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Abstract We compare different implementations of the Stochastic Becker–DeG-

root–Marschak (SBDM) belief elicitation mechanism, which is theoretically elegant

but challenging to implement. In a first experiment, we compare three common

formats of the mechanism in terms of speed and data quality. We find that all

formats yield reports with similar levels of accuracy and precision, but that the

instructions and reporting format adapted from Hao and Houser (J Risk Uncertain

44(2):161–180 2012) is significantly faster to implement. We use this format in a

second experiment in which we vary the delivery method and quiz procedure.

Dropping the pre-experiment quiz significantly compromises the accuracy of sub-

ject’s reports and leads to a dramatic spike in boundary reports. However, switching

between electronic and paper-based instructions and quizzes does not affect the

accuracy or precision of subjects’ reports.
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1 Introduction

Most theories of decision-making assume that choices are based on an individual’s

preferences and probabilistic beliefs. Economists who want to test the descriptive

validity of these theories are hindered by the fact that preferences and beliefs are

typically unobservable. An advantage of economic experiments over other sources

of empirical data is that secondary measures such as probabilistic beliefs can be

elicited. These secondary measures supplement choice data and allow for stronger

identification of the forces governing the decision-making process.

A challenge faced by practitioners is that there is a potential tradeoff between

practical considerations—such as speed—and data quality considerations, such as

accuracy and separability between subjects’ beliefs and preferences. To help

practitioners assess the relative merits of different experimental techniques, we

explore the practicality-quality trade-off with regard to the Stochastic Becker–

DeGroot–Marschak (SBDM) belief elicitation mechanism. The SBDM mechanism

has been chosen for two reasons. First, the SBDM mechanism is incentive-

compatible for all subjects whose preferences respect probabilistic sophistication

and dominance (Karni 2009).1 These properties are desirable because heterogeneous

risk preferences have been well documented in the laboratory (see, for example,

Holt and Laury 2002) and there is evidence that some subjects are not well

described by the expected-utility model of decision-making (Harrison and Rutström

2009). Second, the SBDM mechanism is quite complex.2 This complexity has

prompted practitioners to experiment with quite different instructions, reporting

interfaces, and training methods. Given the current absence of standard procedures,

we believe it is important to identify which format offers the best balance of

practicality and data quality.

We report results from two experiments. In the first experiment, we compare

three isomorphic presentations of the SBDM mechanism, which are adapted from

Holt and Smith (2009), Hao and Houser (2012) and Trautmann and van de Kuilen

(2015). The first format presents careful and detailed descriptive instructions, the

second introduces a simple analogy to explain a complex probabilistic concept, and

the third uses a list-based format for reporting beliefs. Each has desirable features.

To get at the practicality-quality trade-off, we compare the formats in terms of

accuracy, precision, and the time it takes for subjects to work through instructions, a

quiz, and each iteration of the belief-elicitation task. We find that all formats yield

reports with similar levels of accuracy and precision, but that the instructions and

1 The term ‘‘probabilistic sophistication’’ is used as per Machina and Schmeidler (1992)—that is, that the

subject ranks lotteries based purely on the implied probability distribution over outcomes. The practical

implication is that a subject will rank bets with subjective probabilities over outcomes in the same manner

as he would rank lotteries with an objective probability distribution. Epstein (1999) defines ambiguity

neutrality as a decision-maker for which the probability is sophisticated. Thus, SBDM is not in general

incentive compatible when decision-makers are ambiguity averse. ‘‘Dominance’’ is the condition that a

subject has preference relation � over lotteries such that HpL � Hp0L for all H[L if and only if p� p0.
2 Ducharme and Donnell (1973) present the first experimental test of the mechanism and observe that

while it is ‘‘basically simple’’, the SBDM mechanism task ‘‘seems complicated at first exposure’’.
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reporting format adapted from Hao and Houser (2012) is significantly faster to

implement.

In a second experiment, we restrict attention to the Hao and Houser (2012)

format and run three treatments that focus on the practicalities of implementation.

One treatment drops the pre-experiment quiz, one delivers the instructions and quiz

on paper, and the third delivers the instructions and quiz electronically. We find that

dropping the pre-experimental quiz significantly compromises the accuracy of

subjects’ reports and leads to a dramatic spike in boundary reports. We also find that

switching between electronic and paper-based instructions and quizzes does not

affect the accuracy or precision of subjects’ reports.

This paper contributes to the small but growing literature on belief-elicitation

methodologies. Existing work has compared the quality of reports under different

belief-elicitation mechanisms, including Huck and Weizsäcker (2002), Palfrey and

Wang (2009), Massoni et al. (2014), Trautmann and van de Kuilen (2015) and

Hollard et al. (2016).3 There has, however, been little work on the practicalities of

implementation. The notable exception is Holt and Smith (2016), which is closest to

our paper. Holt and Smith use a Bayesian-updating task to compare direct elicitation

and a list-based format for implementing the SBDM mechanism. Our paper partially

replicates their list of formats but also tests analogy-based instructions which are

promising in both speed and accuracy. We also provide guidance on the importance

of quizzes and instruction format when implementing the SBDM mechanism.

2 The Stochastic Becker–DeGroot–Marshak mechanism

The Stochastic Becker–DeGroot–Marschak mechanism is based closely on the

Becker–DeGroot–Marschak (BDM) mechanism (Becker et al. 1964), which was

originally conceived as a method for eliciting certainty equivalents for lotteries. In

its original context, the BDM mechanism works as follows: Let HpL denote the

lottery that pays H with probability p and L otherwise. In the first stage of the

mechanism, the subject is asked to report a price r, which he is prepared to pay to

acquire the lottery HpL. In stage two, a number z is realised from the distribution of

random variable Z, which has distribution PZ with support [0, H]. The subject

receives the outcome of lottery HpL if z� r and payment z otherwise.

For all expected-utility maximizing agents, it is a dominant strategy to report

one’s certainty equivalent (CE). The intuition for this result is straightforward: a

subject who reports r[ CE runs the risk that CE \z\r. He will be paid according

to the outcome of the lottery which he values at CE, but would prefer to receive

payoff z. If the subject under-states their CE, with r\ CE, this is also costly: if

r\z\ CE, the subject will receive z but would prefer to receive the lottery.

The Stochastic Becker–DeGroot–Marschak mechanism adapts this approach to

elicit the probability p of a particular stochastic event A. As per the deterministic

case, the subject is endowed with a lottery that pays H if event A occurs and L

3 For excellent reviews of belief elicitation in the lab, see also Schlag et al. (2013) and Schotter and

Trevino (2014).
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otherwise. Given a true belief p, this lottery corresponds to a lottery HpL. The

subject reports his belief r about p. A number z is realised from the distribution of

random variable Z, which has distribution PZ on support [0, 1]. If z� r, the subject

retains his original lottery; if z[ r, the agent exchanges his original lottery for a

new lottery HzL. The lottery payoffs are identical, with the two lotteries

distinguished only by their probabilities of winning. Not only is this mechanism

robust to heterogeneous risk preferences but also to preferences that do not conform

with expected-utility maximisation. For subjects who do not have a stake in the

event of interest (i.e., they have no incentive to hedge) and whose preferences are

consistent with probabilistic sophistication and dominance, it is in their interest to

report r ¼ p, as they otherwise risk receiving their less-preferred lottery (Karni

2009).

2.1 The SBDM in practice

The SBDM mechanism is a complex procedure. Its incentive compatibility requires

subjects to have a thorough understanding of the mechanism, or at least to trust a

researcher who tells them that it is in their best interests to report beliefs accurately.

Experimental economists have broadly taken one of three approaches when

implementing the SBDM, varying in the ways they explain the SBDM and the way

subjects report their beliefs.

Early implementations of the SBDM mechanism such as Ducharme and Donnell

(1973) and Grether (1992) explained the SBDM mechanism rigorously and

precisely, often alongside descriptions of probabilistic concepts and incentive-

compatibility. They then ask subjects to report r directly—that is, to issue a numeric

report about their belief. We refer to this as a ‘‘descriptive’’ approach to capture the

faithful depiction of the underlying SBDM mechanism.

Our benchmark for the descriptive format is Holt and Smith (2009) (HS).

Subjects are told that they must report their r-in-100 belief that a particular event

(‘‘Event A’’) has occurred. This event is worth $x. HS explains that belief r is

equivalent to a belief that a lottery has an r-in-100 chance of winning $x.

Subjects are then introduced to a stochastic ‘‘payoff lottery’’, in which the subject

can win $x. Subjects are told that the probability of winning the payoff lottery is

t-in-100, with t drawn from a uniform distribution between 0 and 100. If the

subject’s reported belief r is above cutoff t, the subject will be paid $x if Event A

has occurred. If r is less than or equal to t, the subject’s payoff will be determined

by the payoff lottery. Both lotteries potentially pay $x, and—according to their

reported belief r—the subject will play whichever game gives him a higher

probability of winning.

Möbius et al. (2007), Hollard et al. (2016) and Möbius et al. (2011) also use

direct reporting, but use analogies to explain the stochastic payoff mechanism. Our

‘‘analogy-based’’ format is adapted from the instructions presented in Hao and

Houser (2012) (HH), which use a ‘chips-in-a-bag’ analogy to explain the stochastic

payoff mechanism. Subjects are asked to report a belief r about the probability of an

event occurring (with the event associated with payoff $x). They are told that a

number between 0 and 100 will be randomly selected, with each number equally
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likely to be chosen. If this number ‘‘?’’ is larger than r, the subject’s payoff will be

determined by the draw of a chip from a bag. This bag contains 100 chips: ? are

black and the remainder are white. A black chip is worth $x. Subjects are told that

after they report belief r they will be paid either according to the realisation of the

event or the draw of a chip from the bag—whichever has a higher payoff according

to their reported belief. Hao and Houser’s subjects see a physical bag filled with

chips; our chips-in-a-bag are computerised.

Trautmann and van de Kuilen (2015) and Holt and Smith (2016) move away

from direct reporting and explore an alternative list-style reporting format for the

SBDM mechanism. The format is similar to the lists that are common in risk and

time-preference elicitation tasks: a subject is presented with a list of choice tasks in

which he indicates his preference over two lotteries. In Trautmann and van de

Kuilen (2015) (TK), the subject indicates whether he prefers to be paid according to

‘‘Asset A’’—which makes a payment if a particular event is realised—or Option B,

which offers an objective probability of winning with the outcome determined by

the role of a die. Following (TK), our variant of the ‘‘list’’ format requires subjects

to choose whether they would prefer to be paid according to the outcome of Event

A, or alternatively according to the outcome of the Dice Lottery. Similar to Holt and

Smith (2016), we use a two-step titration procedure. In step one, subjects nominate

the support for their switch-point, with supports expressed as ranges of 10

percentage points (e.g. ‘‘51–60%’’). On a second screen, subjects indicate precisely

when they switch from preferring one lottery to the other. The experiment does not

allow subjects to nominate more than one switch-point.4

3 Experiment 1

Experiment 1 was conducted at the University of Melbourne’s Experimental

Economics Laboratory in July 2015 and consisted of 125 subjects. Each subject was

paid a $15 show-up fee, and won $15 or $0 in the experiment.5 The experiment used

deliberately high stakes to ensure that rewards were salient. Payment was based on

one period chosen from the fifteen periods at random.

We use an ‘‘induced probability’’ approach in our design. Subjects are given a

Bayesian-updating task and asked to report their beliefs about a posterior which has

an objective probability that is known to the researcher. The task is modelled on

Holt and Smith (2009). Subjects are told that there are two buckets: Buckets A and

B. Bucket A contains two dark balls and one light-colored ball, while Bucket B

contains two light balls and one dark ball. Subjects are informed that each bucket is

equally likely to be selected, and that a ball will then be drawn from this unknown

bucket. Each ball is equally likely to be chosen. Subjects are shown the color of the

4 By restricting subjects to a single switch point we might prevent subjects from reporting their true

preferences and/or imposing consistency when subjects are actually confused. However, as we did not

allow for multiple reports in the other two mechanisms the cleanest comparison is to preserve a single

switch point.
5 Subjects’ total completion time for Experiment 1 varied between 16 and 58 min, and subjects received

an average payoff of $25.95.
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ball and asked to nominate their belief that the ball has been drawn from Bucket A.

We make minor adjustments to the instructions to accommodate our computerised

format and the belief-formation task is called the ‘‘Bucket Game’’ for easy and

consistent reference throughout the instructions.

Subjects all received identical instructions regarding the Bucket Game and the

pay-one-period payment protocol. Subjects then read one of the three SBDM

mechanism instructions. The HH and TK instructions are adapted to the context of

the HS ‘‘Bucket Game’’, and all instructions use the same language. In particular,

this means that probabilities are expressed as the ‘‘chance in 100’’ of an event

occurring. Following HS, all instructions tell subjects to ‘‘think carefully’’ about

their beliefs because it will affect the selection of payoff method.

After reading their instructions, all subjects completed a computerised pre-

participation quiz. Quiz formats for the HS and HH treatment were identical, while

the TK format was slightly modified to give subjects practice in making reports via

the two-step procedure.

Neither the instructions nor quiz use verbal interactions. This is to minimise

experimenter effects and so that the instructions can be easily used across

experiments and laboratories. We also use ‘‘portable’’ instructions—that is,

instructions that avoid reference to the experiment itself.

Each subject completed 15 repetitions of the belief-elicitation task. At the end of

each period, subjects learned whether they earned $15 or $0. Participants in the HS

and HH treatments learned z, were reminded of their report r, and were told whether

they were paid according to the Bucket Game or Dice Lottery/Lottery Bag Game.

Subjects in the TK treatment were told which of their choices was randomly

selected, and were reminded about their preferred payoff option. All subjects were

told the outcome of the stochastic payoff lottery, or alternatively whether their ball

was drawn from Bucket A or B.

Experiment 1 was conducted across eight sessions and two days, with four

sessions held on each day. In each session, roughly a third of subjects participated in

each treatment. Subjects drew a numbered ball from a jar and were seated at the

corresponding computer station, with a third of the laboratory’s computers devoted

to each treatment. A summary of treatments is shown in Table 1.

3.1 Outcome measures and statistical tests

We consider three outcome measures when assessing the trade-offs that exist across

formats: accuracy, precision, and brevity. Our measure of accuracy is the mean of

Table 1 Summary of Experiment 1

Treatment Periods Computerised n Instructions Quiz

Word count Z-tree screens Reporting format

HS 15 Yes 42 936 6 Direct

HH 15 Yes 41 397 2 Direct

TK 15 Yes 42 391 4 List-style
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the absolute error of a subject’s reports, relative to the objective Bayesian posterior.

Between-treatment variations in accuracy provides an indication of the incentive-

compatibility characteristics of each treatment.

As a measure of precision, we use the standard deviation of absolute errors for

each individual.6 The experiment centers around an objective Bayesian-updating

task, and there is no reason to suspect that individuals should vary systematically on

their understanding of this task across formats. Between-format variation in

precision may thus be a sign of different degrees of learning about the incentive

properties of the mechanism and would suggest differences in initial understanding.

Finally, our measure of practicality is brevity, and we use the total time it takes a

subject to go through the entire experiment. This includes the time taken to read the

instructions, complete the quiz, and answer all 15 decision problems. It does not

include time taken to complete the post-experiment questionnaire.

Throughout the analysis, we perform the Kruskal–Wallis test over all three formats

with each individual treated as a single observation. This test is the natural extension

of the Mann–Whitney–Wilcoxon test when there are more than two treatments. The

null hypothesis is that a random observation from subjects in each treatment is equally

likely to be larger or smaller than an observation drawn from a different treatment. As

a post hoc test, we also use Dunn’s test for stochastic dominance to compare pair-wise

treatments and we adjust errors using the Benjamini–Hochberg procedure to adjust

for multiple hypotheses. All results in the paper have also been assessed using

randomisation tests identical to those in Holt and Smith (2016). Any differences

between the two approaches are noted in the main text.

4 Experiment 1: Results

Result 1 The accuracy and precision of reports achieved with adaptations of the

Holt and Smith (2009) format, the Hao and Houser (2012) format, and the

Trautmann and van de Kuilen (2015) format are not significantly different from one

another. The Hao and Houser format is significantly faster to run than the other two

formats.

Support for Result 1 is provided in Table 2, which provides summary statistics

for our three outcome measures and the p values from all treatment-level statistical

tests. As can be seen in the first row, average accuracy in the HS, HH and TK is

similar, with no apparent difference between the three formats. The Kruskal–Wallis

test cannot reject the null hypothesis and there is no significant difference found in

any of the pairwise tests. As can be seen in the second row, the precision of reports

is similar across the three formats and there is no statistical evidence that the three

formats differ at the aggregate level.

As can be seen in the third row of the table, the HH format takes subjects 850 s

on average to complete, while the HS format takes 1089 s and the TK format takes

1212 s. The difference in time is significant according to the Kruskal–Wallis test.

6 Typically precision is defined as the inverse of the variance. However, since some subjects have zero

variance, this measure is unbounded.
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Looking at the pairwise tests, response time in the HH format is significantly

different from both the HS and TK formats. There is no significant difference in

time between the HS format and the TK format.

Statistical tests at the aggregate level may mask the distributional features of

subjects’ reports that are likely to be of concern to practitioners. For instance, in

many settings, direct reports lead to groupings at round numbers—such as 10 or

20—and larger clusters at 0, 50, and 100. These groupings are likely to be obscured

when averaged over multiple periods. We, therefore, examine the distribution of

subjects’ reports and the corresponding absolute errors.

Figure 1 shows the distribution of subjects’ reported beliefs. In all three

treatments, there are pronounced spikes that are consistent with accurate Bayesian

updating (posteriors of 67% in the wake of observing a dark ball, and 33% in the

wake of a light ball). In the HS and HH treatments, there are also clusters of

observations at each of the 10-point intervals nearest the true posterior and a small

number of reports at 50. Boundary reports occur 5.7% of the time in the HS

treatment and 4.8% of the time in the HH treatment. Clustering at 10-point intervals

is less pronounced in the TK treatment and boundary reports occur in only 1.7% of

cases.7 However, after the observation of a dark ball, 17% of TK reports are 33—the

posterior that should occur after observing a light ball. This suggests that some

subjects might be losing track of the signal they have observed.8

Table 3 reports mean and median completion times for each major component of

the experiment. Subjects in the HS and HH Treatments share the same quiz and

period formats, and have similar mean and median completion times for these

components of the experiment. Instruction times differ quite dramatically, however,

with mean times of 480 (HS) versus 305 s (HH), and median times of 333 versus

288 s (Kruskall–Wallis test: p \ 0.001; Dunn test comparing HS and HH:

p ¼ 0:000). The mean subject, therefore, takes nearly 3 min longer to work through

the HS instructions than the HH instructions.

7 As in Holt and Smith (2016), the difference in boundary reports is significant in a randomisation test at

the 0.01 level. We note, however, that the proportion of these reports is much smaller in our sample than

in theirs. This is due in part to restricting our Bayesian task to a single draw.
8 Note that every screen in the TK format reminds subjects of the color of the ball they have observed.

Thus, the reverse reporting is unlikely to be due to recall and is more likely due to distraction or a lack of

salience.

Table 2 Summary statistics for the HS, HH and TK treatments

Treatment means KW-

test

Pairwise Dunn tests

HS HH TK HSvHH HSvTK HHvTK

Mean Abs. error 12.4 (1.53) 13.1 (1.43) 14.7 (1.61) 0.546 0.326 0.410 0.393

Within-Sub. SD

errors

9.8 (1.11) 9.9 (1.17) 9.5 (1.44) 0.821 0.445 0.482 0.824

Total time (s) 1089 (63.1) 850 (47.2) 1213 (67.7) < 0.001 0.005 0.069 < 0.001

The Kruskall–Wallis test is performed at the measure level and the Dunn pairwise tests are adjusted for

multiple hypotheses using the Benjamin–Hochbern adjustment. Standard errors are reported in

parentheses
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Figure 2 presents subjects’ completion times across 15 periods. Subjects in the

TK treatment exhibit greater dispersion in period completion times than their peers,

particularly in early periods. Recall that these subjects have to indicate their

preferences over multiple lottery choices, which is reflected in significantly longer

mean and median period completion times. Focusing on subject-level mean period

completion times, TK subjects have a mean period completion time of 40 s, versus

26 and 22 in HS and HH; the medians of subject-level means are 36 in TK, 22 in

HS, and 17 in HH (Kruskall–Wallis test: p ¼ 0:001; Dunn test comparing TK and

HS: p ¼ 0:001; Dunn test comparing TK and HH: p\0:001; Dunn test comparing

HS and HH: p ¼ 0:061).

As a result of HS’s longer instructions and TK’s two-stage reporting interface,

the total time taken to complete the experiment is significantly faster when subjects

complete the HH treatment. The HH format, therefore, stands out as the most

immediately appealing due to its improved speed and the lack of evidence that

precision and accuracy are improved in either of the longer formats. We use this

treatment as the basis of our second experiment, which tests whether the format of

quizzes influences performance and speed.

5 Experiment 2

Part 2 of our study varies the implementation of the instructions adapted from Hao

and Houser (2012). The Hao–Houser quiz treatment (abbreviated to Q) is identical

to the Hao and Houser treatment from Experiment 1. The Hao–Houser no-quiz
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treatment (abbreviated to NQ) drops the computerised quiz, and the paper treatment

(P) administers the instructions and quiz in hard copy. The Q, NQ and P treatments

are compared using the same criteria Experiment 1: accuracy, precision and brevity

(Table 4).

Experiment 2 was conducted across 3 days. Three sessions were held on the first

day, and one on each of the two subsequent days. Times were varied across the

mornings and afternoons. The quiz- and no quiz treatments were both computerised

and run jointly across three sessions with random assignment within each session.9

Because of the need to distribute hard copies, the paper treatment was conducted in

separate sessions so that subjects were not concerned that some participants might be

completing different experiments.10 Subjects’ total completion time for Experiment 2

varied between 14 and 54 min, and subjects received an average payoff of $23.55.

5.1 Results

Result 2 Reports in the computerized quiz treatment are significantly more

accurate that reports in the no-quiz treatment. Thus, using a quiz is important for

9 The Q treatment is identical to the HH treatment and was repeated to allow for within-session

randomization. Completion times in the Q treatment were slightly faster than the HH treatment with a

mean session time of 766 s and a median session time of 695 s. However, the difference in session times

is not significant using a Mann–Whitney–Wilcoxon test (p value ¼ 0:13).
10 Times for all treatments are measured precisely, with the exception of the paper treatment. When

running the paper treatment, the laboratory assistant noted the times at which instructions were

distributed, the time at which instructions were swapped for the quiz, and the time when the subject

completed the quiz successfully. These times were noted in minutes rather than seconds, with all time-

based analysis using the mid-point of the minute in question. There was 1 lab assistant and 15 subjects in

each P treatment.

Table 3 Summary of

completion times (s)
Mean completion time Median completion time

HS HH TK HS HH TK

Period (mean) 26 22 40 22 17 36

Instructions 480 306 419 433 288 373

Quiz 212 212 187 160 178 155

Total time 1089 850 1212 988 815 1112
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ensuring accuracy in the computerised analogy-based Hao and Houser format.

There are no significant differences in the accuracy of reports in the computerized

and paper-based quiz treatments, but the no-quiz treatment is significantly faster

than both electronic treatments.
Table 5 reports accuracy, precision, and brevity for each of the three quiz

treatments. Average accuracy in the quiz treatment is 11.2 and it is 13.4 in the paper

treatment, and this difference is not significant. Accuracy in the no-quiz treatment is

20.4, which is significantly different from the quiz treatment at the 5% level (p =

0.04) and from the paper treatment at the 10% level (p = 0.06). The difference

between the paper and no quiz treatments is significantly different at the 5% level

when using the alternative randomization test.11

Precision in the no-quiz treatment is 15.2, while it is 10.4 and 8.6 in the quiz and

paper treatments. The three-way Kruskall–Wallis test is not significant, but we note

that a pairwise randomization test finds that the difference between the paper and

no-quiz treatments is significant at the 0.05 level. We interpret this difference to be

due to differences in initial understanding and learning: in the no quiz treatment, a

large portion of individuals begin by making boundary reports and then revising

their actions towards the objective probabilities. No such learning dynamic is

observed in the other treatments.

As can be seen in the third row, the quiz increases the overall time of the

experiment from an average of 613.7–766.3 s. Moving from an electronic quiz to a

paper-based quiz increases the total time of the experiment to 1079.7 s. All

differences are significant.

Figure 3 presents the aggregate distribution of subject’s reports for the quiz, no-

quiz-, and paper treatments. Accurate reports are much more common in the quiz

treatment, while reports of 50 are more common in the paper-based treatment than

the computerised quiz treatment. Reports in the no-quiz treatment are frequently

inconsistent with Bayesian updating: while boundary reports are uncommon in the

quiz and paper treatments, they occur 118 times in the no quiz treatment and

account for 26.22% of observations (Table 6).

As seen in Table 3, subjects’ mean period completion times do not differ

significantly across the three treatments. This is not unexpectedly given that all

treatments use the same computerised reporting interface. Subjects take signif-

icantly longer to complete the instructions if they participate in the paper treatment:

the mean completion time is nearly 8 min, in contrast with about 5 min for the

computerised instructions (quiz and no quiz treatments).

Table 4 Summary of

Experiment 2
Treatment Periods Computerised n Quiz

Reporting format

Quiz 15 Yes 28 Direct

No Quiz 15 Yes 30 No Quiz

Paper 15 No 30 Direct

11 All randomisation test results are included in the Appendix.
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Table 5 Summary statistics for the quiz (Q), no-quiz (NQ) and paper (P) treatments

Treatment means KW-

test

Pairwise Dunn tests

Q NQ P QvNQ QvP NQvP

Mean Abs. error 11.2 (1.66) 20.4 (2.78) 13.4 (1.81) 0.042 0.017 0.230 0.062

Within-subject SD

of errors

10.4 (1.54) 15.2 (2.35) 8.6 (1.52) 0.158 0.238 0.187 0.082

Total time (s) 766.3 (62.5) 613.7 (37.7) 1079.7 (86.4) \ 0.001 0.035 0.004 \ 0.001

The Kruskall–Wallis test is performed at the measure level and the Dunn pairwise tests adjusted for

multiple hypotheses using the Benjamin–Hochbern adjustment. Standard errors are reported in

parentheses
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Fig. 3 Reported Beliefs

Table 6 Summary of

completion times (s)
Mean completion time Median completion time

Q NQ P Q NQ P

Period (mean) 18.6 20.5 20.4 15.2 17.5 19.6

Instructions 295 306 474 245 281 420

Quiz 191 0 300 157 0 240

Total time 766 613 1079 695 596 951
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6 Conclusion

While belief elicitation is increasingly popular, there are no widely adopted or

standard procedures. To help practitioners assess the relative merits of different

experimental techniques, we explore the practicality-quality trade-off with regard to

the SBDM belief-elicitation mechanism. We study behavior in three formats of the

SBDM: a ‘‘descriptive’’ instruction format with direct reporting, adapted from Holt

and Smith (2009); an ‘‘analogy-based’’ instruction format with direct reporting,

adapted from Hao and Houser (2012); and a ‘‘list-style’’ format adapted from

Trautmann and van de Kuilen (2015). We find that accuracy and precision of reports

in the three formats are remarkably similar but that the format adapted from Hao

and Houser (2012) is quicker to run than the other two formats. We use this format

in a second experiment in which we vary the delivery method and quiz procedure.

Dropping the pre-experiment quiz significantly compromises the accuracy of

subjects’ reports and leads to a dramatic spike in boundary reports. Switching

between electronic and paper-based instructions, however, does not affect the

accuracy or precision of subjects’ reports.

Brevity and efficient communication in experiment instructions tends to be

under-valued, and should be taken more seriously given the limited attention span of

subjects. Our HH format is the shortest, yet it helps subjects make quick decisions

without compromising accuracy. We thus view it as a promising format for eliciting

beliefs.

Recent work by Holt and Smith (2016) also compares direct-elicitation and list-

based formats of the SBDM. As with our experiment, they do not find significant

differences in accuracy between formats. However, there is evidence that there is a

difference in accuracy for simple situations when the true probability is .5. In the

online appendix, we report on an additional robustness experiment, where we use a

spinner task in which objective probabilities are easily calculated. We do not find

differences in accuracy across formats using this alternative simple task.

Holt and Smith (2016) also find large differences in boundary reports across

formats. When restricting the data in Holt and Smith (2016) to events that match

ours, the overall boundary rate is only 2.8%, which is very similar to ours. The large

difference in boundary reports in other segments of their data suggest that there may

be an interaction between the complexity of the task and the importance of the

elicitation format. In particular, it would be interesting to understand how subjects

use the elicitation format to scaffold their probabilistic reasoning.

Appendix A: Randomisation test results

Table 7 reports the results of pairwise randomization tests which compare outcomes

from treatments in Experiments 1 and 2. All randomization tests are based on

500,000 simulations for comparability with the randomization test results reported

in Holt and Smith (2016).
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