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Abstract
We give a complete classification of the torus-equivariant birational equivalence
classes of smooth proper toric Deligne–Mumford stacks with trivial generic stabi-
lizer in terms of their associated stacky fans.
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1 Introduction

An algebraic orbifold is a smooth separated irreducible Deligne–Mumford stack of
finite type over a field k (assumed to be algebraically closed of characteristic zero) with
trivial generic stabilizer. Following [8, 9] we say that such orbifolds X,X′ are bira-
tionally equivalent if there is a third algebraic orbifold ̂X admitting proper, birational
and representable morphisms

X f←− ̂X g−→ X ′. (1)

In our paper, we consider the torus-equivariant birational classification problem for
smooth proper toric Deligne–Mumford (DM) stacks with generically trivial stabi-
lizer (see below for the precise definition). This problem was previously studied by
Levchenko in [10], who considered the case of dimension 2 and obtained some bira-
tional invariants. In our paper, we give a full classification in arbitrary dimension.
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2 Main result

To describe our results, we briefly recall the definition and basic properties of smooth
toric DM-stacks. These were introduced in [1] and generalize the canonical cover of
simplicial toric varieties (cf. [5, Theorem 4.11]). Similarly to the case of normal toric
varieties, a smooth toric DM-stack is given by essentially convex-geometric data:

• a finitely generated abelian group N of rank d; we denote the image of the natural
map N → NQ = N ⊗ZQ by N ,

• a simplicial rational polyhedral fan � in NR = N ⊗ZR,
• for each ray τ ∈ �(1) a vector ρτ ∈ N which generates τ .

Given such a tuple � = (N , �, (ρτ )τ∈�(1)), called a stacky fan, one constructs a
smooth Deligne–Mumford stack X� (see [1]). The coarse moduli space of X� is the
toric variety associated to the fan �. We have that N = N is torsion-free if and only if
X� is an orbifold, i.e. has generically trivial stabilizer (see [5, Lemma 7.15]). Under
this assumption, for σ ∈ � we denote by Nσ ⊆ N the sub-lattice spanned by the ρτ

for τ ∈ σ(1). The index of Nσ in N ∩ SpanQ σ is the order of the generic stabilizer
group on the torus-invariant stratum of X� associated to σ . We remark for later use
that for a face π ⊆ σ we have Nπ = Nσ ∩ SpanQπ .

From now on, we only work with toric orbifolds X� , i.e. smooth toric DM-stacks
with generically trivial stabilizer. As for toric varieties, they contain the algebraic
torus T = TX�

= Spec(k[N∨]) as an open dense substack. Following [10], we
say that two such orbifolds X ,X ′ are T -equivariantly birationally equivalent if there
exists a diagram (1) such that ̂X is an orbifold with an action of T and a dense
equivariant embedding of T such that the maps f , g are T -equivariant.1 It follows
from [5, Theorem7.17] that such an orbifold ̂X is a toric orbifold in the sense described
above, i.e. given by ̂X = X

�̂
for a stacky fan �̂ = (N , ̂�, (ρ̂τ )τ∈̂�(1)).

Given two toric DM-stacksX�′ ,X� containing the same torus T , the identity on T
induces a T -equivariant birational map X�′ ��� X� . The following proposition gives
a criterion when this map is a morphism, respectively a representable morphism, in
terms of the stacky fans �,�′.
Proposition 2.1 Let � = (N , �, (ρτ )τ∈�(1)) and �′ = (N , �′, (ρ′

τ ′)τ ′∈�′(1)) be two
stacky fans with the same underlying group N such that �,�′ are full-dimensional2

with the same support |�| = |�′|. Then the birational map X�′ ��� X� extending
the identity of the torus T = Spec(k[N∨]) is

(a) a morphism if and only if the identity on NR induces a map of fans �′ → � such
that for each τ ′ ∈ �′(1) and any cone σ ∈ � containing τ ′, the element ρ′

τ ′ is an
integral linear combination of the ρτ for τ ∈ σ(1),

(b) a representable morphism if and only if the identity on NR induces a map of fans
�′ → � and for any full-dimensional cones σ ∈ �(d), σ ′ ∈ �′(d) with σ ′ → σ ,
we have an equality of sublattices Nσ = Nσ ′ .

1 By composing f , g with the action of suitable points in T (k) on X ,X ′ we can assume without loss of
generality these maps restrict to the identity on T .
2 Here we say that a rational polyhedral fan in NR

∼= Rd is full-dimensional if each cone of the fan is a
face of a d-dimensional cone inside the fan. This condition is automatic for complete fans.
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Proof The fact that the fan-theoretic condition in (a) is sufficient is [1, Remark 4.5],
and the converse implication follows from [6, Theorem 3.4]. For part (b) we note that
for any cone σ ∈ �, the generic stabilizer group of the associated torus-invariant
subset of X� is given by N ∩ SpanQ σ/Nσ (as follows from [1, Proposition 4.3]).
By part (a), we obtain a morphism if and only if Nσ ′ ⊆ Nσ , and the injectivity of
stabilizer groups for the representability of this morphism is then equivalent to the
other inclusion Nσ ′ ⊇ Nσ . We use here that it is sufficient to check the condition at
the maximal cones since for a face π ⊆ σ we have Nπ = Nσ ∩ SpanQπ . �


Using this proposition, we see that fixing �, the torus-equivariant morphisms
X�′ → X� are precisely induced by the choices of a simplicial subdivision �′ → �

and ray generators (ρ′
τ ′)τ ′∈�′(1) such that condition (a) is satisfied. Similarly, the rep-

resentable morphisms correspond to subdivisions such that (b) is satisfied (in this case
the ray generators are uniquely determined by condition (b)).

Theorem 2.2 Let X� and X�′ be two proper d-dimensional toric orbifolds together
with an identification T = TX�

= TX�′ of their tori. Then X� and X�′ are T -
equivariantly birationally equivalent if and only if for any σ ∈ �(d) and σ ′ ∈ �′(d)

such that the interiors of σ and σ ′ intersect, we have Nσ = N ′
σ .

Proof By definition, we have that X� and X�′ are T -equivariantly birationally equiv-
alent if and only if we can find a toric orbifold ̂X (with torus T ), together with
representable, proper T -equivariant birational morphisms

̂X

X� X�′

f g (2)

such that f , g restrict to the identity on T . As mentioned before, it follows from
[5, Theorem 7.17] that the orbifold ̂X is given by ̂X = X

�̂
for a stacky fan ̂� =

(N , �̂, (ρ̂τ )τ∈̂�(1)).
All toric orbifolds in diagram (2) are proper, so their fans are full-dimensional with

support NR. By Proposition 2.1, the fan ̂� is a refinement of �,�′. For σ ∈ �(d) and
σ ′ ∈ �′(d) with overlapping interior, choose a cone σ̂ ∈ ̂�(d) whose interior maps to
int(σ ) ∩ int(σ ′). Then the fact that f , g are representable implies Nσ = Nσ̂ = Nσ ′
by Proposition 2.1 (b).

Conversely, assume Nσ = N ′
σ for any σ ∈ �(d) and σ ′ ∈ �′(d) such that the

interiors of σ and σ ′ intersect. Then we claim that there exists an iterated stacky star
subdivision3 �̂ of� such that �̂ is a refinement of�′. The analogous statement for non-
stacky fans is proven in [3] (seeLemmas inSections 2.2 and2.3 andTheorem inSection
2.4 of [3]). The proof is effective, describing a procedure for choosing the sequence
of cones to subdivide. Following the same algorithm line-by-line and replacing the
primitive generators of rays with the chosen generators ρτ gives the desired result

3 This is a variant of the usual star subdivision of a fan along a cone which takes into account the chosen
ray generators ρτ , see [4] for the definition.
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for stacky fans. We claim that taking ̂X = X
�̂
, we obtain a diagram (2) of proper

representable morphisms as desired. Indeed, for the conditions of Proposition 2.1 (b),
we already checked that that the underlying fan ̂� of ̂� refines �,�′. On the other
hand, the map f induced by iterated stacky star subdivision is representable, so for a
cone σ̂ ∈ ̂�(d) mapping to σ ∈ �(d) and σ ′ ∈ �′(d), we have Nσ̂ = Nσ . But then
int(σ ) ∩ int(σ ′) ⊇ int (̂σ ) �= ∅, so by assumption Nσ ′ = Nσ = Nσ̂ as desired. �


As a consequence of the above result, we can give a complete classification of the
birational equivalence classes of proper toric orbifolds. To state it, we introduce the
following notion (which we did not find in this precise shape in the literature).

Definition 2.3 A conical polyhedral partition of NR is a finite collection (Ci )i∈I of
non-empty subsets ∅ �= Ci ⊆ NR such that

• each Ci is a finite union of full-dimensional rational polyhedral cones,
• the union of the Ci is all of NR,
• the interiors of the Ci are pairwise disjoint.

We claim that for such a conical polyhedral partition, one can in fact find a fan �0
with support NR such that each of the Ci is a union of cones in �0(d). Indeed,
one way to obtain �0 is to subdivide NR at each defining hyperplane of each of
the full-dimensional rational polyhedral cones used to cover the sets Ci . Conversely,
given a complete fan �0 and a partition I of �(d) into non-empty subsets, the sets
Ci = ⋃

σ∈I σ form a conical polyhedral partition.

Definition 2.4 A sublattice coloring of N is a conical polyhedral partition (CN ′)N ′∈N
indexed by a finite setN of finite-index sublattices N ′ ⊆ N such that for any N ′, N ′′ ∈
N, we have CN ′ ∩ CN ′′ ∩ N ′ = CN ′ ∩ CN ′′ ∩ N ′′.

Given a stacky fan � with an underlying fan � which is complete, we define

N = N (�) = {Nσ : σ ∈ �(d)}

as the set of lattices associated to maximal cones of �, and given such an N ′ ∈ N we
denote by

CN ′ =
⋃

σ∈�(d)
Nσ =N ′

σ

the associated union of maximal cones σ with lattice Nσ = N ′. We claim that
(CN ′)N ′∈N is a sublattice coloring of N . Indeed, by the remark below Definition 2.3
we see that (CN ′)N ′ is a conical polyhedral partition of NR. Thus the only non-trivial
property to check is CN ′ ∩ CN ′′ ∩ N ′ = CN ′ ∩ CN ′′ ∩ N ′′. It follows from the fact that
CN ′∩ CN ′′ is a union of cones π ∈ � combined with the previous observation that for
π a face of σ ∈ � we have Nπ = Nσ ∩ SpanQπ .

Corollary 2.5 The T -equivariant birational equivalence classes of proper toric orb-
ifolds X� with torus T = Spec(k[N∨]) are in bijection to sublattice colorings of N
by sending the class [X�] to the sublattice coloring (CN ′)N ′∈N (�) above.
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Proof Theorem 2.2 implies that two proper toric orbifolds are birationally equivalent
if and only if they have the same associated sublattice coloring. This shows that their
birational equivalence classes inject into the set of sublattice colorings.

Conversely, given such a sublattice coloring (CN ′)N ′∈N choose a fan �0 such that
each CN ′ is a union of maximal cones of�0. By performing a barycentric subdivision,
we can assume without loss of generality that �0 is simplicial. For each cone σ ∈ �0
choose N ′ ∈ N such that σ ⊆ CN ′ and define Nσ = Span(σ ) ∩ N ′. By the definition
of sublattice coloring, this sublattice Nσ ⊆ N is independent of the choice of the set
CN ′ containing σ . We would like to construct a stacky fan �′

0 whose underlying fan
�′

0 refines �0 and such that the lattices on the cones of �′
0 are the restrictions of the

lattices Nσ .
To obtain �′

0, observe that associated to each cone σ of �0 we have two lattices:
the lattice Nσ above, and its sublattice N ′

σ spanned by the primitive generators ρτ ∈
τ ∩ Nτ

∼= N of the rays τ ∈ σ(1). We define the multiplicity mult(σ ) as the index
of N ′

σ in Nσ . If some of the multiplicities are strictly greater than 1, we can perform
iterated star subdivision on�0 to reduce their multiplicities, as explained in [2, Section
8.2] (adapting the procedure explained there to use the lattices Nσ for operations on
the cone σ ). After finitely many steps we arrive at a simplicial refinement �′

0 of
�0 with multiplicity 1 on each of the cones, giving the desired stacky fan �′

0 =
(N , �′

0, (ρτ ′)τ ′∈�′
0(1)

). �

In particular, the above result easily shows that fixing the torus T there are infinitely

many T -equivariant birational equivalence classes of proper toric orbifolds X with
torus T , even when fixing a bound b � 2 on the size of the stabilizer groups of points
in X . This is in stark contrast to the classical case of toric varieties, which are all
birationally equivalent.4

Remark 2.6 The proofs of Theorem 2.2 and Corollary 2.5 featured many combinato-
rial and convex geometric operations (like the multiplicity reduction above). A more
conceptual and geometric approach is possible via the theory of possibly singular toric
DM-stacks and their associated KM fans in the sense of [7]. Here a (lattice) KM fan is
a triple F = (N , �, (Nσ )σ∈�) of a rational polyhedral fan � in the lattice N together
with choices of sublattices Nσ ⊆ N associated to its cones which are finite index in
Span(σ ) ∩ N and compatible under face inclusions. Associated to F , the paper [7]
defines a toric, but possibly singular DM-stackX (F). Any stacky fan� defines a KM
fan F by taking Nσ to be the lattice spanned by the chosen ray generators ρτ of σ as
before. The constructed toric DM-stacks X (�) and X (F) agree and for a KM fan F ,
we have that X (F) is smooth if and only if F comes from a stacky fan.

With this formalism in mind, we can sketch a geometric interpretation of the proofs
presented above. Indeed, given complete stacky fans �,�′ with compatible lattices
on their maximal cones as in Theorem 2.2, choose any common refinement �′′ of
their underlying fans. Then the cones σ ′′ of �′′ carry natural sublattices Nσ ′′ of N ∩
Span(σ ) induced from the associated lattices of their coarsenings in �,�′ (which
are compatible by assumption). Denote by F ′′ = (N , �′′, (Nσ ′′)σ ′′) the associated
KM fan. By functoriality, the associated toric DM-stack X (F ′′) admits toric maps

4 We thank the referee for pointing out this observation.
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to X�,X�′ which are representable by [7, Theorem 3.11.2]. Composing these with
a toric resolution of singularities ̂X → X (F ′′) gives the diagram (2) showing that
X�,X�′ are T -equivariantly birationally equivalent.

Similarly, in Corollary 2.5 given a sublattice coloring (CN ′)N ′ choose a fan�0 such
that each CN ′ is a union of maximal cones of �0. Given a cone σ ∈ �0 contained
in some CN ′ , we obtain the lattice Nσ = N ′∩ Span(σ ) (which is independent of the
choice of CN ′ containing σ by the definition of sublattice colorings). Again we obtain
a KM fan F = (N , �0, (Nσ )σ ), and we can choose any toric resolution ̂X of X (F),
whose birational equivalence class then induces the given sublattice coloring (CN ′)N ′ .
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