subjects 
to an individual session can be valuable. The final section concludes and suggests a 
direction for future research.

2  Power analysis for laboratory experiments

2.1  Setting the stage

For expository purposes, we consider a laboratory experiment that compares sub-
ject’s decision-making across two conditions. We define treatment status for subject 
i in session s, by an indicator variable Dis, where Dis = 1 denotes random assignment 
to treatment 1 and Dis = 0 reflects the status-quo condition (or control). To estimate 
the effect of the treatment on a continuous outcome yist measured for subject i at 
experimental period t in session s, researchers estimate either

or

where covariates Xist are included in Eq. (2). These covariates may include demo-
graphic information as well as those variables suggested by theory. Both e1ist and 
e2ist are random error terms. Since Dis is randomly assigned, the inclusion of Xist 

(1)yist = �0 + �1Dis + e1ist

(2)yist = �0 + �1Dis + �2Xist + e2ist,

6 Nikiforakis and Slonim (2015) require the use of post-hoc power analysis to identify if the reason 
a replication failed is due to the study having insufficient power. Heonig and Heisey (2001) point out 
that in many other scenarios post-hoc power analysis does not aid in the interpretation of p-values from 
experimental results. This arises since ex post computing the observed power is only possible after 
observing the p-value and hence cannot change the interpretation of the p-value. Further, they reinforce 
the need to make power calculations ex-ante to improve the planning of an experiment.
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should not affect the expected value of an OLS estimator of the coefficient on treat-
ment between Eqs. (1) and (2), that is E[�̂1] = E[�̂1], but can influence the size of 
the standard error on �̂1 by reducing the variance of the residual.7

Often guided by an underlying theoretical model, experimenters want to test the 
effect of the treatment Dis on a subject outcome of interest. This involves testing 
some hypothesis about our parameter of interest �1 in Eq. (1), or �1 in Eq. (2). The 
probability of a Type I error is the probability of rejecting the null hypothesis when 
it is correct and the probability of a Type II error is the probability of failing to reject 
the null hypothesis when it is false.

Power analysis is used to optimize hypothesis tests and experimental designs. 
Since asymptotic normal approximations are valid for tests on �̂1 in a wide variety of 
applications, we will focus our discussion on the Wald test. The Wald test uses the 
test statistic �̂−�o

ŜE
, where �̂  and ŜE are the sample estimated statistic and standard 

error while �o is the parameter value under the Null hypothesis. For example, in the 
commonly used test of statistical significance �o = 0 and statistical software would 
report a t-statistic for Eq. (1) of �̂1 − 0

��̂1
.

The power of a statistical test is the probability that the test correctly rejects the 
null hypothesis and is equal to 1-Pr[type II error]. Holding all other factors constant, 
the most powerful test is always preferred. The power of the test depends on (i) sam-
ple size through the estimated standard error, (ii) probability of a Type I error, and 
(iii) the effect size �̂1 . To show how these variables are related under simple random 
sampling we present a series of visualizations in Fig. 1.8 The first panel illustrates 
the distribution of our estimator �̂1 under the Null hypothesis ( �1 = 0 ) for a two 
sided test which defines the rejection region as the shaded area that captures the 
probability of making a Type 1 error. We refer to this as the Null distribution and 
the standard deviation of the distribution is given by the estimated standard error 
��̂1 . The conventional experimental design first fixes the probability of a Type I error 
at 5%. The effect size presented in the second panel is assumed to be 2.5 standard 
deviations away from the Null value. The third panel presents the alternative dis-
tribution, which is distributed Normal with the mean taking the value of the effect 
size and the standard deviation identical to that of the Null distribution ��̂1 . Prior to 

7 An additional rationale for estimating Eq. (2) is that it can guard against chance imbalances in impor-
tant baseline covariates. That said, with linear models, Fisher (1925) was the first to show that adjust-
ment for baseline covariates can lead to an increase in statistical power. Using simulations, Hernandez 
et al. (1994) show that when the covariates are highly prognostic, the increase in power is substantial. 
Yet, this property of reducing residual variance does not always hold with non-linear models such as 
logistic regression (see e.g. Robinson and Jewell 1991) or proportional hazards regression (see e.g. Ford 
et al. 1995). We briefly discuss power calculations for non-linear estimators in Sect. 2.4.
8 Power calculations are specific to the research design and one can simply scale the solution under sim-
ple random sampling (SRS) up or down by the design effect (DE). DE is a relative measure of how 
the variance of a target statistic differs under the proposed design relative to SRS. Later in the text we 
consider session effects and point out that the DE for stratified sampling is generally < 1, meaning that 
smaller samples are needed to achieve the same power (see e.g. Cochrane (1977) for details). We suggest 
in Sect. 3 that stratified sampling can be achieved for lab experiments if they only randomly sent emails 
for one type of treatment to one subset of their pool, and the remaining sample received an invitation to 
the control group.
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conducting a study, the researcher is unaware of the effect size and can be faced with 
a difficult choice on choosing a value. However, for many laboratory experiments 
one could use a prediction from a comparative static exercise of the underlying the-
ory to make a meaningful and plausible choice for the effect size.

The fourth panel shows how to calculate statistical power, the chance a researcher 
will be able to detect an effect of the size introduced in the second panel, if there 
really is one. We place a vertical line at the “significance” cutoff of 1.96 from the 
Null distribution. The unshaded area under the alternative distribution to the left of 
this line provide us with the probability that we would fail to reject the null if we had 
an effect of 2.5. The shaded area under the alternative distribution to the right of the 
line is our statistical power; thus the greater the shaded area, the greater the statisti-
cal power. Lastly, sample size plays a role since it affects the size of the estimated 
standard error and hence variation in both the Null and alternative distributions. 
Larger samples often increase statistical power.

To undertake power analysis for a research project involving testing a hypoth-
esis about the parameter, �1 , first requires determining what a “Minimal Detectable 
Effect” is. The minimal detectable effect (�MDE

1
) is the smallest possible value for 

�̂1 at which the Null hypothesis is rejected for a given significance level. For exam-
ple, undertaking a two-sided test at a significance level of � = 0.05, if a researcher 
wishes to achieve power at the level of � = 0.8, where the effect estimator has a 
limiting normal distribution,9 then �MDE

1
= (t�∕2+ t(1−�))��̂1 . For a large sample 

size,10 plugging in t(1−�) and t�∕2 as obtained from a standard t-distribution yields 
�MDE

1
= (1.96 + 0.84)��̂1 = 2.8��̂1.

11 Once a minimal detectable effect is chosen, 
researchers can rearrange the expressions above to solve for an expression for ��̂1 and 
achieve such an effect at a specified type 1 error and power level. The expression 
of ��̂1 depends on two design parameters that the researcher can adjust: sample size 
and optimal treatment allocation as we demonstrate shortly. Finally, since adding 
explanatory variables to an estimating equation tends to decrease the residual stand-
ard deviation, the required sample size for any specified level of precision or power 
is thus reduced if estimating Eq. (2) in place of Eq. (1); only if their coefficients are 
truly non-zero.

2.2  The appropriate choice of ̨  and � may depend on the audience for the study

In the above example, the values for � = 0.05 and � = 0.8 were chosen since they 
reflect the standards commonly used in other branches of social science research. 
Whether these values should also be the benchmark for studies in experimental eco-
nomic settings may depend on the goal of the laboratory study. A possible rationale 

9 A limiting normal distribution is a reasonable approximation so long as sample size is large enough.
10 If sample sizes are large enough, the normal distribution is a good approximation for the t-distribu-
tion.
11 In other words, the minimal detectable effect for a study with these parameters is 2.8 times the stand-
ard error of the effect estimator. Examining panel 4 of Fig. 1, we observe that �̂

1
= 2.5 so this estimate 

has lower statistical power than � = 0.8.
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for this default setting that allows for low occurrence of Type 1 error at 5%, but tol-
erates much greater chance of Type II error at 20%, is to ensure that any discovered 
new treatment is really effective. After all, switching from the status quo to the new 
treatment may be costly in many policy areas such as education, health care or social 
policies. Thus, this design is biased against the new treatment by setting a narrow 
margin for it to pass, but a much wider margin of falsely concluding that it fails 
when it did not.

Since one of the primary motivations for undertaking experimental research is to 
inform theory, not policy with a status quo bias, the rationale for selection of these 
conventional error probabilities no longer applies.12 There is no apparent reason to 
tolerate a substantially greater probability of Type II error than Type I error in a 
laboratory setting. Further, many economic researchers themselves would not antici-
pate that a model would hold exactly and would likely be willing to accept a lower 

Fig. 1  Illustrating how statistical power is calculated for a two-sided test of statistical significance. The 
panels in this illustrate how statistical power is calculated for a test of the Null of no difference at the 5% 
level when the effect is 2.5σ away from the Null value. The rejection region of the test is shown in panel 
1, panel 2 shows the effect lands in the rejection region and panel 3 illustrates that the alternative distri-
bution is centered at the effect size. The final panel shows that statistical power is the probability the Null 
is rejected at the 5% when the effect is 2.5σ away from the Null value

12 A potential alternative to analyze experimental data is suggested by Manski (2019) who advocates 
the use of statistical decision theory in place of frequentist hypothesis testing. Motivating this guidance 
is evidence from Manski and Tetenov (2016) who show that if statistical decision theory is used to deter-
mine the sample size, it would be smaller than ones set by conventional statistical power criteria. How-
ever, whether using statistical decision theory to analyze experimental data would yield evidence that is 
informative to theory needs to be explored in future work.
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probability of a Type I error.13 We next show how the economic theory being tested 
can inform research design through the estimated standard error in the laboratory.

2.3  Economic theories are quite useful in power calculations

Recall, the between subject design introduced earlier in lab, our sample of subjects, 
indexed by i = 1, ..., n to a session that offered either the D = 1 or D = 0 protocol. 
For p = Pr[D = 1] such that 1 < pn < n − 1 , we randomly select pn individuals to 
receive D = 1 and the remaining (1 − p)n subjects to receive D = 0 . Without control 
variables, the experimental treatment effect for some outcome Y is calculated as 
�̂1 =

1

pn

∑

i∈D=1

Yi −
1

(1−p)n

∑

i∈D=0

Yi. It is well known that when D is binary, 

Var(�̂1) =
1

n
(
s2
1

p
+

s2
0

(1−p)
), where s2

1
 and s2

0
 are sample variances of the outcomes in the 

D = 1 and D = 0 groups respectively. Plugging this expression into the minimal 
detectable effect equation �MDE

1
= (t�∕2+ t(1−�))��̂1 , permits the calculation of the 

minimum required sample size

If the sample variances are identical between the groups ( s2
1
= s2

0
 ) we can express, 

��̂1 =
√

�2

p∗(1−p)∗n
, where �2 is the variance of the residual from Eq. (1). Holding �2 

and n constant, ��̂1 is minimized when p = 0.5, which is when the number of sub-
jects is balanced between the treatment and control groups. Thus, a design that 
equally splits the sample to D = 1 and D = 0 ceteris paribus, maximizes statistical 
power since one could detect a smaller �1 for a given level of power (�) and signifi-
cance level (�) . The variability in the Null and alternative distribution is represented 
by the standard error that is minimized when p = 0.5, and this may explain why the 
tradition in experimental economics is to assign 50% of subjects to D = 1 and the 
remainder to D = 0.

The above calculations ignore the fact that financial cost varies between the two 
treatments. Cochran (1977) (and subsequently Duflo et al. 2007) shows that if the 
cost per subject vary across treatments, researchers can optimally choose p to mini-
mize the minimal detectable effect (and hence maximize statistical power) subject to 
their budget constraint. Solving the Lagrangean indicates that the optimal allocation 
of subjects between the treatment and control arms is given by the ratio p

1−p
=
√

cD=0

cD=1
, 

where cD=0 and cD=1 is respectively the unit cost per comparison and treated subject. 

(3)n∗ =
(t�∕2 + t(1−�))

2(
s2
1

p
+

s2
0

(1−p)
)

(�MDE

1
)2

.

13 For example, (Rodrik 2015, p. 40) states that “Models are never true; but there is truth in models.” 
Similarly, (Rubinstein 2006, p. 871) writes “When comparing a model to real data, we hope at best to 
find some evidence that “something” in reality is close to the model’s prediction.”



132 W. Ding 

1 3

In other word, the optimal allocation ratio is inversely related to the square root of 
the relative total costs of each treatment.14

In many field experiments, the experimenter is ex-ante fully aware of the per sub-
ject costs of the different treatments. In lab experiments, the per subject treatment 
cost depends in large part on the decisions made by the subjects themselves as well 
as others within the session. However, ex-ante, experimenters set participation fees 
and often calculate expected earnings in the lab based on the underlying theory. Yet, 
this information is not used to determine the design of the study and generally an 
equal number of each treatment is carried out. In the next section, we illustrate how 
the optimal subject allocation could be calculated using in part these predictions on 
expected earnings from economic theory in two experimental studies.

2.4  Illustration of statistical power calculation in two experimental studies

We consider two examples: the first price affiliated private value auction of Ham 
et al. (2005) and the legislative bargaining experiment of Fréchette et al. (2003). In 
both studies, the subject first received a participation fee of $5. Otherwise individual 
compensation differed sharply as one involved subject payment based on cumulative 
earnings throughout the session, while the other study randomly selected a few peri-
ods to determine subject payment.

Ham et al. (2005) conducted sessions with 4-bidders ( D = 1) and sessions with 
6-bidders (D = 0) that involved 30 periods. The subjects were paid the total earn-
ings from the auction including a $7 starting balance as well as earnings from a 
per-period lottery. The lottery generates an expected earnings of 25 cents per period. 
Subjects in the 4 bidder sessions are more likely to win more auctions than subjects 
in the 6 bidder sessions. Moreover, under the symmetric risk-neutral Nash equilib-
rium bid function (SRNNE), the expected profit to the highest bidder is greater in 
the 4-bidder sessions relative to the 6-bidder sessions.15 The ratio of expected costs 
across treatments per subject is given by

Ex ante, the optimal design to maximize statistical power where expected costs are 
calculated using economic theory is to set p

1−p
=
√

1

1+1.6329
= 0.616. In other words, 

(4)
cD=1

cD=0
=

4-bidder

6-bidder
=

$5 + (30 ∗ $.25) + ($7 + (
1

4
∗ 30 ∗ $6))

$5 + (30 ∗ $.25) + ($7 + (
1

6
∗ 30 ∗ $4))

= 1. 632 9

14 As stated we are making an assumption that is consistent with how the Null hypotheis is stated, that 
the outcomes for the treatment and control groups have equal means and equal variances. If the variances 
of the outcomes differ across treatment, the formula has extra terms. The content of this section can eas-
ily be modified to incorporate these terms.
15 Kagel et al. (1987) derive the SRNNE and the high bidder in the 4-bidder sessions is expected to earn 
$6 on average compared to $4 in the 6-bidder sessions. If one restricts attention to values of the private 
information signal in regions where the SRNNE is approximately linear, expected profits to the highest 
bidder with parameters from Ham et al. (2005) is approximately 24

n

 ; where n is the number of bidders. 
Ham et al. (2005) restricted their estimation to observations from subjects who were randomly given a 
signal that fell in this region.
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there should be in total 1.63 more subjects in 6-bidder sessions (D = 0) relative to 
4-bidder sessions (D = 1) to detect the smallest treatment effect for a given budget. 
In Ham et al. (2005), there were a total of 96 subjects. The research interest in Ham 
et al. (2005) was to estimate the effect of cash balances on bidding behavior. How-
ever, if the research interest was in detecting the effect of number of bidders on out-
comes and budget constraints are binding, they could have allocated 36 subjects to 
4-bidder sessions and 60 subjects to 6-bidder sessions to maximize statistical power.

Similarly, (Fréchette et al. 2003) provide a test of the Baron and Ferejohn (1989) 
legislative bargaining model on the effect of a closed amendment rule (D = 1) versus 
an open amendment rule (D = 0) . Subjects took part in sessions in which 15 elec-
tions were conducted, at the end of the session 4 elections were randomly selected 
for payment. Under the parameters selected by Fréchette et al. (2003) any undivided 
pie would shrink by 20% in the next round of voting. The underlying theory predicts 
that $5 expected earnings in each election in the D = 1 sessions and $4.1667 in the 
D = 0 sessions.16 The ratio of expected costs across treatments per subject is given 
by

Using these expected earnings from theory in conjunction with the ratio that chooses 
the optimal p to maximize statistical power, one would assign subjects to closed ver-
sus open rule treatment by setting p

1−p
=
√

1

1+1.1538
= 0.681 . This is an approximate 

3:2 ratio for D = 0 relative to D = 1. That is, to maximize statistical power if we 
were to recruit 50 subjects, 20 subjects should be assigned to a closed rule session 
and the remaining 30 subjects should be assigned to an open rule session.

Note, it is common in experiments to observe important quantitative differences 
between data and the tested theories. For example, in Fréchette et al. (2003) delays 
were less frequent than theory predicts under the open rule treatment. Similarly, bid-
ders were more aggressive than theory predicts in Ham et al. (2005). If we were to 
recalculate the optimal ratio based on ex-post experimental earnings, we find in 
Ham et  al. (2005), p

1−p
=
√

1

1+1.359
= 0.651 (compared to 0.616 calculation from 

theory) and in Fréchette et al. (2003) p

1−p
=
√

1

1+1.056
= 0.697 (compared to 0.681 

by theoretical prediction). In both cases, we observe that the ratio of subjects across 
treatment arms remain unbalanced ( ≠ 0.5) and the ex-post ratios both exceed and 
deviate less from the ex-ante design ratio informed by theory than a even split.

(5)
cD=1

cD=0
=

ClosedRule

OpenRule
=

$5 + (4 ∗ $5)

$5 + (4 ∗ $4.1667)
= 1. 1538.

16 In each election round, a subject chosen at random is selected to propose a division of a $25 pie across 
5 subjects. Theory predicts that under the closed rule, the initial allocation would be approved by a sim-
ple majority. Hence, the full size of the pie would be divided according to the proposal made by the 
randomly chosen subject. In contrast, under the open rule, theory would predict that in each round of an 
election there is a 50% chance the initial proposal would be amended leading to delays. Since there is a 
50% chance that an alternative proposal would take the floor in the next round of the election, the size of 
the pie would shrink by 20%. The theory predicts that on average there would be a one round delay in the 
open rule session, in which case, on average $20 will be divided among the five subjects.
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2.5  Power for testing qualitative outcomes

In many experiments, the outcome of interest might be a limited dependent variable. 
For example, in many bargaining experiments, there is interest in whether a delay 
in reaching an agreement occurred. For such an outcome, a logit regression model 
could be deployed to estimate Eqs. (1) and (2), in place of the OLS estimator. Since 
the logit estimator is nonlinear and involves maximizing a likelihood function, for-
mulas to compute statistical power depend on whether a Wald test, a likelihood ratio 
test, or score test is used to determine statistical significance.17 For space considera-
tions here we do not repeat the previous exercise calculating minimum sample size 
required as well as optimal allocation of subjects into treatment and control. The 
interested reader can examine Bush (2015)’s Monte Carlo study, which concludes 
that Shieh’s (2000) likelihood ratio test most accurately and consistently achieves 
the desired level of statistical power.

3  Preanalysis plans can further inform the design of sessions

3.1  Allocating subjects to sessions and possible selection bias

The statistical power calculations presented in the preceding section are used to 
solve for minimum sample size in total and optimal subject allocation across treat-
ment arms. In this section, we outline how lab experiments could use a pre-analysis 
plan that contains details on how the experiment is implemented to anticipate poten-
tial selection bias issues and remedies. Currently, the implementation of laboratory 
experiments are often sequential. Lab experimenters frequently send a mass e-mail 
to their subject pool enlisting sign up and participation in sessions held at specific 
days or time slots. However, participants in an experimental session on a particular 
day at a specific time slot can differ based on many factors including those related 
to course selection, and subjects rarely are allowed to participate in the same experi-
ment twice. Further, the experimenter also could decide immediately prior to the 
start of the session whether to offer D = 1 or D = 0 , and this decision could poten-
tially be based on which type of subjects have shown up in the session.

Coffman and Niederle (2015) consider sequentiality an advantage since it pro-
vides an opportunity to examine the replicability of any finding. We suggest that a 
form of experimenter session and subject selection bias could arise, if following the 
arrival of subjects to the lab, the experimenter has the discretion on which treatment 

17 As discussed in Cohen (1988) if additional covariates are included, these formulas also will require 
the user to ex-ante forecast the squared multiple correlation between the predictor variable and all other 
variables in the model. Intuitively, when the variable of interest is correlated with other observed con-
founders, the number of observations needed increases since it is harder to precisely identify the effect of 
interest. Note that all these complications arise due to the nature of non-linearity with the logit estimator, 
and could be avoided by using an OLS estimator on a regression model where the outcome variable is a 
binary variable. Last, Engle (1984) discusses the three testing principles with maximum likelihood meth-
ods focusing on the differences in the way the tests look at particular econometric models.
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to offer in that particular session,18 and as discussed in the next subsection who can 
participate if the session is oversubscribed. If lab experiments are implemented in 
the manner described above, there is no inherent guarantee that unobserved charac-
teristics of potential on-site participants across treatment arms are balanced.

How subjects are allocated across treatment arms in laboratory experiments con-
trasts sharply with how it is done in many field experiments in applied economics. 
In those studies, participating subjects are randomized whether to receive the inter-
vention only after signing up to participate in the study. Randomization is conducted 
at that point of time in a bid to ensure observed and unobserved characteristics of 
the participants are balanced across treatment arms.

Lab experiments could use a pre-analysis plan to randomize treatments into spe-
cific sessions. This could minimize the threat of selection bias from the experiment-
er’s side by reducing their discretion on what treatment to offer in which session. 
Further improvement can arise from using block randomization that randomizes ses-
sions within blocks defined by day and time to carry out the session.19

Alternatively, a lab experimenter could pre-commit to randomize their subject 
pool into two groups at the beginning of their study. Only members of one group 
would receive invitations to the D = 1 sessions, and the people assigned to the other 
group would only be eligible to receive invitations to participate in D = 0 sessions. 
This would balance the characteristics of potential subjects prior to signing up to 
participate in the study.20 Unfortunately, if there are different rates of attendance 
across sessions, there is no guarantee that one will have random assignment among 
those that show up (see e. g.  Ham and LaLonde 1996).

These two alternatives of allocating subjects to sessions differ from the status quo 
method by using randomization to remove an experimenter’s discretion on which 
treatment to carry out in a specific session, increasing the chance that both observed 
and unobserved covariates are balanced across treatment arms. With the experi-
menter selection biases minimized, the bias from the subjects’ self-selective partici-
pation remains. Preanalysis plans could ensure appropriate data is collected from 
either the subject pool or the participating subjects themselves, to both undertake 
statistical tests of subject selection based on when a session was carried out (e.g. 
afternoon sessions may disproportionately attract lazier subjects) as well as consider 
any necessary statistical adjustments to overcome bias arising from the subject’s par-
ticipation decision.21 This bias would threaten the validity of the estimated treatment 

18 This action could generate an experimenter session selection bias, which is in the spirit of site selec-
tion bias that was initially suggested by Palmer (1993) in the ecology literature.
19 This would ensure that in each block an equal number of sessions are assigned to each treatment arm, 
thereby reducing bias and achieving balance relative to a simple randomization scheme.
20 It is important to note that small modifications to the power calculations are needed since the two 
randomly assigned subgroups can be viewed as strata. Cochran (1977) contains a clear discussion of how 
the optimal n and p to maximize statistical power are determined with stratified samples.
21 As examples, Ham and LaLonde (1996) and Ding and Lehrer (2010) illustrate how to create these 
adjustments using economic models of the subject’s decision to participate respectively in a training 
program experiment, and education experiment. Related, Casari et al. (2007) address a sample selection 
problem with both econometric methods and by adjusting economic incentives. They argue that changes 
in sample design are more likely to be successful than sophisticated methods given the sample sizes in 
experiments.
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effect if there is a lack of balance in the observed and unobserved characteristics of 
participating subjects in the treatment and control arms.

3.2  Oversubscribed sessions

In practice, it is common to recruit more subjects than needed for each individual 
session since some subjects that have subscribed fail to show up in person. When a 
laboratory session is oversubscribed researchers would either offer a financial incen-
tive for some volunteers to leave the study, or use a first-come first-served protocol 
asking the later arrivals to accept a participation fee and exit the experiment.22

These usual strategies to handle oversubscription generate selection bias; they 
also differ from how field experimenters handle this challenge. In the field if a study 
is oversubscribed, a lottery is often carried out to determine who will receive a treat-
ment.23 If oversubscription is handled via a voluntary departure induced by a finan-
cial incentive, subjects could very well self-select into or out of a study. If first come 
first served and the late arrivals are students from a class that ended late, the char-
acteristics of the stayers may no longer look like the exiters. Moreover, if the rates 
of oversubscription differ across the treatments (and sessions), it may no longer be 
the case that the unobserved characteristics of subjects are balanced across sessions 
(and treatments). A lottery would give all subjects in an oversubscribed session an 
equal chance of participating further and can solve this selection problem unless 
those who show up constitute a random sample.

4  Conclusion

This paper raises three issues that, to the best of our knowledge, have not been dis-
cussed in the experimental economics literature. First, what is the appropriate level 
of the type I and type II errors that a researcher should choose to provide evidence 
that best informs their intended audience? Second, how many subjects should be 
allocated to each treatment arm in a study? Third, how should researchers determine 
which subjects stay in the laboratory when a session is oversubscribed. We suggest 
that a simple lottery be carried out.

We further argue that there are indeed other benefits from formulating a pre-anal-
ysis plan to design the experiment and determine the minimum required sample size, 
how subjects should be allocated to the control and treatment sessions. We strongly 

22 Those who leave the laboratory are often allowed to participate in future sessions of the study. Intu-
itively, this behavior mimics how airlines oversell their flights and offer individuals credits for future 
flights to volunteer for and take a later flight.
23 With data from field experiments, researchers then compare a wait list control group to the experi-
mental group to identify the impact of the given treatment. This strategy assumes that these two groups 
are comparable since participants were randomly assigned to either the wait list control group or the 
experimental group. In the laboratory, a no-treatment control group is not used and control sessions need 
to be carried out, in which there is no guarantee that they will fully populated by members of the wait 
list.
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suggest researchers consider utilizing economic theory to predict the relative cost 
across the treatment arms when trying to maximize statistical power. We illustrate 
these strategies and show with data from two laboratory experiments where subject 
behavior deviated sharply from theory that the use of even split designs as the default 
design often leads to less statistical power. Finally, we encourage experimenters to 
adopt new sampling schemes that assign subjects to sessions. These schemes would 
increase the likelihood that subject characteristics are balanced across the treatment 
and control arms.
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