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Abstract
We prove effective bounds for the set of quasi-integral points in orbits of rational maps
over function fields under some conditions, generalizing previous work of Hsia and
Silverman (Pacific J Math 249(2), 321–342, 2011) for orbits over function fields of
characteristic zero. We then use this to prove height bounds for algebraic functions
whose orbit under a rational function has multiplicative dependent elements modulo
groups of S-units, generalizing recent results over number fields.
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1 Introduction

Let K be a function field of a smooth projective curve over an algebraically closed
field of characteristic 0, endowed as usual with a set MK of absolute values (places)
satisfying the product formula, S a finite subset of places of MK , and ε > 0. An
element x ∈ K is said to be quasi-(S, ε)-integral if

∑

v∈S
log(max {|x |v, 1}) � εh([x, 1]),

where h is the absolute logarithmic height in P
1(K ) and [x, 1] ∈ P

1(K ).
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Let φ ∈ K (z) be a rational function of degree at least 2. We write φ(n) for the n-th
iterate of φ. Let P ∈ K and let

Oφ(P) = {φ(n)(P) : n ∈ N}

denote the forward orbit of P under φ. When K is a number field and φ(2) = φ ◦φ /∈
K [z], Hsia and Silverman proved [10] that the number of quasi-(S, ε)-integral points
in the orbit of a point P with infinite orbit is bounded by a constant depending only
on φ, ĥφ(P), ε, S, and [K : Q] (see Sect. 2 for the corresponding definitions). We also
note that these results, according to [10, Remark 1], have some applications as to the
existence of quantitative estimates for the size of Zsigmondy sets for such orbits and
their primitive divisors, as well as to quantitative versions of a dynamical local–global
principle in orbits on the projective line. This researchwas also used to prove finiteness
of algebraic numbers having multiplicatively dependent iterated values under rational
functions in [4].

In the present paper we study quasi-integrality problems over function fields of
characteristic zero (for integrality results over fields of positive characteristic, see [8,
11, 19]). This is presented all over Sect. 2. Making use of such results, this work
becomes a place for the study of multiplicative dependence modulo roots of unity
of elements in orbits of rational functions over function fields. This generalizes the
results of [4] for this context, but now with effective bounds. This is done in Sect. 3.
Sometimes one is only able to bound, although effectively, the height of the algebraic
functions studied (instead of their cardinality). This is related with the fact that the so-
called Northcott finiteness property fails over function fields. One can see once again
that the ambient of function fields is relevantly different to the number fields’ one.
For our results, we made use of specific tools from the function fields case. Namely,
a recent version of an effective Roth’s theorem over function fields due to Wang [21],
a deep finiteness gap property for canonical heights of non-isotrivial functions due to
Baker [1], and some effective results for the solutions of superellitic equations over
function fields in one variable.

2 Effective bounds for quasiintegral points in orbits over function
fields

2.1 Canonical heights, distance and dynamics on the projective line

We always assume that K is a fixed function field of a curve over an algebraically
closed field k of characteristic 0 and K (z) is the field of rational functions over K for
the rest of the paper. We identify K ∪ {∞} = P

1(K ) by fixing an affine coordinate z
on P

1, so α ∈ K is equal to [α, 1] ∈ P
1(K ), and the point at infinity is [1, 0]. In this

way, we assume z is the left coordinate for points in P
1, and with respect to this affine

coordinate, we identify rational self-maps of P
1 with rational functions in K (z).
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If P = [x0, . . . , xN ] ∈ P
N (K ), the naive logarithmic height is given by

h(P) =
∑

v∈MK

log(max
i

|xi |v),

where MK is the set of places of K satisfying the product formula, and for each
v ∈ MK , | · |v denotes the corresponding absolute values on K that can be extended to
any algebraic closure and respective completions of K , so that h can bewell defined on
K . Also, wewrite Kv for the completion of K with respect to | · |v , andwe letCv denote
the completion of an algebraic closure of Kv . Initially, we also recall that one can define
the convergent limit ĥ f (α) = lim n→∞ h( f (n)(α))/dn for any α ∈ K , f ∈ K (z),
called the canonical height associated with f . It satisfies ĥ f ( f (α)) = dĥ f (α). When
f is not isotrivial, it is a fact that α has infinite orbit (is not preperiodic) if and only if
ĥ f (α) > 0 (see Theorem 2.5).

For each v ∈ MK , we let ρv denote the chordal metric defined on P
1(Cv), where

we recall that for [x1, y1], [x2, y2] ∈ P
1(Cv),

ρv([x1, y1], [x2, y2]) = |x1y2 − x2y1|v
max{|x1|v, |y1|v} max{|x2|v, |y2|v} .

Definition 2.1 The logarithmic chordal metric function

λv : P
1(Cv)×P

1(Cv) → R ∪ {∞}

is defined by

λv([x1, y1], [x2, y2]) = − log ρv([x1, y1], [x2, y2]).

It is amatter of fact thatλv is a particular choice of an arithmetic distance function as
defined byHsia and Silverman [10] over number fields, which is a local height function
λP1×P1,�, where � is the diagonal of P

1× P
1. The logarithmic chordal metric and the

usual metric can relate in the following way.

Lemma 2.2 Let v ∈ MK and let λv be the logarithmic chordal metric on P
1(Cv). Then

for x, y ∈ Cv the inequality λv(x, y) > λv(y,∞) implies

λv(y,∞) � λv(x, y) + log |x − y|v � 2λv(y,∞).

Proof The proof works in the same way as the proof over number fields appearing in
[10, Lemma 3]. ��

Now, let φ : P
1 → P

1 be a rational map of degree d � 2 defined over K . In this
situation we let

φ(n) = φ ◦ · · · ◦φ︸ ︷︷ ︸
n times
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with φ(0) = Id.
For a point P ∈ P

1, the φ-orbit of P is defined as

Oφ(P) = {φ(n)(P) : n � 0}.

The point P is called preperiodic for φ if Oφ(P) is finite. We set

WanderK (φ) = {P ∈ P
1(K ) : P is not preperiodic for φ}.

Recall that for P = [x0, x1] ∈ P
1(K ), the height of P is

h(P) =
∑

v∈MK

log(max {|x0|v, |x1|v}).

And using the definition of λv , we see that

h(P) =
∑

v∈MK

λv(P,∞).

For a polynomial f = ∑
ai zi and an absolute value v ∈ MK , we define | f |v =

maxi {|ai |v} and

h( f ) =
∑

v∈MK

log | f |v.

Given a rational function φ(z) = f (z)/g(z) ∈ K (z) of degree d written in normalized
form, let us write f (z) = ∑

i�d ai z
i , g(z) = ∑

i�d bi z
i with ad and bd different

from zero, and f and g relatively prime in K [z].
For v ∈ MK , we set |φ|v = max{| f |v, |g|v}, and then the height of φ is defined by

h(φ) :=
∑

v∈MK

log |φ|v.

Proposition 2.3 ([10, Proposition 5 (d)]) Let φ be a rational function with degφ =
d � 2. Then for all n � 1, we have

h(φ(n)) �
(
dn − 1

d − 1

)
h(φ) + d2

(
dn−1 − 1

d − 1

)
log 8.

Lemma 2.4 For a rational map φ : P
1 → P

1 of degree d � 2 defined over K and
P ∈ P

1(K ), it is true that

(a) |h(φ(P)) − dh(P)| � c1h(φ) + c2,
(b) ĥφ(P) = lim n h(φ(n)(P))/dn,
(c) |ĥφ(P) − h(P)| � c3h(φ) + c4,
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where c1, c2, c3 and c4 depend only on d.

Proof This is stated in [10, Proposition 6] over number fields. For (a), the same pro-
cedure given in [5, Proposition A] works over the referred function fields. For (b) and
(c), the proof of the existence of the limit defining the canonical height [18, Theorem
3.20] together with (a) yields the desired. ��

Recall that φ ∈ K (z) is isotrivial if there is a finite extension L/K and a change of
coordinates γ defined over L such that γ ◦φ ◦γ −1 is defined over the field of constants
of L .

Also, we say that a set A ⊂ P
1(K ) is isotrivial if there exists an isomorphism

T : P
1 → P

1 over K such that T (A) ⊂ P
1(k), i.e., T (A) is defined over the field of

constants of K .

Theorem 2.5 ([1, Theorem 1.6]) Let ϕ(z) ∈ K (z) be of degree at least 2, and assume
that ϕ is not isotrivial and ĥϕ is the canonical height associated with ϕ. Then there
exists ε > 0 (depending on K and ϕ) such that the set

{P ∈ P
1(K ) : ĥϕ(P) � ε}

is finite.

2.2 A distance estimate and an effective version of Roth’s theorem

Wewill state three results that will be needed to prove our main theorems. The first one
is a result that gives explicit estimates for the dependence on local heights of points
and function.

Let us recall that, for a rational function f (z), P 
= ∞ and f (P) 
= ∞, the
ramification index of f at P is defined as the order of P as a zero of the rational
function f (z) − f (P), i.e.,

eP ( f ) = ordP ( f (z) − f (P)).

If P = ∞, or f (P) = ∞, we change coordinates through a linear fractional
transformation L , so that L−1(P) = β 
= ∞, L−1( f (L(β))) 
= ∞, and define
eP ( f ) = eβ(L−1◦ f ◦L). It will not depend on the choice of L . We say that f is
totally ramified at P if eP ( f ) = deg f . It is also an exercise to show that

eP (g ◦ f ) = eP ( f )e f (P)(g)

for every f , g rational functions and P ∈ K ∪ {∞}.
The result is as follows.

Lemma 2.6 Let ψ ∈ K (z) be a nontrivial rational function, let S ⊂ MK be a finite
set of absolute values on K , each extended in some way to K , and let A, P ∈ P

1(K ).
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Then
∑

v∈S
max

A′∈ψ−1(A)
eA′(ψ)λv(P, A′)

�
∑

v∈S
λv(ψ(P), A) − O(h(A) + h(ψ) + 1),

where the implied constant depends only on the degree of the map ψ .

Proof This is stated in [10, Proposition 7] over number fields. Its proof uses a higher
dimensional version of Lemma 2.4 applied to maps in dimension 1. Lemma 2.4 is
enough for our purposes and for that proof, and it also works over function fields.
Moreover, the proof uses strong distribution value theorems related with an inverse
function theorem in this context due to Silverman therein. There was an error found
in these proofs according to [14], which was corrected in [14, Sections 4 and 5]. All
these results work over fields equipped with a set of inequivalent absolute values for
which the product formula holds. ��

We recall that β ∈ P
1(K ) is an exceptional point for φ if its backward orbit

{γ ∈ P
1(K ) : β ∈ Oφ(β)} is finite.

Lemma 2.7 ([10, Lemma 9]) Fix an integer d � 2. Then there exist two positive
constants κ1 > 0 and 0 < κ2 < 1 depending only on d such that for all rational
functions φ : P

1(K ) → P
1(K ), all points Q that are not exceptional for φ, all integers

m � 1, and all P ∈ φ−m(Q), we have that

eP (φm) � κ1(κ2d)m for any m � 0.

Proof The proof of [18, Lemma3.52]works here, since theRiemann–Hurwitz formula
works for this context as well. ��

The third result is the following effective version of Roth’s theorem over function
fields due to Wang.

Lemma 2.8 ([21]) Let S be a finite subset of MK . We assume that each place in S
is extended to K in some fashion. Assume that for each v ∈ S, we have an element
βv ∈ K. Then, for any μ > 2, the elements x ∈ K satisfying

∑

v∈S
log+ |x − βv|−1

v � μh(x)

have their heights bounded by an effective constant depending on μ, |S|, the genus of
K , and the elements βv .

2.3 A bound for the number of quasi-integral points in an orbit

In this section, we show explicit bounds for the number of S-integral points in a given
orbit of a wandering point for a dynamical system of rational functions extending
previous work by Hsia and Silverman [10].
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The next quantitative theorem generalizes [10, Theorem 11] to function fields of
characteristic zero. The definitions and strategy of the proof are inspired by their ideas
with Diophantine approximation.

Theorem 2.9 Let φ ∈ K (z) be a rational function of respective degree d � 2, and
P ∈ P

1(K ) not preperiodic for φ. Fix A ∈ P
1(K ) which is not an exceptional point

of φ. For any finite set of places S ⊂ MK and any constant 1 � ε > 0, define the set
of points

�φ,S(A, P, ε) :=
{
φ(n)(P) :

∑

v∈S
λv(φ

n(P), A) � ε ĥφ(φn(P))
}
.

(a) There exist effective constants

γ1 = γ1(φ, ε, |S|, K , A) and γ2 = γ2(φ, ε, |S|, K , A)

such that

{
φ(n)(P) ∈ �φ,S(A, P, ε) : n > γ1 + log+

d

(
ĥφ(A) + h(φ)

ĥφ(P)

)}

has bounded height from above by γ2.
(b) If φ is not isotrivial, then there is an effective constant γ3(φ, ε, |S|, K , A) that is

independent of P such that

max
P

max
{
n � 0 : φ(n)(P) ∈ �φ,S(A, P, ε)

}
� γ3 + log+

d

(
h(φ)

inf ĥφ(P)>0 ĥφ(P)

)
.

Proof For simplicity, we write �S(ε) instead of ��,S(A, P, ε). Taking κ1 and κ2 < 1
the constants from Lemma 2.7, we choose m � 1 minimal such that κm

2 � ε/5κ1.
Then κ1, κ2 and m depend only on d and on ε.

If n � m for all n such that φ(n)(P) ∈ �S(ε), then

# �S(ε) � m � log(5κ1) + log(ε−1)

log(κ−1
2 )

+ 1,

which is in the desired form. If there is an n with φ(n)(P) ∈ �S(ε) such that n > m,
we fix n for instance. Then by definition of �S(ε) we have

εĥφ(φ(n)(P)) �
∑

v∈S
λv(φ

(n)(P), A). (2.1)

We can write φ(n) = φ(m) ◦φ(n−m) and ψ = φ(m).
For our chosen m, we denote

em := max
A′∈ψ−1(A)

eA′(ψ).
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By Lemma 2.7 and our choice of m, we notice that

em � κ1(κ2)
m degψ � ε degψ/5.

Therefore, Lemma 2.6 yields, for Q ∈ P
1(K ), that

∑

v∈S
λv(ψ(Q), A) − O(h(A) + h(ψ) + 1) � em

∑

v∈S
max

A′∈ψ−1(A)
λv(Q, A′). (2.2)

Gathering (2.1) and (2.2) with Q := φ(n−m)(P), we obtain that

εĥφ(φ(n)(P)) � em
∑

v∈S
max

A′∈ψ−1(A)
λv(φ

(n−m)(P), A′) + O(h(A) + h(ψ) + 1),

where the involved constants depend only on the degree dm, d and on ε.
For each v ∈ S, we choose A′

v ∈ ψ−1(A) such that

λv(φ
(n−m)(P), A′

v) = max
A′∈ψ−1(A)

λv(φ
(n−m)(P), A′),

so that

εĥφ(φn(P)) � em
∑

v∈S
λv(φ

(n−m)(P), A′
v) + O(h(A) + h(ψ) + 1).

For instance, we can assume that z(A′) 
= ∞ for all A′ ∈ ψ−1(A). If this is not the
case, we use z for some of the A′ and z−1 for the others.

Let S′ ⊂ S be the set of places in S defined by

S′ = {
v ∈ S : λv(φ

(n−m)(P), A′
v) > λv(A

′
v,∞)

}
.

Set S′′ := S − S′. Applying Lemma 2.2 to the places in S′, using the definition of
S′′ and Lemma 2.4 we find, as in [10, p. 337], that

εĥφ(φ(n)(P)) � em
∑

v∈S′
log

∣∣z(φ(n−m)(P)) − z(A′
v)

∣∣−1
v

+ em
∑

v∈S
(2λv(A

′
v,∞)) + O(h(A) + h(ψ) + 1),

and that

∑

v∈S
λv(A

′
v,∞) � ĥφ(A) + O(h(φ) + 1).

The constants depend only on m and d. Also, from Proposition 2.3 it follows that
h(ψ) = O(h(φ) + 1).
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All the inequalities above together imply that

εĥφ(φn(P)) � em
∑

v∈S′
log

∣∣z(φ(n−m)(P)) − z(A′
v)

∣∣−1
v

+ O(ĥφ(A) + h(φ) + 1).

Let us set some definitions in order to apply Wang’s Theorem. We define βv := A′
v

and analyze the points x = φ(n−m)(P) for φ(n)(P) ∈ �S(ε). Applying Lemma 2.8
for the set of places S′ and μ = 5/2, yields that there exist a constant r1 depending
only on K , φ, |S| and ε such that the set of φn(P) ∈ �S(ε) with n > m can be written
as a union

{φn(P) ∈ �S(ε) : n > m} = T1 ∪ T2

where T1 has all its elements with height bounded from above by r1, and

T2 =
{
φ(n)(P) ∈ �S(ε) : n > m,

∑

v∈S′
log

∣∣z(φ(n−m)(P)) − z(A′
v)

∣∣−1
v

� 5

2
h(φ(n−m)(P))

}
.

We already have a bound for the height of T1. We consider the set T2. Again, using
Lemmas 2.4 we derive

h(φ(n−m)(P)) � ĥφ(φ(n−m)(P)) + c1h(φ) + c2 = dn−mĥφ(P) + c1h(φ) + c2.

Then, for n with φ(n)(P) ∈ T2, using that em � ε degψ/5, we have

εĥφ(φ(n)(P)) = εdnĥ�(P)

� em
∑

v∈S′
log

∣∣z(φ(n−m)(P)) − z(A′
v)

∣∣−1 + c9(ĥφ(A) + h(φ) + 1)

�
(

ε
degψ

5

)
5

2
(dn−m) ĥφ(P) + c10(ĥφ(A) + h(φ) + 1)

= ε

2
dnĥφ(P) + c11(ĥφ(A) + h(φ) + 1).

Thus,

ε

2
dnĥφ(P) � c11(ĥφ(A) + h(φ) + 1)

is equivalent to

n � c12 + log+
d

(
ĥφ(A) + h(φ)

ĥφ(P)

)
.

Weobserve that the set {z(A′
v) : v ∈ S′} does not depend on the point P , so the elements

in T1 have height bounded independently of P by the constant r1. We also note that
the quantity
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ĥmin
φ,K := inf

{
ĥφ(P) : P ∈ P

1(K ) is not preperiodic for φ
}

is strictly positive. This is a consequence of Theorem 2.5. For φn(P) ∈ T1, we can
see from this and Lemma 2.4 that dnĥφ(P) = ĥφ(φ(n)(P)) � r1 + O(h(φ) + 1), and
thus

n � logd

(
r1 + O(h(φ) + 1)

ĥmin
φ,K

)

in this case.
Therefore, max{n : φn(P) ∈ (T1 ∪ T2)} can be bounded independently of P . ��
As a consequence, we recover some results from [11, Theorem 1]. For some results

over fields of positive characteristic, see [8], [11, Theorem 2] and [19, Theorem 2].

Corollary 2.10 Let S ⊂ MK be a finite set of places, let RS be the ring of S-integers
of K , and let d � 2. Then, there are effective constants γ1 = γ1(φ, |S|, K ) and
γ2 = γ2(φ, |S|, K ) such that for all φ ∈ K (z) rational maps of degrees d � 2 with
φ(2) /∈ K [z], and all P ∈ P

1(K ) that are not preperiodic for φ, the set of S-integers

{
φ(n)(P) : φ(n)(P) ∈ RS and n > γ1 + log+

d

(
h(φ)

ĥφ(P)

)}

is a set of height bounded from above by γ2. If φ is not isotrivial, then this set is finite
and has size effectively bounded in terms of φ, |S|, K and inf ĥ( f )>0 ĥ( f ).

Proof An element α ∈ K is in RS if and only if |α|v � 1 for all v /∈ S, or equivalently,
if and only if

h(α) =
∑

v∈S
log max{|α|v, 1}.

Another fact is that

log max{|α|v, 1} � λv(α,∞).

This implies for α ∈ RS that h(α) �
∑

v∈S λv(α,∞).
Let n � 1 satisfy z(φ(n)(P)) ∈ RS . Then

h(φ(n)(P)) �
∑

v∈S
λv(φ

(n)(P),∞).

Lemma 2.4 tells us that

h(φ(n)(P)) � ĥφ(φ(n)(P)) − c3h(φ) − c4 = deg(φ(n)) ĥφ(P) − c3h(φ) − c4,
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which implies that

dnĥφ(P) − c3h(φ) − c4 �
∑

v∈S
λv(φ

(n)(P),∞).

The rest of the proof is divided in two cases: The first one, when

dnĥφ(P) � 2c3h(φ) + 2c4.

In this case,

n � log+
d

(
2c3h(φ) + 2c4

ĥφ(P)

)
.

In the second case, when dnĥφ(P) � 2c3h(φ) + 2c4. Therefore

∑

v∈S
λv(φ

(n)(P),∞) � 1

2
dnĥφ(P) = 1

2
ĥφ(φn(P)).

Now Theorem 2.9 with ε = 1/2, A = ∞ (∞ is not exceptional for φ) tells us that
either n is at most

γ1 + log+
d

(
h(φ) + ĥφ(∞)

ĥφ(P)

)
,

or φ(n)(P) has height bounded from above by γ2, where γ1 and γ2 are effective
constants depending only on K , φ and |S|. The bounds are of the desired form since
ĥφ(∞) � h(∞) + O(1) = 0 + O(1). For the claimed finiteness, we note again that
if φ is not isotrivial then ĥφ(φn(P)) = dnĥφ(P) being bounded by γ2 together with
Theorem 2.5 implies the claimed finiteness with a bound for n which is independent
of P , as obtained in the proof of Theorem 2.9 (b). ��
Remark 2.11 Theorem2.9 delivers, in particular, under its conditions, an explicit upper
bound for

#
{
n � 1 : 1

φ(n)(P) − A
is quasi-(S, ε)-integral

}
.

Corollary 2.12 Under the hypothesis of Theorem 2.9,

lim
n→∞

λv(φ
(n)(P), A)

dn
= lim

n→∞
λv(φ

(n)(P), A)

ĥφ(φ(n)(P))
= 0 for every v ∈ MK .
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Proof Applying Theorem 2.9 for the set of places that contains just the place v, we
conclude that for every natural n big enough, it will be true that

λv(φ
(n)(P), A)

dn
� εĥφ(P).

Choosing ε sufficiently small, the result is proven. ��

3 Multiplicative dependence in orbits over function fields

3.1 S-Units, algebraic dynamics, andmultiplicative dependence

First we settle some notation. Given three distinct elements a, b, c ∈ K , we write
Ta,b,c for the unique linear fractional transformation T (z) = (αz + β)/(δz + γ ),
(αγ − βδ 
= 0) such that T (a) = 0, T (b) = ∞ and T (c) = 1.

For any ϕ ∈ K (z), we define �ϕ to be the set of elements f ∈ K such that
Ta,b,c( f ) ∈ k, for some triple of distinct a, b, c ∈ ϕ−1{∞}, namely

�ϕ := {
f ∈ K : Ta,b,c( f ) ∈ k for some distinct a, b, c ∈ ϕ−1{∞}}.

We also make use of the following notation for wandering points with respect to a
rational function ϕ(z) ∈ K (z).

WanderK (ϕ) := {
f ∈ K : f is not preperiodic under ϕ

}
.

Here, S ⊂ MK is again assumed to be a finite set of places of K , RS is the respective
ring of S-integers in K and R∗

S the corresponding ring of S-units.
We will use the following function field version for the “integer image value"

Siegel’s theorem.

Lemma 3.1 ([11, Theorem 12 (i), (iv)]) Let ϕ(z) ∈ K (z). Suppose that |ϕ−1{∞}| � 3.
Then

{ f ∈ K : ϕ( f ) ∈ RS}

is a set whose elements f have height bounded from above by a constant C(ϕ, K , |S|).
Moreover, the set { f ∈ K : ϕ( f ) ∈ RS}\�ϕ is finite, and if ϕ−1{∞} is not isotrivial,
then the full set { f ∈ K : ϕ( f ) ∈ RS} is finite.
The following is a version of [4, Theorem 1.2] for function fields.

Theorem 3.2 Let ϕ(z) ∈ K (z) be of degree d at least two.

(a) If |ϕ−1({0,∞})| � 3, then

{ f ∈ K : ϕ( f ) ∈ R∗
S}
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is a set of height bounded from above effectively in terms of ϕ, |S| and K , and
{ f ∈ K :ϕ( f ) ∈ R∗

S}\�ϕ+1/ϕ is finite.
If ϕ−1{0,∞} is not isotrivial, then the full set

{ f ∈ K : ϕ( f ) ∈ R∗
S}

is finite.
(b) Suppose that ϕ is not of the form ϕ(z) = f z±d . Let

F2(K , ϕ, R∗
S) = {

(n, α) ∈ Z�2×WanderK (ϕ) : ϕ(n)(α) ∈ R∗
S

}
.

If (n, α) ∈ F2(K , ϕ, R∗
S), then α belongs to a set of height bounded from above

effectively in terms of ϕ, |S| and K . Also, if ϕ is not isotrivial, then n is bounded
by an explicit constant depending on ϕ, K , |S| and inf ĥϕ( f )>0 ĥϕ( f ).

Proof In order to prove (a), we adapt the ideas in the proof of [12, Proposition
1.5 (a)]. Namely, by our assumptions, the function ψ(z) := ϕ(z) + 1/ϕ(z) satisfies
the hypothesis of the previous lemma, and since ψ(β) ∈ RS whenever ϕ(β) ∈ R∗

S , it
follows that { f ∈ K : ϕ( f ) ∈ R∗

S} is a set of height bounded by C(ϕ + 1/ϕ, K , |S|),
{ f ∈ K : ϕ( f ) ∈ R∗

S}\�ψ is finite, and finally, the full set { f ∈ K : ϕ( f ) ∈ R∗
S} will

be finite if ϕ−1{0,∞} is not isotrivial.
In order to prove (b), we consider the well-defined map

F2(K , ϕ, R∗
S) → { f ∈ K : ϕ(2)( f ) ∈ R∗

S}

sending (n, α) to ϕ(n−2)(α). Using the Riemann–Hurwitz formula, which is valid
in characteristic zero, the same method as carried out in the proof of [12, Lemma
3.2] can be performed, and such result is also valid in our context, which implies

that |ϕ(2)−1
({0,∞})| � 3. By (a), this condition implies that the heights of such

ϕ(n−2)(α)’s are bounded by C(ϕ(2) + 1/ϕ(2), K , |S|). Hence, we also obtain an effec-
tive bound C1(ϕ, K , |S|) for the canonical heights of such points, and thus also for
the heights of the referred α’s, due to Lemma 2.4. Looking at a certain ϕ(n−2)(α)

among such possibilities, and using by Theorem 2.5 that inf ĥϕ(P)>0 ĥϕ(P) exists, we
have by the same calculations as in the proof of [4, Lemma 2.3] that n is bounded by
2 + logd

( C1(ϕ,K ,|S|)
inf ĥϕ(P)>0 ĥϕ(P)

)
. ��

The next result generalizes [4, Theorem 1.3] to function fields.

Theorem 3.3 Let r , s ∈ Z with rs 
= 0, and set

ρ = log(|s|/|r |)
log d

+ 1.

Let φ ∈ K (z) with degree d � 2. Assume that 0 is not a periodic point for φ. Define
Eρ(K , φ, S, r , s) to be

{
(n, k, f , u) ∈ Z�ρ ×Z�0×WanderK (φ)× R∗

S : φ(n+k)( f )r = uφ(k)( f )s
}
.
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Let (n, k, f , u) ∈ Eρ(K , φ, S, r , s). Then f has height bounded fromabove effectively
in terms of φ, r , s, |S| and K . Moreover, for f out of any fixed set of bounded height
from above by δ, we have that n, k and h(u) are effectively bounded in terms of
φ, r , s, |S|, δ and K .

If moreover φ is not isotrivial, then for any f , we have that n, k and h(u) are
effectively bounded in terms of φ, K , r , s, |S| and inf ĥφ( f )>0 ĥφ( f ).

Remark 3.4 If r = s = 0, then u = 1 and f can be any element of K . If r = 0 and
s 
= 0 or vice-versa, then due to the multiplicative saturation of R∗

S in K ∗(γ n) ∈ R∗
S ,

n 
= 0 ⇒ γ ∈ R∗
S , we are reduced to the situation worked out in Theorem 3.2.

Proof Arguing in the same way as in the proof of [4, Theorem 1.3], we can assume
that 0 is not an exceptional point for φ, i.e., the backwards orbit {γ : φ(n)(γ ) = 0,
n � 0} of 0 under φ is infinite.

Suppose first that φ is allowed to be isotrivial. We study (n, k, α) ∈ Z�1×Z�0
×WanderK (φ) such that

φ(n+k)(α)r = uφ(k)(α)s .

Theorem 2.9 (a) applied with A = 0 and ε = 1/3 gives us effectively computable
constants γ1 and γ2 such that

{
φ(n)(α) ∈ �φ,S(0, α, ε) : n > γ1 + log+

d

(
h(φ)

ĥφ(α)

)}
(3.1)

has bounded height from above by γ2.
If n + k > γ1 + log+

d (h(φ)/ĥφ(α)), then either φ(n+k)(α) is in the set (3.1) or not.
If φ(n+k)(α) is in the set (3.1), then it has height bounded by γ2, so that

ĥφ(φ(n+k)(α)) = dn+k ĥφ(α) = O(γ2 + h(φ)) �⇒ ĥφ(α) = O(γ2 + h(φ))

and ĥφ(φ(n+k)(α)) = dnĥφ(φ(k)(α)) ⇒ ĥφ(φ(k)(α)) = O(γ2 + h(φ)), which yields
the desired effective bounds for the referred α’s, u’s, since φ(n+k)(α)r = uφ(k)(α)s .
If otherwise φ(n+k)(α) is not in the set (3.1) even though

n + k > γ1 + log+
d

(
h(φ)

ĥφ(α)

)
,

then φ(n+k)(α) /∈ �φ,S(0, α, ε) and so

∑

v∈S
log+(|φ(n+k)(α)|−1

v

)
� εĥφ(φ(n+k)(α)). (3.2)
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In this situation, we can compute

h(φ(n+k)(α)) = h(φ(n+k)(α)−1)

=
∑

v∈S
log+ |φ(n+k)(α)|−1

v +
∑

v /∈S
log+ |φ(n+k)(α)|−1

v

� εĥφ(φ(n+k)(α)) +
∑

v /∈S
log+ |φ(k)(α)|−s/r

v

� εĥφ(φ(n+k)(α)) +
∣∣∣∣
s

r

∣∣∣∣ h(φ(k)(α))

(using that h(x) = h(x−1), h(xd) = dh(x))

= εĥφ(φ(n+k)(α)) + dρ−1h(φ(k)(α))

� εĥφ(φ(n+k)(α)) + dρ−1(ĥφ(φ(k)(α)) + O(h(φ) + 1)
)

implying also that

(1 − ε)dn+k ĥφ(α) � dρ−1+k ĥφ(α) + O(dρ−1(h(φ)) + 1)

and

dk((1 − ε)dn − dρ−1) ĥφ(α) = O(dρ−1(h(φ)) + 1).

With ε = 1/3, the above and n � ρ yield

(1 − ε)dn − dρ−1 � 4

3
dn−1 − dρ−1 � 1

3
dn−1

�⇒ dn+k−1ĥφ(α) � O(dρ−1(h(φ)) + 1),

ĥφ(α) = O(dρ−1(h(φ)) + 1),

which implies as before that ĥφ(φ(n+k)(α)), ĥφ(φ(n)(α)) � O(γ2 + h(φ)), yielding
the desired effective bounds for the referred α’s and u’s as in the previous situation.

If otherwise n+ k � γ1 + log+
d (h(φ)/ĥφ(α)), then we start supposing that α is out

of a set of bounded height, let us say, that h(α) � δ is fixed. In this case, n and k are
bounded as claimed and we may assume that they are fixed. Now, we let

g(z) = φ(n)(z)r/zs

so that we have

g(φk(α)) = φ(n+k)(α)r/φ(k)(α)s ∈ R∗
S .

This says that

φ(k)(α) ∈ { f ∈ K : g( f ) ∈ R∗
S}.
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The assumption that 0 is not periodic for φ implies that 0 is a pole of g and that
φ(X) 
= cX±d , which implies that φ(n) has at least two poles or zeros distinct from
0. Hence g has at least three poles and zeros. Theorem 3.2 (a) now yields that φ(k)(α)

has height effectively bounded as before, and so will be the height of α and φ(n+k)(α)

due to Lemma 2.4 and the effective bound for n+k. This implies the claimed effective
bound for h(u) as well.

Suppose now that φ is not isotrivial. This allows us to apply Theorem 2.9 (b) with
A = 0 and ε = 1/3, yielding an effective constant

γ4 := γ3(φ, ε, |S|, K ) + log+
d

(
h(φ)

inf ĥφ(P)>0 ĥφ(P)

)

such that

max
{
m � 0 :

∑

v∈S
log+(|φ(m)(α)|−1

v ) � εĥφ(φ(m)(α))
}

� γ4.

We use this constant γ4 to consider (n, k, α) ∈ Z�1×Z�0×WanderK (φ) such
that

|φ(n+k)(α)|rv = |φ(k)(α)|sv for all v ∈ MK \ S.

If n + k < γ4, then we will already have the desired bound for n and k. Otherwise,
we have n + k � γ4.

In this case Theorem 2.9 tells us that (n, k, α) satisfies inequality (3.2) again. We
then proceed similarly as in the computations after inequality (3.2) to obtain

dn+k−1ĥφ(α) � O(dρ−1(h(φ)) + 1) and ĥφ(α) = O(dρ−1(h(φ)) + 1),

and hence

n, k � γ4 + log+
d

(
h(φ)

inf ĥφ(P)>0 ĥφ(P)

)

for an effective constant γ4(K , |S|, φ, ρ), which is as the bound claimed for n, k in
the isotrivial case again. Whether n + k < γ4 or n + k � γ4, the two inequalities
above together with φ(n+k)(α)r = uφ(k)(α)s yield the desired effective height bound
for the referred u’s when φ is not isotrivial, completing the proof. ��

As pointed out in the beginning of the [4, Subsection 1.4], we remark that results like
Theorem 3.3 would follow from sufficiently strong Dynamical Zsigmondy Primitive
Divisor Theorems. In the present situation of function fields, such a general dynamical
primitive divisor theorem is proven in the work of Bridy and Tucker [6].
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3.2 Polynomial dynamics andmultiplicative dependence over function fields in
one variable

In this subsection, we deal with polynomials and restrict the S-integers to the set of
roots of unity. In this setting, one can obtain independence of the exponents r , s from
Theorem 3.3.

The result stated below is analogous to a Schinzel–Tijdeman result, now over the
fields treated here.

Lemma 3.5 ([7]) Let f ∈ K [X ] be a polynomial of degree n with at least two distinct
zeros in some algebraic closure of K . Then the equation

f (x) = ym in x, y ∈ K , m ∈ Z>0, y /∈ k,

implies

m � B(h( f ), K ),

where B = B(h( f ), K ) is an effective constant.

The next result generalizes [4, Theorem 1.7] to function fields in one variable, when
R∗
S is replaced by the set of roots of unity UK in K .

Theorem 3.6 Let φ ∈ K [z] be a polynomial of degree d � 3 such that φ and φ(2)

have no multiple roots, and that 0 is not a periodic point of φ. Then

(a)

M :=
{
f ∈ K : (φ(m)( f ))r = u(φ(n)( f ))s, u ∈ UK

m > n > 0, (r , s) ∈ Z
2\{(0, 0)}

}

is a set of height effectively bounded from above by bounds depending on φ and K .
(b) If f ∈ M is such that (φ(m)( f ))r = u(φ(n)( f ))s with rs 
= 0,m > n > 0 and

φ is not isotrivial, then m and n are effectively bounded from above by bounds
depending on φ, K, and inf ĥφ(P)>0 ĥφ(P).

Proof In order to use our previous results and their language, we make S := ∅. In
this way, we have that UK ⊂ R∗

S . Let α ∈ Wanderφ(K ) be such that there exist
non-negative integers m > n > 0, integers r and s, and u ∈ UK ⊂ R∗

S such that

(φ(m)(α))r = u(φn(α))s . (3.3)

If r = 0 or s = 0, then the result follows fromTheorem 3.2. Thus, wemay assume that
rs 
= 0. Also, due to the saturation of UK and R∗

S , we may assume that gcd(r , s) = 1.
We enlarge S by adding to it the places for which φ has bad reduction, namely, v ∈ MK

such that if f (z) = c0+c1z+· · ·+cd zd , then either v(ci ) < 0 for some i or v(cd) > 0.
In this way we obtain a new finite set of places Sφ . Moreover, proving the results for
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the larger Sφ gives results that are stronger than the original statements. One can also
see that

Sφ(k) ⊂ Sφ for all k � 1.

Since rs 
= 0, replacing r , s by −r ,−s if necessary, we may assume that r > 0. We
now divide the proof in Cases A and B, depending on whether α lies in RSφ or not.

Case A: α ∈ RSφ .
By definition one can check that φ(k)(α) ∈ RSφ for every k � 0, so that

v(φ(k)(α)) � 0 for all k � 0, v /∈ Sφ.

We now divide this case in some subcases.

Case A.1: r > 0, s < 0.
Here, equation (3.3) becomes

(φ(m)(α))r (φ(n)(α))t = u with t = −s > 0.

As u ∈ R∗
Sφ

, it follows that

rv(φ(m)(α)) + tv(φ(n)(α)) = 0 for all v /∈ Sφ.

Since r , t > 0, this implies that

v(φ(m)(α)) = v(φ(n)(α)) = 0 for all v /∈ Sφ,

and hence that φ(m)(α) ∈ R∗
S . The desired conclusions for (a) and (b) follow directly

from Theorem 3.2.

Case A.2: r > 0, s � 2.
Since gcd(r , s) = 1, we can choose a and bwith ar+bs = 1 so that (3.3) becomes

φ(m)(α) = ua
(
(φ(n)(α))a(φ(m)(α))b

)s
.

Since φ(m)(α) ∈ RSφ and u ∈ UK , we have that (φ(n)(α))a(φ(m)(α))b ∈ RSφ . If
(φ(n)(α))a(φ(m)(α))b ∈ R∗

Sφ
, then φ(m)(α) ∈ R∗

Sφ
and we have the desired results for

(a) and (b) by Theorem 3.2. If (φ(n)(α))a(φ(m)(α))b /∈ R∗
Sφ
, then we also have that

(φ(n)(α))a(φ(m)(α))b /∈ k. Writing

φ(m)(α) = φ(φ(m−1)(α)),

we use Lemma 3.5 to conclude that the exponent s � 2 is effectively bounded in terms
of φ and K (as the logarithmic height of any root of unity is zero).
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If we first assume that s � 3, then we can apply [2, Proposition 4.6] to effectively
bound the heights of the referred φ(m−1)(α)’s, and then h(α) as desired, as well asm in
case φ is not isotrivial, after using the procedure used in the proof of Theorem 3.2 (b)
via Lemma 2.4 and Theorem 2.5. This proves (a) and (b) for this subcase.

If on the other hand s = 2, we can apply [2, Proposition 4.7] in case d � 3,
and obtain the conclusions of (a) and (b) similarly. If s = d = 2, then φ(m)(α) =
φ(2)(φ(m−2)(α)), with m � 2, we can use again [2, Proposition 4.7] to conclude (a)
and (b) similarly.

Case A.3: r � 2, s = 1.
If n � 2, then the same conclusions from Case A.1 as above hold (replacing m by

n and r by s). It is enough then to consider the case n = 1, so that (3.3) becomes

φ(α) = u−1(φ(m)(α))r .

If r � 3, then we can apply [2, Proposition 4.6] again to conclude as in Case A.2. If
otherwise r = 2, we can apply Theorem 3.3 to conclude that (a) and (b) are true in
this situation.

Case A.4: r = 1, s = 1.
This case is covered by Theorem 3.3.

Case B: α /∈ RSφ .
Choosing v ∈ MK \ Sφ such that v(α) < 0, we have also that v /∈ Sφ(k) for all

k � 1. In this case, we have that v(φ(k)(α)) = dkv(α) for all k � 0 and hence (3.3)
implies

rdmv(α) = sdnv(α).

Therefore, since gcd(r , s) = 1, we have that r = 1 and s = dm−n . Writingm = n+k,
(3.3) becomes

φ(n+k)(α) = u(φ(n)(α))d
k
.

If k = 1, then φ(n+1)(α) = u(φ(n)(α))d , and we can use Theorem 3.3 to conclude
that (a) and (b) are valid in this case. Otherwise k � 2 and α satisfies φ(n+k)(α) =
u(φ(n)(α))d

k
, d � 3, so we consider the curve

φ(2)

u
(X) = Ydk .

Notice that φ(n+k−2)(α) is a solution in X for the curve, and then h(φ(n+k−2)(α)) as
well as ĥφ(φ(n+k−2)(α)) are bounded only in terms of φ and K due to [13, Chapter
VIII, Theorem 16]. This implies effective bounds for h(α) in terms of φ and K , and
effective bounds for n, k in terms of φ, K and inf ĥ( f )>0 ĥ( f ) in case φ is not isotrivial
again, as we wanted to show. ��
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3.3 Iterates as zeros of split polynomials

Here we would like to point that [4, Theorem 1.10] is also true over function fields of
characteristic 0,making use ofTheorem2.5.We start recalling the following definition.

Definition 3.7 Amultilinear polynomialwith split variables is a vector of polynomials

F(T1, . . . ,Tk) =
r∑

i=1

ci
∏

j∈Ji

T j ∈ K [T1, . . . ,Tk]

for some disjoint partition J1 ∪ · · · ∪ Jr = {1, . . . , s} and ci ∈ K ∗, i = 1, . . . , r .

Theorem 3.8 Let K be a function field of a smooth projective curve over an alge-
braically closed field of characteristic 0. Let F(T1, . . . ,Tk) ∈ K [T1, . . . ,Tk] be
a multilinear polynomial with split variables and let φ ∈ K (z) be a non-isotrivial
rational function degree d � 2.

The set of α ∈ K not preperiodic for φ, for which there exists a k-tuple of distinct
non-negative integers (n1, . . . , nk) satisfying

F(φ(n1)(α), . . . , φ(nk )(α)) = 0

is a set of bounded height. If d � 3, such heights are bounded effectively in terms of
φ, F and K .

Moreover, there are only finitely many k-tuples of integers n1 > n2 > · · · > nk
satisfying F(φ(n1)(α), . . . , φ(nk )(α)) = 0, and there is a bound for such integers that
depends only on φ, F, K and inf ĥφ(P)>0 ĥφ(P) and is independent of α.

Proof The proof follows the number field situation [4, Theorem 1.10] almost ipsis
literis, except that we have to point out that the quantity C2(K , f ) in that proof is
replaced here by inf ĥφ(P)>0 ĥφ(P), which we know to exist due to Theorem 2.5. ��

Remark 3.9 It would be interesting and one should be able to extend some of the
present results to arithmetic function fields and finitely generated fields by using a
very recent extension of Roth’s theorem to such context (see [20]), which makes use
of a new construction of global height functions associated with polarizations, due to
Moriwaki. Over finitely generated fields, one can define a complete set of places for
which a more general integral product formula holds and also define local heights that
can be integrated over such places to obtain the global heights (see [20, Section 3]).
In order to extend Theorem 2.9 (a) using similar ideas used here, one would have to
prove the distribution relations and/or the inverse function theorem of [14] with such
new language from [20].
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7. Brindza, B., Pintér, Á., Végső, J.: The Schinzel–Tijdeman theorem over function fields. C. R. Math.
Rep. Acad. Sci. Canada 16(2–3), 53–57 (1994)

8. Carney, A., Hindes, W.: Tucker, T.J.: Isotriviality, integral points, and primitive primes in orbits in
characteristic p. Algebra & Number Theory 17(9), 1573–1594 (2023)

9. Evertse, J.-H., Silverman, J.H.: Uniform bounds for the number of solutions to Yn = f (X). Math.
Proc. Cambridge Philos. Soc. 100(2), 237–248 (1986)

10. Hsia, L.-C., Silverman, J.H.: A quantitative estimate for quasiintegral points in orbits. Pacific J. Math.
249(2), 321–342 (2011)

11. Huang, H.-L., Sun, C.-L., Wang, J.T.-Y.: Integral orbits over function fields. Int. J. Number Theory
10(8), 2187–2204 (2014)

12. Krieger, H., Levin, A., Scherr, Z., Tucker, T., Yasufuku, Y., Zieve, M.E.: Uniform boundedness of
S-units in arithmetic dynamics. Pacific J. Math. 274(1), 97–106 (2015)

13. Mason, R.C.: Diophantine Equations Over Function Fields. London Mathematical Society Lecture
Note Series, vol. 96. Cambridge University Press, Cambridge (1984)

14. Matsuzawa, Y., Silverman, J.: The distribution relation and inverse function theorem in arithmetic
geometry. J. Number Theory 226, 307–357 (2021)

15. Silverman, J.H.: The theory of height functions. In: Cornell, G., Silverman, J.H. (eds.) Arithmetic
Geometry, pp. 151–166. Springer, New York (1986)

16. Silverman, J.H.: Integer points, Diophantine approximation, and iteration of rational maps. DukeMath.
J. 71(3), 793–829 (1993)

17. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts inMathematics,
vol. 151. Springer, New York (1994)

18. Silverman, J.H.: The Arithmetic of Dynamical Systems. Graduate Texts in Mathematics, vol. 241.
Springer, New York (2007)

19. Towsley, A.: A Hasse principle for periodic points. Int. J. Number Theory 9(8), 2053–2068 (2013)
20. Vojta, P.: Roth’s theorem over arithmetic function fields. Algebra Number Theory 15(8), 1943–2017

(2021)
21. Wang, J.T.-Y.: An effective Roth’s theorem for function fields. Rocky Mountain J. Math. 26(3), 1225–

1234 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	On effective ε-integrality in orbits of rational maps over function fields and multiplicative dependence
	Abstract
	1 Introduction
	2 Effective bounds for quasiintegral points in orbits over function fields
	2.1 Canonical heights, distance and dynamics on the projective line
	2.2 A distance estimate and an effective version of Roth's theorem
	2.3 A bound for the number of quasi-integral points in an orbit

	3 Multiplicative dependence in orbits over function fields
	3.1 S-Units, algebraic dynamics, and multiplicative dependence
	3.2 Polynomial dynamics and multiplicative dependence over function fields in one variable
	3.3 Iterates as zeros of split polynomials

	Acknowledgements
	References




