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Abstract
Bring’s curve, the unique Riemann surface of genus 4 with automorphism group S5,
has many exceptional properties. We review, give new proofs of, and extend a number
of these including giving the complete realisation of the automorphism group for a
plane curve model, identifying a new elliptic quotient of the curve and the modular
curve X0(50), providing a complete description of the orbit decomposition of the theta
characteristics, and identifying the unique invariant characteristic with the divisor
of the Szegő kernel. In achieving this we have used modern computational tools in
Sagemath, Macaulay2, and Maple, for which notebooks demonstrating calculations
are provided.

Keywords Bring’s curve · Automorphisms · Theta characteristics · Weierstrass
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1 Introduction

Bring’s curve, a genus 4 Riemann surface first introduced by Erland Bring in 1786 in
relation to solutions of the quintic equation, is the unique genus 4 curve with automor-
phism group S5, the largest possible group for curves of this genus. This automorphism
group acts transitively on the Weierstrass points of the curve, which are all weight 1, a
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very rare property of curves. The curve can moreover be seen to be an example of an
elliptic modular surface, and has a unique (even) theta characteristic invariant under
the action of the whole automorphism group. It shares all these properties with Klein’s
curve, a genus 3 curve which has been studied extensively [46].

We aim to give a unified review of many of these aspects of Bring’s curve, extend
these results and provide connections between them. This will include providing an
explicit presentation of the S5 group in terms of birational automorphisms of a plane-
curve model, using this to completely describe the quotient structure of the curve,
identifying fixed points of these quotients with geometrically significant points on the
curve including theWeierstrass points, and utilising these geometric points to describe
the orbit decomposition of odd theta characteristics on the curve.

Moreover, we will construct an explicit birational map between the canonical
embedding of the curve and a plane-curve model. This will allow us to use mod-
ern tools in SageMath, Maple, and Macaulay2 (all interfaced through Sage) to clarify
and fix errors in the existing literature as well as finding the orbit decomposition of
even theta characteristics of the curve. We shall also calculate the unique invariant
theta characteristic on the curve as a vector in the Jacobian, making explicit previous
work of others. These calculations are presented in Jupyter notebooks, available at
https://github.com/DisneyHogg/Brings_Curve.

The structure of the papers is as follows, in Sect. 2 we recall basic properties from
the literature, provide the birational map between models of the curve and describe the
period matrix and automorphism group of the curve. In Sect. 3 we identify geometri-
cally relevant orbits of points under the action of the automorphism group, notably the
Weierstrass points W, for which we construct the associated holomorphic differentials
with vanishing of order 4 at W and the meromorphic functions with poles only at W ;
indeed we shall describe the divisors of these completely. (Recall, for comparison,
that while the pole of the Weierstrass ℘-function is z = 0, describing its zeros is non-
trivial.) In Sect. 4 we use the action of the automorphism group to explicitly describe
the quotient structure of the curve. Using representation theory we elucidate much of
the structure of the Jacobian of Bring’s curve, giving new derivations of previously
known results, and identifying newquotients of the curve. In doing so,we also discover
isomorphisms (as opposed to isogenies) of quotients not explained by group theory
alone, and these deserve further study. In Sect. 5 we will develop the understanding
of the theta characteristics on the curve, including explicitly the unique invariant one.
Bring’s curve has arisen in many disparate mathematical areas and we will use this
paper to also make some of these results and interconnections more widely known;
we will however not focus on either the modular aspects of Bring’s curve or extension
to positive characteristic here. Because of the wide-ranging nature of this paper we
will conclude in Sect. 6 by summarising our new results having by then placed these
in context. We draw attention here to two areas we feel merit further explanation.

This work answers questions first raised in [8], and we will leave many expository
results to that paper. For a source on background classical material, see [27]. Unless
otherwise said explicitly, we shall assume the Riemann surfaces we discuss are all
smooth.
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2 Defining equations and elementary properties

In this section we shall introduce Bring’s curve describing its basic properties, its
period matrix and its automorphisms. We begin with two descriptions: one as a model
in P

4 and the second as a plane curve. In particular we shall construct the birational
map between thesemodels, whichwe believe new. Such amap enables us to concretely
translate calculations from one model to another and will be helpful later in Sect. 4
when we look at quotients of the curve.

Definition 2.1 Bring’s curve B is defined in P
4 by the (homogeneous) equations1

Hk
..=

5∑

i=1

xk
i = 0, k = 1, 2, 3, (1)

where we have taken the coordinates [x1 : x2 : x3 : x4 : x5] ∈ P
4.

Wewill call (1) theP
4-model ofBring’s curve.Historically, this curvewas attributed

to Bring by Klein in his lectures on the icosahedron [42]. Bring’s improvement on the
Tschirnhaus transformation enabled the general quintic to be brought to the Bring–
Jerrard form x5 + ex + f = 0 [1]: if xi , i = 1, . . . , 5, are the roots of this equation
then the symmetric sums

∑
i xk

i = 0 for k = 1, 2, 3, and so the above curve emerges.
Green [30] exploits this relation to Bring’s curve to (implicitly) solve the quintic using
automorphic forms. At this stage we may observe that S5 � Aut(B).

Remark 2.2 In the above definition we have implicitly taken P
4 = CP

4, and indeed
this will be our definition throughout. At various junctures we will however highlight
the number fields within C that are relevant fields of definition for morphisms of the
curve, or geometrically important points on the curve.

For many calculations a plane model of a curve in P
2 is useful. One of the main

tools we will utilise in this paper is the Riemann surfaces module of SageMath [64]
which requires such a model. As such we introduce the following.

Definition 2.3 The Hulek–Craig (HC) model of Bring’s curve is the (singular) plane
curve in P

2 given by

F(X , Y , Z) ..= X(Y 5+ Z5) + (XY Z)2 − X4Y Z − 2(Y Z)3 = 0, (2)

taking homogeneous coordinates [X : Y : Z ] ∈ P
2. We denote its normalisation by B.

This model was used in [15, 39] where they studied the curves modular properties.
Indeed Craig gives a parameterization of the curve in terms of modular functions
following work of Ramanujan. Craig does not identify the curve as Bring’s, whereas
Hulek finds the equation as a hyperplane section of a surface that parameterises elliptic
normal curves of degree 5, and then refers to previous results to connect it with Bring.
This connection was first made in [52], where the curve is attributed to Klein. Indeed,

1 Note here we use the notation Hk of [11] for the symmetric sum, whereas [24] uses Sk .
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because of this interpretation, one can write down Bring’s curve in the form of a
quotient of the upper half plane H as

H/�0(2, 5) where �0(2, 5) = �0(2) ∩ �(5) =

⎧
⎪⎨

⎪⎩

(
a b

c d

)
∈ SL2(Z)

∣∣∣∣

a ≡ d ≡ 1 (mod 5)

b ≡ 0 (mod 5)

c ≡ 0 (mod 10)

⎫
⎪⎬

⎪⎭
.

To our knowledge, [39] is the first occurrence of this plane model of the curve; Klein
will write it down in [42, pp. 165, 242] but the relation to a plane model of Bring’s
curve is not made explicit. We will call (2) the HC-model of Bring’s curve. In the
following subsection we shall show the birational equivalence of (2) and (1).

Another plane model of Bring’s curve is given by (x − 1) y5 − (x + 1) x2 = 0,
introduced in [66, Proposition 3.1] by considering the curve as a cyclic cover of P

1,
see Sect. 4.

2.1 Basic properties

Towards proving the birational equivalence of the two models given for Bring’s curve
we begin with some basic properties of the curve. We introduce affine coordinates
(x, y) = (X/Z , Y/Z) such that the HC-model is 0 = f (x, y) = F(x, y, 1).2 Then
Resy( f (x, y), ∂y f (x, y)) = x4(x5 − 1)2(256x10 − 837x5 + 3456). Investigation of
the vanishing of this resultant leads to the following.

Lemma 2.4 ([8]) The only singular points in the HC-model of the curve are Vk =
[ζ k : ζ 2k : 1] for k = 0, . . . , 4, where ζ = exp(2π i/5), and V5 = [1 : 0 : 0].

We shall return these points in due course; each of these singular points desingu-
larizes to two points. We also have non-singular points a = [0 : 0 : 1], b = [0 : 1 : 0],
about which we can take a local parameter t (that is a parameter 0 at the points)
such that nearby points behave as [2t3 : t : 1] and [2t3 : 1 : t] respectively. The point V5
desingularises to two points on B, which we denote

c = [1 : 0 : 0]2, d = [1 : 0 : 0]1,

which in the vicinity of these points have local behaviour [1 : t : t4] and [1 : t4 : t]
respectively. We see from this that

Corollary 2.5

div(x) = 3a + 2b − 4c − d, div(y) = a − b − 3c + 3d,

RF = 2a + b + 3c +
∑

i

ri ,

where RF is the ramification divisor corresponding to the map x : B → P
1 and the

ri are the roots of the polynomial 256x10 − 837x5 + 3456 appearing in the resultant.

2 Note the coordinates x, y will also interchangeably be used as coordinates on the normalisation away
from the preimages of singular points.
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Lemma 2.6 ([8]) The genus of Bring’s curve is g = 4 and we have the ordered basis
of (unnormalised) differentials on B

v1 = (y3 − x)dx

∂y f (x, y)
, v2 = (y2x − 1)dx

∂y f (x, y)
,

v3 = (y − x2)dx

∂y f (x, y)
, v4 = y(x2 − y)dx

∂y f (x, y)
.

Remark 2.7 Note that because a singular curve and its normalisation have the same
geometric genus, we still expect to have four independent differentials in the HC-
model.

These differentials, while independent as holomorphic differentials, do satisfy an
algebraic relation, namely

Q : v1v2 + v3v4 = 0. (3)

It is a famous result that Q ∼= P
1× P

1 [65], and as we will subsequently want an
explicit form of the isomorphism we shall write it down. Namely we have the map
Q → P

1× P
1 given by ϕ : P

1× P
1 → Q ⊂ P

3,

ϕ([u : v], [z : w]) = [uz : vw : vz : − uw] ..= [v1 : v2 : v3 : v4]. (4)

The inverse map ϕ−1 : Q → P
1× P

1 is given by

ϕ−1([v1 : v2 : v3 : v4]) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

([v1 : v3], [v3 : v2]), {v1, v3} �= {0} �= {v2, v3},
([− v4 : v2], [v3 : v2]), {v1, v3} = {0} �= {v2, v3},
([v1 : v3], [v1 : − v4]), {v1, v3} �= {0} = {v2, v3},
([− v4 : v2], [v1 : − v4]), {v1, v3} = {0} = {v2, v3}.

Proposition 2.8 ([8]) The canonical divisor class on Bring’s curve B is [KB] =
[a + 2b + 3c].
Proof This may be shown analytically or (as given in the accompanying note-
book) entirely using computer algebra. To show this analytically we use div(dx) =
−2(4c + d) + RF .

We now establish the main result of this subsection.

Proposition 2.9 The HC-model (2) is a model of Bring’s curve (1).

Proof We will prove this by explicitly constructing the birational transform. To do so
we make use of the proof of [22, Theorem 3], where the author considers a particular
Clebsch hexagon,3 constructs a pencil of plane sextics from this, and finds Bring’s

3 For the purposes of this definition a hexagon is a set of six points in P
2 no three of which are collinear,

called the vertices. A Brianchon point of a hexagon is a non-vertex point through which three edges (the
lines joining two distinct vertices) pass. A Clebsch hexagon is a hexagon with ten Brianchon points [21].

123



3 Page 6 of 46 H.W. Braden, L. Disney-Hogg

curve as the canonical model of a distinguished point in this pencil. By assuming that
the HC-model is already the distinguished curve in a pencil, we can construct the
birational map. Note this is a fundamentally different approach to the that originally
taken with the HC-model, which was derived from considerations of the modular
theory of the curve.

Explicitly, Dye introduces j as a solution to j2 − j − 1 = 0 and then defines the
pencil of curves4 Sλ = S + λ|C|3 where

S(x, y, z) = (x + j y)6 + (x − j y)6

+(y + j z)6 + (y − j z)6 + (z + j x)6 + (z − j x)6,

C(x, y, z) = x2 + y2 + z2. (5)

Next Dye considers the Clebsch hexagon H with vertices

(1,± j, 0), (0, 1,± j), (± j, 0, 1),

for which the corresponding ten Brianchon points are at

(± j2, 1, 0), (0,± j2, 1), (1, 0,± j2), (1,±1,±1).

Dye shows that there is a unique member of the pencil, which he calls �, that contains
the vertices. Moreover, � has the vertices and only the vertices as double points.

To get a canonical model5 for �, which Dye shows has genus 4, we now need
a little theory from [56, pp. 122–124], namely that a generic cubic surface in P

3 is
birational to the vanishing condition for a system of plane cubics through six base
points in generic positions. We apply this taking these six points to be the vertices of
the hexagon H . We shall see a posteriori that these are indeed in general position.

We shall now proceed as follows.

(i) We will explicitly give the correspondence between a (generic) cubic in P
3 and

the vanishing condition for the system of cubics.
(ii) We construct the cubic which corresponds to the vanishing condition for the

cubics through the six points Vk on the HC-model.
(iii) We verify that the constructed map is birational from P

2 to the cubic.
(iv) Motivated by the geometry of Bring’s curve, we find a collineation which maps

the found cubic to the standard Clebsch surface (defined below) in P
4.

(v) We verify that restricting to the HC-model in P
2 corresponds to restricting to

Bring’s curve in the Clebsch surface.
(vi) We give examples of this new birational map from the (normalisation) of the

HC-model to Bring’s on some particular points. We do this now.

4 We are using the coordinates [x : y : z] here, distinct from [X : Y : Z ], to highlight that these are not those
of the HC-model.
5 We use the phrase “canonical model of �" to mimic the language used by Dye. For a singular curve, the
canonical model is the canonical model as naturally defined for the normalisation of the curve.
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(i) Such a generic cubic surface F ⊂ P
3 can be written as the vanishing of a determi-

nant

∣∣∣∣∣∣

u1 v1 w1
u2 v2 w2
u3 v3 w3

∣∣∣∣∣∣
= 0,

where u1, . . . , w3 are linear homogeneous functions of the P
3 coordinates, that is to

say P = [L1 : L2 : L3 : L4] ∈ F ⊂ P
3 if and only if there exists P ′ = [X : Y : Z ] ∈ P

2

such that

Xui (P) + Yvi (P) + Zwi (P) = 0.

Thinking of P ′ as a point in a plane 	 we get a birational transformation 	 ↔ F ,
P ′ ↔ P . The map 
 : 	 → F will have the La as homogeneous cubics in X , Y , Z .
To see this rewrite the determinant equation as (for i = 1, 2, 3)

4∑

a=1

aia(P ′)La = 0

for some aia linear homogeneous in the X , Y , Z . On each affine patch La �= 0 solving
this involves inverting a 3×3matrix whose entries are linear homogeneous polynomi-
als in X , Y , Z . Likewise, given the La , we have a 3-parameter family of cubics given
by

aL1 + bL2 + cL3 + d L4 = 0 for [a : b : c : d] ∈ P
3.

A cubic in P
2 has ten projective coefficients, and so a 3-parameter family is defined

by six constraints. Generically we can take those constraints to come in the form of
intersection with six generic points Oi ∈ 	.

(ii) For our purposes, the six points we want to intersect with are the vertices of the
Clebsch hexagon, which are the double points of the exceptional curve �. Assuming
the the HC-model gives such an exceptional curve, we take the points Vk identified in
Lemma 2.4. Hence, if we write a generic cubic in X , Y , Z as

a0X3 + a1X2Y + a2X2Z + a3XY 2

+ a4XY Z + a5X Z2 + a6Y 3 + a7Y 2Z + a8Y Z2 + a9Z3

the equations on the coefficients we get (coming from intersecting with Vk , k =
0, . . . , 4, and V5 respectively) are

a0ζ
3k + a1ζ

4k + a2ζ
2k + a3 + a4ζ

3k + a5ζ
k + a6ζ

k + a7ζ
4k + a8ζ

2k + a9 = 0,

a0 = 0.
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Setting the coefficients of ζ nk to be zero gives us the 3-parameter family of cubics

0 = aX2Y + bX2Z + cXY 2 + d X Z2 − dY 3 − aY 2Z − bY Z2 − cZ3

..= aL1 + bL2 + cL3 + d L4.

Precisely because the resulting family of cubics is 3-parameter, we know that the six
points from H must have been sufficiently general.

Comparing the coefficients we see that ourmap intoP
3 is (essentially) the canonical

embedding

[v1 : v2 : v3 : v4] = [− L4 : L3 : − L2 : L1].

One can check, using for example Gröbner bases, that the La satisfy the equation

L2L2
4 − L2

1L4 − L1L2
3 + L2

2L3 = 0.

This is the cubic we call F .

(iii) One can use the package Cremona [61] in Macaulay2 to check that the map 


is birational. Note one needs to make sure that the range is chosen such that the map
is explicitly surjective, not just use the implicit knowledge that the map is surjective
onto its image. Doing so and asking for the inverse map gives

[X : Y : Z ] = [L2
2 − L1L3 : L1L4 : L2L4].

For example, we can see

L2
2 − L1L3

L1L4
= (X2Z − Y Z2)2 − (X2Y − Y 2Z)(XY 2 − Z3)

(X2Y − Y 2Z)(X Z2 − Y 3)

= X4Z2 − X2Y Z3 − X3Y 3 + XY 4Z

X3Y Z2 − XY 2Z3 − X2Y 4 + Y 5Z
= X

Y
,

and

L1L4

L2L4
= L1

L2
= X2Y − Y 2Z

X2Z − Y Z2 = (X2Z − Y Z2)(Y/Z)

X2Z − Y Z2 = Y

Z
.

(iv) We now have a cubic surface in P
3 corresponding to the system of curves inter-

secting the Vi . From [37, pp. 198–201] we know there exists a coordinate system in
which this cubic can be written as the subset of P

4
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H3 = 0 = H1

(this is called ‘the’ Clebsch surface). To look for such a coordinate system, we write
this surface in P

3 as

0 = x21 x2 + x1x22 + x21 x3 + x22 x3 + x1x23

+ x2x23 + x21 x4 + x22 x4 + x23 x4 + x1x24 + x2x24

+ x3x24 + 2x1x2x3 + 2x1x2x4 + 2x1x3x4 + 2x2x3x4.

From here, one can use the fact that the ten Eckardt points6 of the cubic in La form the
ten vertices of a pentahedron [37], and that in the coordinate system of the Clebsch
surface in P

4 these lie at the permutations of [1 : − 1 : 0 : 0 : 0] [24]. This gives us a
possible way a spotting the transform if we can calculate the Eckardt points of F . To
do this, we use the identification from [22], that the three lines in F intersecting to give
an Eckardt point come from the three edges of H intersecting at a Brianchon point.
To this end we find the images of the Vi Vj for which we give a generating set of the
ideal corresponding to the line, for example

(a) 
(V0V5) : 〈L4 − L3, L2 − L1〉,
(b) 
(V1V2) : 〈L4 + (ζ 2 + ζ + 1) L2 + (ζ 4 − ζ 2 − ζ ) L1, L3 + (ζ 3 + 2ζ 2 + ζ ) L2

+ (ζ 3 + ζ 2 + ζ ) L1〉,
(c) 
(V3V4) : 〈L4 + (−ζ 2 − ζ ) L2 + (ζ 3 + 2ζ 2 + ζ ) L1, L3 + (ζ 3 − ζ − 1) L2

+ (ζ 2 + ζ + 1) L1〉.
Then


(V0V5) ∩ 
(V1V2) ∩ 
(V3V4) = [− ζ 3 − ζ 2 − 1 : − ζ 3 − ζ 2 − 1 : 1 : 1]
= 
(V0V5 ∩ V1V2 ∩ V3V4).

One can do likewise to find the other Eckardt points.
Armed now with the knowledge of the Eckardt points, we can find appropriate

projective transforms A that biject the sets of Eckardt points by acting

(x1, x2, x3, x4)
T= A(L1, L2, L3, L4)

T,

for example,

A =

⎛

⎜⎜⎝

ζ 3 −1 −ζ 2 ζ

1 −ζ 3 −ζ ζ 2

ζ 2 −ζ −1 ζ 3

ζ −ζ 2 −ζ 3 1

⎞

⎟⎟⎠ .

We can then use againMacaulay2 to check that this transform then gives us the correct
cubic in P

3.

6 An Eckardt point of a surface is a point where three lines contained within the surface intersect [37].
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(v) Moreover, if we now restrict to the HC-model in the system of curves that intersect
the Vi , that is we impose the condition that F(X , Y , Z) = 0, we get the final degree-2
polynomial on the xi (H2 = 0). This quadric is in fact the Schur quadric correspond-
ing to a distinguished double six7 of lines that necessarily exist on a cubic surface
constructed as above [22]. An equivalent rational map is given in [20, p. 557], but the
inverse is not provided.

(vi) To see this working, let us consider c and d, and see that these are desingualrised
on the smooth canonical embedding. Taking [X : Y : Z ] = [1 : t : t4] we get

[L1 : L2 : L3 : L4] = [1 : t3 : t + t6 : − t2],

and so taking the limit we get [1 : 0 : 0]2 
→ [1 : 0 : 0 : 0] in L coordinates. Acting with
A, we get the point in P

4 given by

[x1 : x2 : x3 : x4 : x5] = [ζ 3 : 1 : ζ 2 : ζ : ζ 4].

Repeating the process taking [X : Y : Z ] = [1 : t4 : t] gives [1 : 0 : 0]1 
→ [0 : 1 : 0 : 0]
in L coordinates, which is equivalently

[x1 : x2 : x3 : x4 : x5] = [1 : ζ 3 : ζ : ζ 2 : ζ 4].

This makes sense, as the change Y ↔ Z corresponds to L1 ↔ L2, L3 ↔ L4.
Moreover, to clarify our last point on the imposition of H2 = 0, we consider the

point [X : Y : Z ] = [0 : 1 : 1] which does not lie on the HC-model of the curve. Under
our birational map this corresponds to the point

[L1 : L2 : L3 : L4] = [1 : 1 : 1 : 1] ⇒ [x1 : x2 : x3 : x4 : x5] = [2 − √
5 : − 2 + √

5 : − 1 : 1 : 0].

This point does lie on the Clebsch diagonal surface given by H1 = 0 = H3, but does
not satisfy H2 = 0.

Note that in the above proof of the equivalence of the Riemann surfaces, the bira-
tional map we constructed was defined overQ[ζ ]. As such, to equate the two algebraic
curves we need to be working over a field containing Q[ζ ]. We will later see when
looking at quotients of Bring’s curve that it is insufficient to work over Q. Indeed,
note that over Q there are no solutions to the equations defining Bring’s curve in the
P
4-model.

7 A double six is a collection of 12 lines a1, . . . , a6, b1, . . . , b6 in P
3, arranged as

a1 a2 a3 a4 a5 a6
b1 b2 b3 b4 b5 b6

so that each line is disjoint from those in the same row and column, but intersects the other five lines.
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2.2 The periodmatrix

We record now a result from the literature. Recall that given a choice of a basis of
differentials {ωi } on a curve and a choice of homology basis {ai , b j } on the same curve
such that the intersection pairing is given by ai ◦b j = δi j (we call such a homology
basis canonical), we define the associated period matrix (also called the matrix of
periods) to be the g ×2 g block matrix 
 = (A | B) where

Ai j =
∫

a j

ωi , Bi j =
∫

b j

ωi .

It is the case that A will always be invertible, and we can then define the associated
Riemann matrix to be τ = A−1B.

Theorem 2.10 ([29, 54]) Define the matrices M, MS by

M =

⎛

⎜⎜⎝

4 1 −1 1
1 4 1 −1

−1 1 4 1
1 −1 1 4

⎞

⎟⎟⎠ , MS =

⎛

⎜⎜⎝

4 −1 −1 −1
−1 4 −1 −1
−1 −1 4 −1
−1 −1 −1 4

⎞

⎟⎟⎠ .

A Riemann matrix for Bring’s curve is given by τB = τ0M, where the complex number
τ0 is given by the conditions

j(τ0) = − 293×5

25
, j(5τ0) = − 25

2
,

with j the elliptic- j function on the upper half plane. Then

τ0 = −0.5 + 0.186676 i (6.d.p).

Further, there exists a symplectic transformation such that τB = τ0MS.

Proof This is known, and has been proven in multiple different ways. We summarise
these and highlight a numerical approach.

1. This was first shown in [54], but the equations for j(τ0), j(5τ0) were incorrectly
swapped as first noted8 in [8].

2. It was calculated in [8] going via the HC-model.

8 Note the approximation of τ0 in [8] contains a typographic error.
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3. In [66], by viewing the curve as a cyclic cover of P
1, a period matrix is constructed

with respect to a homology basis with intersection matrix

IW =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 −1 −1 0 0 1
−1 0 1 1 0 1 0 −1
−1 −1 0 1 0 −1 0 0
1 −1 −1 0 0 0 1 0
1 0 0 0 0 1 1 −1
0 −1 1 0 −1 0 1 1
0 0 0 −1 −1 −1 0 1

−1 1 0 0 1 −1 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

that is given as 
 = (A, B) where the columns Ak, Bk
9 are

Ak =

⎛

⎜⎜⎝

ζ k(1 − ζ 2)

ζ 2k+3/2(1 − ζ 4)(l� − 1)
ζ 4k+3(1 − ζ 3)�(1 − l)

ζ 3k+2(1 − ζ ) l

⎞

⎟⎟⎠ , Bk =

⎛

⎜⎜⎝

ζ 2k+3/2(1 − ζ 4)(l� − 1)
ζ 4k+3(1 − ζ 3)�(1 − l)

ζ 3k+2(1 − ζ ) l
ζ k(1 − ζ 2)

⎞

⎟⎟⎠ ,

for k = 0, . . . , 3, � = (1+ √
5)/2, and l = |I (−1, 0)/I (−∞,−1)| ≈ 0.848641

where

I (a, b) =
∫ b

a
(t − 1)−1/5t−3/5(t + 1)−4/5dt .

One can find (using Sage) the matrix

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −2 1 1 1 0 −1
0 1 −1 1 0 0 −1 0
0 0 −1 0 0 1 1 0
1 1 −2 2 0 1 −1 −1
0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

such that CT IW C = Jg =
(

0 Idg
− Idg 0

)
, i.e. C transforms the homology basis to one

which is canonical. This means we get a Riemann matrix τW = (AC)−1(BC) =

9 Note [66, Lemma 5.1] uses ζ = exp(2π i/10), whereas we take ζ = exp(2π i/5). As such, the columns
of 
 look different to those of Weber in terms of the exponent of ζ , but they do indeed agree.
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C−1A−1BC , and one can numerically find that the matrix

R =
(

δ β

γ α

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 1 2
0 −1 1 0 −1 −2 1 1
1 0 1 0 2 1 1 1
0 1 0 0 1 2 0 0
1 0 0 0 2 1 0 1
1 0 1 −1 1 1 1 −1

−1 0 0 1 −1 −1 1 2
1 0 1 −1 1 2 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

relates τW to τB by

τB = (δ + τW γ )−1(β + τW α). (6)

Here R is a symplectic transform with respect the standard symplectic form Jg .

4. For a numerical approach, we may consider the Riemann matrix calculated by
SageMath, and find a transform to τB, as is done in the corresponding notebook.

Riera and Rodriguez (hereafter abbreviated to R&R) constructed the constraints
on τ0 via j-invariants by considering the quotients by group actions of the curve to
elliptic curves [54]. They show that these constraints give a unique value of τ0 modulo
�0(5), or equivalently in the language of [29] that τ0 gives a distinguished point in the
modular curve X0(5). As we will see later in Sect. 4.4, there are additional quotients
to elliptic curves not considered by R&R, which have j-invariants

j(15τ0) = − 52×2413

23
, (7)

j(3τ0) = 5×2113

215
. (8)

The latter is identified in relation to Bring’s curve in [57, Exercise 8.3.2c]. Serre says
that this curve (50H) and 50E (using the naming convention of [6]) with j(5τ0) are
15-isogenous over Q. This isogeny is not too mysterious when we think on the level
of the corresponding elliptic curves over C as C/〈1, 3τ0〉 and C/〈1, 5τ0〉, wherein the
isogeny C/〈1, 3τ0〉 → C/〈1, 5τ0〉 is the composition of the quotients by the maps
z 
→ z + τ0 and z 
→ z + 1/5 respectively. There is a complete Q-isogeny class of
elliptic curves of order four with periods τ0, 3τ0, 5τ0 and 15τ0 [6].

It follows from the above that τ0 is transcendental. By a theorem of Schneider [4], if
j(z) is rational, z is either transcendental or an element of a quadratic imaginary field
with class number 1. However, the j-invariants of elements of these fields are known
to be integers, which does not occur in the case of τ0. In Weber’s form of the period
matrix, the transcendentality comes about because of the constant l, which is a ratio of
Schwarz–Christoffel integrals which arise from the map of a Euclidean quadrilateral
to a hyperbolic quadrilateral.
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2.3 The automorphism group

As previously noted, the P
4-model of Bring’s curve shows that the automorphism

group Aut(B) contains S5. Hurwitz’s theorem on the automorphism group G =
Aut(C) of a curve of genus g � 2 yields that |G| ∈ {84(g − 1), 48(g − 1),
40(g − 1), . . .} and that if p is a prime where p | |G|, then p ∈ {2, . . . , g, g + 1,
2 g + 1}. For genus 4 this means p ∈ {2, 3, 5} and so the maximal automorphism
group of a genus 4 curve has order strictly less than 84(g − 1). In 1895, Wiman
showed10

Proposition 2.11 ([67]) Aut(B) = S5. This is the maximal possible automorphism
group for a genus 4 surface, and Bring’s curve is the only curve to achieve it.

Wiman’s proof was enumerative and produced equations for the curves with a
given automorphism group. He had previously dealt with the hyperelliptic curves
and their automorphism groups and for non-hyperelliptic curves C of genus 4 he
began with the canonical embedding of the curve in P

3 which meant that their
automorphisms could be taken to be collineations, and so forming a subgroup of
PGL4(C). Wiman’s approach then used the fact (see [33, IV.5.2.2]) that the canonical
embedding of a non-hyperelliptic curve of genus 4 is the complete intersection of an
irreducible cubic surface and a unique quadric surface (which is either irreducible,
or a cone). The uniqueness of the quadric Q means that automorphisms of the curve
become automorphisms of Q. In the case where Q is of full rank we have that it
is isomorphic to P

1× P
1, hence we know Aut(C) is isomorphic to a finite subgroup

of Aut(P1× P
1) = C2�(PGL2(C)×PGL2(C)) and that using the coordinates of

P
1×P

1 Wiman could express the curve C as an equation of bidegree (3, 3) in terms
of these. In the singular case Q is a quadric cone and by projecting from a point of the
cone meant that C could be expressed as a plane sextic. In both cases Wiman could
write equations for possible genus 4 curves and his strategy was to look at the restric-
tions on these imposed by symmetries of orders 2, 3 and 5. For curves without an order
5 element the maximal order of symmetry group was 72 for Q either a smooth quadric
or cone. Including an order 5 element yielded a maximal symmetry group of order 120
only in the case of the smooth quadric with the resulting curve being Bring’s. In the
case of Bring’s curve the quadric Q is the quadric Q we determined earlier. Different
proofs of Wiman’s result may be found in [43, 49].

It is clear from the P
4-model that Aut(B) may be realised as projective transforms

via the permutation representation of S5 acting on the subspace
∑

i xi = 0; it is also
clear that it may be be realised as a subgroup of PGL4(C) via the induced action on
the differentials or equivalently the La’s. What is non-trivial is the following fact.

Theorem 2.12 ([22]) The A5 subgroup of Aut(B) can be realised as a group of
collineations in the HC-model, that is, can be realised as a subgroup of PGL3(C).

Proof. Wewill be explicit about the construction here as thiswill be profitable later; [8]
explains how this representation follows from [22]. The group A5 has two inequivalent
irreducible three-dimensional representations, one of which is given by 〈R, S〉 where
10 An English translation of Wiman’s paper has been produced [18].
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R ..= 1√
5

⎛

⎝
1 2 2
1 ζ 2 + ζ−2 ζ + ζ−1

1 ζ + ζ−1 ζ 2 + ζ−2

⎞

⎠ , R2 = I ,

S ..=
⎛

⎝
1

ζ

ζ−1

⎞

⎠ , S5 = I , (RS)3 = I .

Note the other inequivalent irreducible 3-dimensional representation comes from
replacing ζ in the above with ζ 2 or ζ 3. The invariants of the representation 〈R, S〉
(when acting on (X , Y , Z)T via left multiplication) are

i2 =
(

X

2

)2
+

4∑

k=0

(
X/2 + Y ζ k + Zζ−k

√
5

)2
= 1

2
X2 + 2Y Z ,

i6 =
(

X

2

)6
+

4∑

k=0

(
X/2 + Y ζ k + Zζ−k

√
5

)6
,

i10 =
(

X

2

)10
+

4∑

k=0

(
X/2 + Y ζ k + Zζ−k

√
5

)10
,

i15 =
∣∣∣∣
∂{i2, i6, i10}
∂{X , Y , Z}

∣∣∣∣.

There is a polynomial relation between i215 and i2, i6, i10. In particular the vanishing
of i6 − λi32 gives us Dye’s one-parameter family of A5-invariant sextics in P

2; this
pencil appears to have first been studied by Winger [68]. This pencil yields genus 10
curves for generic λ [22].11 The special value of λ = 13/10012 yields a genus 4 curve,
namely Bring’s curve, as we have that

1

12
(100 i6 − 13 i32) = X(Y 5 + Z5) + (XY Z)2 − X4Y Z − 2(Y Z)3 = F(X , Y , Z).

To complete our picture, we use the following result.

Proposition 2.13 The map

U : (x, y) 
→
(

− y5 + x3y − 3xy2 + 1

(y − x2)(y3 − x)
,− y2x − 1

y3 − x

)

is an automorphism of the HC-model, and together with R and S generates the entire
automorphism group S5.

11 A variation on this pencil has been used to explain why Bring’s curve is uniquely defined as an A5-
invariant curve of genus 4, but there is a 1-parameter family of dimension 4 A5-invariant principally polarised
abelian varieties, deforming JacB [48, 69]. The paper [51] gives further interesting representation theoretic
perspectives on Bring’s curve.
12 For λ = 17/180 the curve is of genus 0; for λ = 1/10 the curve is reducible.
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Proof The proof that U is an automorphism is a simple algebraic verification. In order
to find this map, we adapted the methods of [10]. To see that 〈R, S, U 〉 ∼= S5, note that
U is of order 4, for example by checking that it has the orbit a 
→ c 
→ b 
→ d 
→ a.
As such, U corresponds to an odd permutation under the isomorphism Aut(B) ∼= S5,
and a single odd permutation and all of A5 together generate S5.

Byfixing amap from (the normalisation of) theHC-model to theP
4-model aswe did

in the proof of Proposition 2.9, we have fixed an isomorphism from the automorphism
group of the curve (in theHC-model) to S5,whichwe shall denoteψ : 〈R, S, U 〉 → S5.
For example, it is simple to verify that we have U 2([X : Y : Z ]) = [X : Z : Y ]. We see
U 2([L1 : L2 : L3 : L4]) = [L2 : L1 : L4 : L3], and so

U 2([x1 : x2 : x3 : x4 : x5]) = [x2 : x1 : x4 : x3 : x5],

that is (12)(34). Through similar calculation we can find

ψ(R) = (13)(24), ψ(S) = (13425), ψ(U ) = (1324).

There aremyriad choices that can bemade in constructing the birational transformation
(such as the labelling of the coordinates in P

3 and the ordering of the rows of A, or
indeed composingwith any automorphismof theP

4-model), and changing thesewould
give different isomorphisms to S5.

As we have previously described, the uniqueness of the quadric Q whose intersec-
tion with a cubic yields the canonical model of the curve leads to an isomorphism of
the automorphism group of the curve and a subgroup of Aut(Q). For Bring’s curve
Q ∼= P

1× P
1 and we obtain an isomorphism from S5 to a subgroup of Aut(P1× P

1) =
Z2�(PGL2(C)×PGL2(C)) which we now write down. Let ([u : v], [z : w]) be the
coordinates on P

1× P
1, then using the birational map constructed in Proposition 2.9

one can conjugate the standard irreducible 4-dimensional representation of S5 on
[x1 : x2 : x3 : x4] to an action on [v1 : v2 : v3 : v4]. The resulting action of (12) is (pro-
jectively)

(
v

u

)

→
(

j −1
−1 − j

)(
w

z

)
..= A

(
w

z

)
,

(
w

z

)

→
( −1 j − 1

j − 1 1

)(
v

u

)
..= B

(
v

u

)
,

(9)

where j = − ζ 3 − ζ 2 satisfies j2 − j − 1 = 0; that is it is the j defined by Dye. One
can show that (34) has the same action, where the other root j ′ = ζ 3+ζ 2+1 is taken.
One can check that AB = 1 ∈ PGL2(C), consistent with the fact that (12)2 = 1 ∈ S5.
Note the transposition interchanges the two copies of P

1, which is the action of the
semi-direct product with Z2. Combining the two transforms one gets that (12)(34)
acts as

[u : v] 
→ [−v : u], [z : w] 
→ [−w : z].
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This fixes each copy ofP1 and is the antipodalmap on each.Moreover,we can calculate
the action of (145) on the copies to be

(
v

u

)

→
(

ζ − ζ 3 − ζ

− ζ 2 − 1 − ζ 2

)(
v

u

)
,

(
w

z

)

→
(

ζ 3 + 1 ζ 2

ζ 4 − ζ 3 − ζ

)(
w

z

)
.

(10)

As 〈(12)(34), (145)〉 ∼= A5, we discover that the action of A5 does not interchange the
two copies of P

1, but odd-parity elements in S5 do. Here A5 is given by the diagonal
embedding in PGL2(C)×PGL2(C).

3 Geometric points

We now have a good understanding of how the automorphism group acts on the curve,
and so before looking at quotient Riemann surfaces in Sect. 4 we want to first consider
orbits of points that have geometric significance on the curve. These points will have
important connections to the function theory of the curve; they are also related to
physical aspects of Euclidean realisations (i.e. can be immersed in Euclidean 3-space)
of the curve. Such orbits are characterised by the following result from Wiman.

Proposition 3.1 ([67]) There are only three orbits orbits of points of size less than 120
on B and these have sizes 24, 30, and 60 respectively.

Proof By [27, III.7.7] we know the stabilizer of a point must be a cyclic group. The
cyclic subgroups of S5 are C2, C3, C4, C5, C6; the corresponding orbits would thus
be of (respective) sizes 60, 40, 30, 24 or 20. To obtain Wiman’s result we must show
that C3 does not fix a point on Bring’s curve. Using Riemann–Hurwitz we have

3 = 120 (g − 1) + 30a60 + 40a40 + 45a30 + 48a24 + 50a20

where ak � 0 is the number of S5 orbits of size k. There are no solutions to this for
g � 1. For g = 0 we have the unique solution 1 = a60 = a30 = a24. This shows there
can be no points with C3 stabilizer.

These points and corresponding geometric structures are important when relating
Clebsch’s diagonal surface toHilbert modular surfaces [5, 38].We identify these orbits
as the geometric points on the curve defined in [60].13 Explicitly they are the vertices,
face-centres, and edge-centres of the the universal map {5, 4}6—the Petrie polygon (as
defined in [14, Section 8.6]) of degree 6 coming from the tiling of the hyperbolic disk
by pentagons, where four meet at a vertex [59]. It is noted in [66] that this tessellation
has a Euclidean realisation as a dodecadodecahedron (Fig. 1a). This has 30 vertices,
60 edges, and 24 faces, giving genus

g = 1 − V − E + F

2
= 4,

13 Being a geometric point on a curve is a priori not an interesting statement unless we know the corre-
sponding map is regular, as we have in this case.
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(a) Dodecadodecahedron (b) Small Stellated Dodecahedron

Fig. 1 Geometric realisations, generated in Sagemath

(a) {5, 4} tessellation (b) {5, 5} tessellation

Fig. 2 Hyperbolic tilings, generated in Sagemath

as we expect. In a recent paper, this connection to the dodecadodecahedron was used
to identify Bring’s curve as the moduli space of equilateral plane pentagons up to the
action of the conformal group [53]. The (small) stellated dodecahedron (Fig. 1b) also
has genus 4 (having V = 12 = F , E = 30), coming from the tessellation {5/2, 5} ∼=
{5, 5 | 3}, which can be interpreted as adding three ‘holes’ to the {5, 5} tessellation [14,
Section 8.5]. This {5, 5 | 3} tessellation has automorphism group C2× A5, which is an
index-2 subgroup of C2× S5, the automorphism group of {5, 4}6. This is due to the
map D1 defined in [34, Section 3.1], whichmaps the dodecadodecahedron to the small
stellated dodecahedron. We include both these tessellations in Fig. 2. Klein connects
the small stellated dodecahedron toBring’s curve through a degree-3 coveringB → P

1

constructed from the hyperbolic triangles giving the tessellation [66], and we will see
this map later in Sect. 5 in a different context.
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3.1 Weierstrass points

We recall the definition of an important class of points.

Definition 3.2 ([50, Proposition 12.6, Theorem 12.7]) A Weierstrass point on a curve
X of genus g with canonical embedding Xc ⊆ P

g−1 is a point P satisfying one of the
following equivalent conditions:

1. there exists a hyperplane H ⊂ P
g−1 such that H ∩ Xc has multiplicity at least g

at P ,
2. there exists a holomorphic differential on X vanishing at P with order � g,
3. there exists a meromorphic function on X with poles just at P of order � g, and

4. the Wronskian determinant given by Wr(P) = det
(

di ω j

dzi

)

i, j=0,...,g−1
, where

{ω j } is a basis of holomorphic differentials and z is a local coordinate around P ,
vanishes.

In [60] the Weierstrass points are shown (implicitly) to correspond to the edge-
centres of the universal map. This shows that the order 2 rotation that permutes the
vertices and face-centres adjacent to an edge-centre will preserve the corresponding
Weierstrass point. They can also be interpreted geometrically as pairwise-symmetric
distributed along the edges of the small stellated dodecahedron. As Weber identifies
the order-3 symmetry as the rotation about the axis through opposite vertices of the
unstellated dodecahedron, one might wonder from this picture whether Weierstrass
points are fixed points of the order-3 permutations in the group. This turns out not be
the case and a counting argument helps elucidate: the small stellated dodecahedron
has 12 faces, which in turn means we want to have 60/12 = 5 Weierstrass points per
face. Hence where three faces overlap there must be threeWeierstrass points ‘stacked’
there, which are invisibly permuted by the action.

Having now identified the Weierstrass points as some of the geometric points, we
give a concrete result about what the Weierstrass points are.

Proposition 3.3 ([24]) Bring’s curve has 60 Weierstrass points, on which Aut(B) acts
transitively. Letting {α, β, γ } be the roots of the cubic x3 + 2x2 + 3x + 4, these are
given in the P

4-model by Wi jk where, for example,

W345 = [1 : 1 : α : β : γ ].

Proof Edge, working in the P
4-model, identifies the Weierstrass points with the 60

intersections of the curve with the ten planes 	i j = {xi = x j }. To do this, Edge
quotes [67] to show that these intersection points are stalls,14 i.e. inflection points of
certain linear series, and for the canonical embedding these are exactly theWeierstrass
points [2, p. 37]. Simple algebra then gives the exact expression we write down. This
viewpoint makes it clear that the Weierstrass points at the intersection with 	i j are
preserved by the transposition,15 (i j) only, so have orbits of size 120/2 = 60, and

14 A stall of a plane curve is a point where the osculating (hyper)plane has a 4-point intersection [23].
15 In [22, Theorem 4] these transpositions are associated with the Brianchon points of the Clebsch hexagon
H from the proof of Proposition 2.9.

123



3 Page 20 of 46 H.W. Braden, L. Disney-Hogg

as the automorphism restricts to a permutation of the Weierstrass points, the action is
then transitive.

With our naming convention, note Wi jk is defined by xi = α, x j = β, xk = γ . If
we choose a different labelling of the roots of the cubic, this would give a different
labelling of the Weierstrass points. The Weierstrass points split as 60 = 6×10, with
six Weierstrass points being fixed by each of the ten involutions in S5.

The property that the automorphismgroup acts transitively on theWeierstrass points
is very rare, as characterised by the following result.

Theorem 3.4 ([44, Theorem 15]) If X is a Riemann surface of genus g > 2with g3−g
Weierstrass points on which Aut(X) acts transitively then either

• g = 4 and X is Bring’s curve, or
• g = 3 and X is Klein’s curve, or
• g = 3 and Aut(X) ∼= S4.

Remark 3.5 As we have an explicit birational map from our plane model to our canon-
ical embedding of the curve, we can get the explicit forms of the Weierstrass points in
the HC-model using Edge’s identification of the Weierstrass points in the P

4-model.
If one does not have this information, it is still possible to calculate the Weierstrass
points using Sage and some educated guesswork. Using computer algebra, and the
characterisation of Weierstrass points as zeros of the Wronskian determinant, one can
check that in the HC-model the Weierstrass points have base coordinates at the 60
roots of the polynomial equations

0 = x12 − 32x11 − 114x10 − 200x9 + 100x8 + 48x7

− 936x6 + 1728x5 − 2000x4 + 3200x3 − 2624x2 + 768x − 64,

0 = x24 − 24x23 + 1306x22 − 2864x21 + 10096x20 − 32704x19

− 5704x18 − 41824x17 + 43056x16 + 831616x15 + 837856x14

+ 992256x13 + 2603136x12 + 1238016x11 + 1560576x10

+ 5584896x9 + 3357696x8 + 3838976x7 + 5856256x6 + 2543616x5

+ 2200576x4 + 1355776x3 + 454656x2 + 65536x + 4096,

0 = x24 + 56x23 + 1176x22 − 1784x21 − 3904x20 + 36096x19

+ 12776x18 − 211904x17 + 304736x16 + 431616x15 + 339456x14

− 1985664x13 − 625344x12 + 1034496x11 + 3512576x10

− 584704x9 − 3572224x8 − 2018304x7 + 3303936x6 + 3055616x5

+ 1099776x4 + 45056x3 + 229376x2 − 16384x + 4096.

One can check that the Galois group of each polynomial is C4× S3. We have seen that
in the HC-model the automorphisms have coefficients in Z[ζ ], and so we know the
splitting field must be an extension of Q[ζ ], which accounts for the C4 factor in the
Galois group. S3 has a subgroup of order 2, corresponding to an extension of degree-2,

123



Bring’s curve: old and new Page 21 of 46 3

and a brute force calculation shows that we also wish to adjoin i
√
2. This has already

nearly reduced the problem, and then one needs a small moment of inspiration to find
the last thing to adjoin. Looking at [54] then may inspire one to adjoin the real root
of the polynomial x3 + 7x2 + 8x + 4, say ξ , and this gives the full splitting field. We
can solve the cubic explicitly using Cardano’s formula to find

ξ = − 1

3

{
7 +

[
3
√
145 + 30

√
6 + 3

√
145 − 30

√
6

]}
,

and as such we could also take our splitting field to be

Q

[
ζ, i

√
2,

3
√
145 + 30

√
6

]
.

We observe by Cardano’s formula that α, β, γ ∈ Q
[
i
√
2,

3
√
30 + 15

√
6
]
, and this

latter field is isomorphic to Q
[
i
√
2,

3
√
145 + 30

√
6
]
. With these expressions for the

Weierstrass points, and the explicit knowledge of the automorphism group as an action
on affine coordinates, we can find explicitly the transposition that preserves a given
Weierstrass point.

Note that an alternative method for computing Weierstrass points algorithmically
has been implemented in Magma [35].

We now have seen how our Weierstrass points satisfy characterisations 1 and 4 of
Definition 3.2, and we complete the picture with the following result which we believe
new.

Proposition 3.6 Define the points P345, P ′
345 corresponding to the Weierstrass point

W345 (and similarly for the other Weierstrass points) by

P345 = [δ′ : δ : (− 43α2 − 113α − 92)β/112 − (13α2 − 27α − 20)/28 :
(43α2 + 25α − 4)β/112 + (13α2 + 3α − 24)/28 : 1]

P ′
345 = [δ : δ′ : (− 43α2 − 113α − 92)β/112 − (13α2 − 27α − 20)/28 :

(43α2 + 25α − 4)β/112 + (13α2 + 3α − 24)/28 : 1].

Here α, β were defined in Proposition 3.3 and δ, δ′ are the roots of

x2 −
[
(11α + 12)β + 4(3α + 2)

14

]
x +

[
23(155α + 388)β + 92(97α + 172)

6272

]
.

Then there is a holomorphic differential ν345 on Bring’s curve with divisor

4W345 + P345 + P ′
345,

and a meromorphic function on Bring’s curve with divisor

P145 + P ′
145 + P245 + P ′

245 − 4W345.
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Proof Note that algorithmically it is possible to construct these through the work
in [36], the tools for which are partially implemented in Sage but not with enough
generality for us to use out-the-box. As such we need a different approach.

Weknow that for anyWeierstrass pointW there is a hyperplane H ⊂ P
3 intersecting

the canonical embedding with multiplicity g = 4 at W (that is H ∩B = 4W + P + P ′
for some P, P ′ ∈ B). Such a hyperplane gives a holomorphic differential νi jk with
(νi jk) = 4Wi jk + Pi jk + P ′

i jk . From [24] we know that for Bring’s curve the osculating

plane16 at W intersects four times, and so this is the plane we are looking for. As
Edge gives a formula for the osculating plane (attributed to Hesse), we can explicitly
calculate the remaining two intersectionswith the curve in terms of a polynomial roots.
This gives us the first result for the divisor of the meromorphic differential.

Furthermore, from [25] we have a tritangent plane which has intersection with
Bring’s curve

2(W145 + W245 + W345).

We will discuss this plane (and others like it) more in Sect. 5.2, but for now all we
need is that this means there is a holomorphic differential ω

(1)
45α on B with (ω

(1)
45α) =

2(W145 + W245 + W345). As such we get the divisor of the meromorphic function

(
ν145ν245

(ω
(1)
45α)2

)
= P145 + P ′

145 + P245 + P ′
245 − 4W345.

As we can calculate the formula for all these planes explicitly if we wish, we could
(in principle) construct the corresponding function and differential.

Remark 3.7 We are able to verify the results in Proposition 3.6 using the Abel–Jacobi
map implemented in the Sage [17]; see the notebooks.

3.2 Vertices and face-centres

Using [8, Figure 2] we are able to link the Petrie polygon to the R&R model of the
curve, and this gives us a concrete expression for the remaining geometric points.

Proposition 3.8 The face-centres are exactly the points fixed by an order-5 auto-
morphism of the curve. They are given in the P

4-model by the permutations of
[1 : ζ : ζ 2 : ζ 3 : ζ 4]. The corresponding points in the normalisation B of the HC-model
are the desingularizations of Vk, together with a, b, c, d, and

• [− 2ζ 3 − 2ζ 2 : ζ 3 + ζ 2 − 1 : 1] = [√5+ 1 : −√
5/2− 3/2 : 1] = [2 j : j ′ − 2 : 1],

• [− 2ζ 3 − 2 : − 2ζ 3 − ζ − 1 : 1],
• [− 2ζ 2 − 2ζ : − ζ 3 + ζ + 1 : 1],
• [2ζ 3 + 2ζ 2 + 2ζ : ζ 3 + 2ζ 2 + 2ζ + 1 : 1],
• [− 2ζ 2 − 2 : ζ 3 − ζ 2 + ζ : 1],

16 The osculating plane at a point P on a curve is the limiting plane through P, P ′, P ′′ as P ′, P ′′ → P on
the curve [55].
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• [2ζ 3 + 2ζ + 2 : ζ 2 − ζ + 1 : 1],
• [− 2ζ 3 − 2ζ : 2ζ 3 + ζ 2 + ζ + 2 : 1]
• [2ζ 3+2ζ 2+2 : − ζ 3−ζ 2−2 : 1] = [−√

5+1 : √5/2−3/2 : 1] = [2 j ′ : j −2 : 1],
• [2ζ 2 + 2ζ + 2 : − ζ 3 − 2ζ 2 − ζ : 1],
• [− 2ζ − 2 : − ζ 2 − 2ζ − 1 : 1],

where j, j ′ are the roots identified by Dye mentioned in Sect. 2.3.

Proof Certainly the order-5 rotation about a face-centre fixes that centre, and so a
Riemann–Hurwitz counting argument gives us that the 24 face-centres are the fixed
points of order-5 automorphisms. It is a simple matter of computation to verify the
given expressions are fixed; this may be done in Sage.

The Galois group Gal(Q[ζ ]/Q) ∼= C4 acts element-wise on the face-centres and
the orbits partition the set of face-centres into six sets of 4. Each set of four face-centres
form the vertices of a quadrilateral whose edges lie in {H2 = 0} [24]. Moreover, the
faces of the dodecadodecahedron corresponding to the face-centres in each quadrilat-
eral are parallel.

We have a similar result for the vertices.

Proposition 3.9 The vertices are exactly the points fixed by an order-4 auto- mor-
phism of the curve. They are given in the P

4-model by the permutations of
[1 : i : − 1 : − i : 0].

We could use our birational map as above to give the vertices in HC coordinates,
but these are not very illuminating. For example, that vertex [1 : i : − 1 : − i : 0] maps
to

[X : Y : Z ] = [(3ζ 3 − ζ 2 + 2ζ + 1) i + 3ζ 3 + 3ζ 2 + 5 : (2ζ 3 + 2ζ + 1) i

+ 2ζ 3 + 2ζ 2 + 2 : 1]

though [1 : − 1 : i : − i : 0] maps to [1 : (− 1 + i)/2 : (− 1 + i)/2].

4 Quotients by subgroups

Both [54] and [66] consider the quotient ofB by the action of subgroups of S5. In this
section we shall study the various quotients of Bring’s curve of non-zero genus and
the relations between them, both clarifying and extending previous work. In Sect. 4.1
we will use the Riemann–Hurwitz theorem to describe possible quotients. In Sect. 4.2
we shall note the various relationships we expect between the quotients just on group
theoretic grounds, while in Sects. 4.3–4.5 we turn to their explicit construction. In
so doing we discover a number of curious isomorphisms beyond those expected. In
Sect. 4.6 we summarise our calculations and relate them to known isogeny results.
Throughout we will use the following: for any subgroup H of the automorphisms
Aut(C) of a curve C, H � Aut(C), then the normaliser NAut(C)(H) acts on the H -
orbits and NAut(C)(H)/H � Aut(C/H); if g ∈ NAut(C)(H) we will denote by g
the H -coset of NAut(C)(H) containing this. The quotient curves of this section are
summarised in Figs. 3, 4 and 5.
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4.1 Genera of quotients

Our first step is to know the topology of the quotients we are going to find. To this
end, we give the following result.

Proposition 4.1 The data of the quotients of B by subgroups 〈σ 〉 � S5 is summarised
by the following table:

σ Example |cl(σ )| |Fix(σ )| Fixed Points NS5 (〈σ 〉)/〈σ 〉 g(B/〈σ 〉)

(12) – 10 6 Edges S3 1
(123) RS 20 0 – V4 2
(12)(34) R 15 2 Vertices V4 2
(1234) U 30 2 Vertices C2 1
(123)(45) – 20 0 – C2 0
(12345) S 24 4 Face-centres C4 0

Here cl(σ ) is the conjugacy class of σ , Fix(σ ) = {P ∈ B | σ(P) = P}.
Proof As conjugate elements yield isomorphic quotients we need only to give one σ

per conjugacy class. The first three columns follow from the group theory we have
previously shown in Sect. 2.3, the fourth and fifth follow from Sect. 3 and the sixth
is elementary group theory. The final column remaining is then a Riemann–Hurwitz
argument for genus, which will we demonstrate for the quotient by (2345) as in [54].

For general σ , denoting by π the projection B → B/〈σ 〉 ..= C, Riemann–Hurwitz
says

gB − 1 = (degπ)(gC − 1) + 1

2
B,

where B is the degree of ramification of π , which in the case of a quotient by a group
action corresponds to the fixed point structure of σ .

Consider (24)(35). A fixed point of B under this, given by projective coordinates
xi , i = 1, . . . , 5, must have

(x1, x4, x5, x2, x3) = (λx1, λx2, λx3, λx4, λx5).

From this we can see λ = ±1. Taking λ = 1 gives no solutions, but taking λ = −1
one finds the equations

x1 = 0, x21 + 2x22 + 2x23 = 0, x31 = 0,

which gives the two fixed points [0 : 1 : ± i : − 1 : ∓ i]. Hence we have

4 − 1 = 2(gC − 1) + 1

2
(1 + 1) ⇒ gC = 2.
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Moving now to (2345), thinking about the possible branching structure we get from
Riemann–Hurwitz

3 = 4(gC − 1) + 1

2

[ ∑

P∈Fix(σ )

3 +
∑

P∈Fix(σ 2)\Fix(σ )

1

]
.

Fixed points of (2345) will correspond to points such that

(x1, x3, x4, x5, x2) = (λx1, λx2, λx3, λx4, λx5),

and we get the constraint λ4 = 1. The equations of the curve become

x1 + x2(1 + λ + λ2 + λ3) = 0,

x21 + x22 (1 + λ2 + 1 + λ2) = 0,

x31 + x32(1 + λ3 + λ2 + λ) = 0,

and checking the possible cases one finds that the only fixed points of (2345) are
[0 : 1 : ± i : − 1 : ∓ i]. These are also the only fixed points of (24)(35) = (2345)2 and
so the second sum vanishes, hence we find gC = 1.

R&R [54] provides a nice visual interpretation of the quotient by a 4-cycle, namely
think of a sphere with four handles attached around an equator, then (2345) is the
cycle rotating these handles to each other by a quarter turn about the axis through the
centre of the equator. The fixed points are then where this axis intersects the sphere.
Edge [24], citing Wiman, says that Bring’s curve “is, in ten different ways, in (2, 1)
correspondence with a plane curve of genus 1". The ten (2, 1) correspondences noted
by Edge are exactly the ten quotients by a transposition giving a 2 : 1 map B → E,
where E is an elliptic curve. Such a map is called a bielliptic structure, and Bring’s
curve is the unique genus 4 curve to have ten such structures [12]. This table also lets
us reconstruct the results about the gonality of Bring’s curve from [31].

4.2 Relations between quotients

We now consider the various relationships we might expect between the quotient
curves of Bring’s curve. Recall (again from Riemann–Hurwitz) that if C is a curve
of genus g � 2 and H � Aut(C) is such that |H | > 4(g − 1), a so called ‘large
automorphism group’, then the genus of the quotient curve gC/H = 0. For Bring’s
curve we are therefore interested in subgroups of S5 of order less than or equal to
12, and as we have seen the quotient by a 5-cycle leads to genus 0 we may exclude
subgroups containing such. The relevant conjugacy classes of subgroups are then17

(a) 〈(12)(34)〉 ∼= C2, 〈(12), (34)〉 ∼= V4, 〈(1324)〉 ∼= C4, 〈(1324), (12)〉 ∼= D8. Each
of these groups H has the same normaliser: NS5(H) = 〈(1324), (12)〉 ∼= D8.

17 Note that here we are using the GAP convention for the dihedral group that |Dn | = n. This is the
opposite convention to Sage which uses |Dn | = 2n.
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(b) 〈(12)〉 ∼= C2, 〈(345)〉 ∼= C3, 〈(345), (12)〉 ∼= C6, 〈(345), (34)〉 ∼= S3,
〈(345), (12)(34)〉 ∼= S′

3, 〈(345), (12), (34)〉 ∼= D12 ∼= S3×C2. Each of these
groups H has the same normaliser: NS5(H) = 〈(345), (12), (34)〉 ∼= D12.

(c) 〈(12)(34), (13)(24)〉 ∼= V4, 〈(234), (12)(34)〉 ∼= A4. Each of these groups H has
the same normaliser: NS5(〈(234), (12)(34)〉) = 〈(234), (12), (34)〉 ∼= S4.

The groupings here are such that if H , H ′ are from the same item then they share
the same normaliser N = NS5(H) = NS5(H ′). In particular each of H , H ′ and
H H ′ = H ′H are normal in N and we have commutativity of the following diagram
of quotients:

B B/H

B/H B/H H

H

H
H H

H H /H

H H /H

where the arrows are labelled by the symmetry being quotiented; by an isomorphism
theoremwe have of course that H H ′/H ∼= H ′/(H ∩ H ′) and H H ′/H ′ ∼= H/(H ∩ H ′).
If, say H � H ′, then H H ′ = H ′ and one side of this diagram collapses.

Now a Riemann–Hurwitz calculation shows that the each of the quotients by
〈(12), (34)〉, 〈(1324), (12)〉, 〈(345), (34)〉 and 〈(345), (12), (34)〉 is of genus 0 and
so not being considered. Thus from the preceding discussion we have the following
relations amongst quotients for the subgroups of (a), (b) and (c):

B

C E

(a)

(12)(34)
(1324)

B E′

E′′ C′ E′′′

(b)

(12)

(345)
S′
3 C6

(345)

(12)(12)(34)

B

C E(iv) E(v)

(c)

V4
(12)(34) A4

(234)

HereC,C′ are genus 2 curves andE, . . . ,E(v) elliptic curves that we cannot yet specify
purely on group theoretic grounds. We turn now to their specification and indeed we
shall find some interesting identities between them, which will then be summarised in
Sect. 4.6.

4.3 Quotients by a 4- and 2,2-cycle

Armed with the knowledge of the genus of the quotients we expect we shall now write
them explicitly. We will begin with the 2,2-cycle corresponding toU 2 with the 4-cycle
U arising in the discussion. Recall that we have
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U 2 : [X : Y : Z ] → [X : Z : Y ], ψ(U 2) = (12)(34).

The normaliser of 〈(12)(34)〉 in S5 is NS5(〈(12)(34)〉) = 〈(12), (1324)〉 ∼= D8. As
we remarked earlier, NS5(〈(12)(34)〉)/〈(12)(34)〉 ∼= V4 are symmetries which remain
when we go to the quotient B/〈U 2〉 and we expect the quotient genus 2 curve to
have (at least) this V4 symmetry group. One of these involutions, which we will later
see to be (12) = (34),18 is the hyperelliptic involution of the quotient curve and so
further quotienting by this symmetry givesP

1. Quotienting by the other two involutions
will yield elliptic curves, and we will complete this construction now, both from the
perspective of the HC-model, and the P

4-model.
Starting in the HC-model, in order to get the first quotient B/〈U 2〉 we express our

curve in terms of the invariants of U 2: X , T ..= Y + Z , and V ..= Y Z . Then

0 = X(Y 5 + Z5) + (XY Z)2 − X4Y Z − 2(Y Z)3

= X(T 5 − 5T 3V + 5T V 2) + X2V 2 − X4V − 2V 3.

In P
1,1,2 this is our genus 4 curve. Setting19 T = 1 and viewing

0 = X(1 − 5V + 5V 2) + X2V 2 − X4V − 2V 3

as the affine part of a projective curve we have (after a not-very-illuminating transfor-
mation, for which Maple was used) the hyperelliptic curve

C1 : B2 = A6 + 4A5 + 10A3 + 4A + 1. (11)

This is the genus 2 curve of [54] with automorphism group V4. Calculating the Igusa–
Clebsch invariants (which give the Q-isomorphism class of a curve) and searching the
LMFDB [63] shows that this is a model for the modular curve X0(50), which we ver-
ifying by directly calculating a model for X0(50) over Q using [58]. The substitutions
A = (2 + A′)/(2 − A′), B = 4B ′/(2 − A′)3 make the V4 symmetry clearer, giving

(B ′)2 + [(A′)6 − 5(A′)4 − 40(A′)2 − 80] = 0,

where we have the hyperelliptic involution B ′ → −B ′ and the map A′ → −A′
generating V4. We shall now be explicit about how these work.

As previously mentioned, quotienting C1 by either of the two non-hyperelliptic
involutions yields an elliptic curve, with each involution having two fixed points from
Riemann–Hurwitz. Quotienting by (B ′, A′) → (B ′,−A′) by introducing A′′ = −(A′)2
yields

18 The 〈(12)(34)〉 cosets of the normaliser are {e, (12)(34)}, {(12), (34)}, {(13)(24), (14)(23))}, and
{(1324), (1423)}.
19 Equally one may set X = 1 but we note that setting V = 1 yields a genus 4 curve as here V is not of
weight 1.
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E1 : (B ′)2 = (A′′)3 − 5(A′′)2 − 40(A′′) − 80

with j-invariant jE1 = − 5×293

25
= j(τ0).

(12)

The fixed points are (A′, B ′) = (0,±√−80), corresponding to the two points
(X , V ) = ([1 ± √

5]/2,− 1 ± √
5/2), which are the images of the four vertices

[1 : ± i : ∓ i : − 1 : 0] and [1 : ± i : − 1 ∓ i : 0] respectively, depending on sign. We
recognise E1 to be the elliptic curve E1 in [54].

We may also quotient C1 by (B ′, A′) → (−B ′,−A′). To do this write C1 as

(B ′)2C4 + [(A′)6 − 5(A′)4C2 − 40(A′)2C4 − 80C6] = 0,

from where we see the same automorphism acts as C → −C . Quotienting by this
action by introducing C ′ = −C2 yields

(B ′)2(C ′)2 = (A′)6 − 5(A′)4(C ′) − 40(A′)2(C ′)2 − 80(C ′)3.

Setting A′ = 1 and taking B ′′ = B ′C ′ gives the standard elliptic form

E2 : (B ′′)2 = 1 − 5(C ′) − 40(C ′)2 − 80(C ′)3, jE2 = − 25

2
= j(5τ0). (13)

The fixed point of this involution is [B ′ : A′ : C] = [1 : 0 : 0]; this is a singular point
where the desingularization corresponds to the two points at infinity, or correspond-
ingly (X , V ) = (∓ i/2 − 1/2, 1/4), which are the images of the two vertices
[1 : − 1 : ± i : ∓ i : 0]. We recognise E2 to be E2 in [54].20

Next let us quotient the P
4-model directly by the action of (12)(34) and compare

with these quotients just obtained from the HC-model. To this end we introduce semi-
invariants of the action of (1324) = ψ(U ), defined by

(s1, s2, s3, s4)
T =

⎛

⎜⎜⎝

1 1 1 1
1 −1 i −i
1 1 −1 −1
1 −1 −i i

⎞

⎟⎟⎠ (x1, x2, x3, x4)
T.

These are constructed such that U ·s j = i j−1s j , and so we have U 2-invariants [s :
t : u : v] ..= [s1 : s2s4 : s3 : s24 ] ∈ P

1,2,1,2.21 In terms of these invariants we have

H2 = 1

4

(
5s2 + u2 + 2t

)
,

20 There is a typo in the constant term of R&R’s E2 if it is to have the stated j-invariant.
21 Note one could have instead taken v = s22 for the last invariant, but the choice above happens to be
better around the vertices that are the fixed points of the 4-cycle. Moreover, recognise that the invariants
taken are defined over the field extension Q[i] and not Q.
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H3 = 3

16

(
− 5s3 + su2 + t2u

v
+ 2st + uv

)
.

Eliminating t from these equations, and setting s = 1, we can use Maple to get the
genus 2 curve in Weierstrass form

C1 : y2 = 100 − 25x2 − 10x4 − x6 (14)

where x = u and y = − 10 + 2uv. The roots of the sextic here are a Möbius
transform of the curve C1 previously given (namely x 
→ √

20/x), so these curves are
the same over Q[√5]. Note the reason we see Q[√5] here is that it is the degree-2
subfield of Q[ζ ], the field required to have equivalence of the Hulek–Craig and P

4-
models of Bring’s curve. We now aim to identify the V4 of this curve described earlier
with the quotient of the normaliser 〈(12), (1324)〉/〈(12)(34)〉. One can check that
(12) : [s : t : u : v] → [s : t : u : t2/v]. This fixes x , and so must be the automorphism
y → −y; that is (12) = (34) is the hyperelliptic involution of C1. Indeed one can
check

y = − 10 + 2uv 
→ − 10 + 2
t2u

v

= − 10 − 2
(

− 5 + u2 + 2t + uv
)

= − 10 − 2
(

− 10 + uv + (5 + u2 + 2t)
)

= 10 − 2uv = −y.

Likewise, (1324) : [s : t : u : v] → [s : t : − u : − v], and so leads to the automorphism
(x, y) → (−x, y). Now if x = x2, the elliptic curve y2 = 100−25x−10x2−x3 has j-
invariant −25/2 and so we may identify E2 ∼= B/〈(12)(34), (1324)〉 = B/〈(1324)〉.
Similarly (13)(24) : [s : t : u : v] → [s : t : − u : − t2/v] leads to (x, y) → (−x,−y)

and we may identify E1 ∼= B/〈(12)(34), (13)(24)〉. Note when we compare with
[54], we differ from R&R in the identification of which quotient is being taken and
their ascribing of τ0 and 5τ0. Our results agree with those of [66], wherein the author
describes an order-4 rotation (which he calls φ, but we shall call Ũ ), and calculates
the quotient by its action T = B/〈Ũ 〉 to be

T : y2 = 4x3 − 75x − 1475, jT = − 25

2
= j(5τ0).

Note that our strategy of semi-invariants can be used directly to calculate the quotient
by the 4-cycle (1324), something we were unable to do in the HC-model because of
the non-linearity of the automorphism U . To do so introduce new variables invariant
under (1324) (and so necessarily under (12)(34)) given by u′ = uv, v′ = v2. These let
us rewrite the defining equations of Bring’s curve as

H2 = 1

4

(
5s2 + (u′)2

v′ + 2t

)
,
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H3 = 3

16

(
− 5s3 + s(u′)2

v′ + t2u′

v′ + 2st + u′
)

,

and we can apply Maple to find a Weierstrass form of the resulting elliptic curve. This
is exactly the process of quotienting by (x, y) 
→ (−x,−y) as above, but in a different
language.

Furthermore, from our previous investigation using group theory, we know that the
quotient B/V4, where this V4 is the one containing only 2,2-cycles, can further be
quotiented by (234) to giveB/A4. Rather than attempt to construct this quotient using
the invariants previously calculated on the 2,2-quotient, we step back and recall that
the invariant ring Q[x1, . . . , xn]An is generated by the symmetric polynomials sk =∑n

i=1 xk
i for k = 1, . . . , n and theVandermonde polynomialV =∏1�i< j�n(x j −xi ).

As generators of the invariant algebra we know that there must be a relation between
V 2 and the other generators as V 2 is an Sn-invariant, and the Sn-invariant algebra is
generated by the sk . Taking n = 4 in the case of Bring’s curve, the relations imposed
from the curve are s2 + s21 = 0 = s3 − s31 , and this gives for the additional relation,

4s34 − 373

16
s41s24 + 431

8
s81s4 − 701

16
s121 + V 2 = 0. (15)

Setting s1 = 1 (as we may do at all points on the quotient except those points coming
from the vertices on Bring’s curve) we see this is clearly an elliptic curve E3 with
hyperelliptic involution V → −V , and for which we can calculate the j-invariant to
be 2113×5/215 = j(3τ0).22 Further quotienting by the hyperelliptic involution then
corresponds to the quotient B/S4, which is P

1 as expected, being the quotient by a
large automorphism group.

4.4 Quotients by a 3-cycle

We may utilise the same methods illustrated above for the 2,2-cycles to calculate
the quotient of Bring’s curve by a 3-cycle. We will work with the 3-cycle (345)
for purely aesthetic reasons. Now the normaliser of 〈(345)〉 in S5 is NS5(〈345〉) =
〈(12), (34), (345)〉 ∼= D12 andwe expect the quotient genus 2 curveB/〈(345)〉 to have
D12/C3 ∼= V4 symmetry group. Again one of these involutions, whichwewill later see
to be (34),23 is the hyperelliptic involution on the curve and so further quotienting by
this symmetry gives P

1. Quotienting by the other two involutions again yields elliptic
curves we shall now describe. As the quotients of both the HC-model and P

4-model
via semi-invariants proceed analogously we shall present here only the P

4-model
calculations.

22 This is the curve 15-isogenous to E2 noted by Serre, see Sect. 2.2.
23 The cosets of 〈(345)〉 in the normaliser are now {e, (345), (354)}, {(12), (12)(345), (12)(354)},
{(34), (45), (35))}, and {(12)(34), (12)(45), (12)(35))}.
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Letting ρ be a primitive cube-root, we take semi-invariants of the action of (345)

(s1, s2, s3, s4)
T =

⎛

⎜⎜⎝

1 0 0 0
0 1 1 1
0 1 ρ ρ2

0 1 ρ2 ρ

⎞

⎟⎟⎠ (x2, x3, x4, x5)
T.

We correspondingly take invariants [s : t : u : v] = [s1 : s2 : s3s4 : s33 ] ∈ P
1,1,2,3.24 In

terms of these variables we have

H2 = 2

3

(
3s2 + 3st + 2t2 + u

)
,

H3 = 1

9

(
− 27s2t − 27st2 − 8t3 + v + 6tu + u3

v

)
.

Eliminating u from these and setting s = 1, we can use Maple to get the genus 2 curve
in Weierstrass form

C2 : y2 = 108
(
4 + 12x + 95x2 + 170x3 + 155x4 + 72x5 + 16x6

)
(16)

where x = t and y = − 90t − 90t2 − 40t3 + 4v. Examining the roots of the sextic
confirms that C2 is a genuinely distinct genus 2 curve from C1. Indeed, this curve
does not currently exist in the LMFDB,25 but one can check that over Q[√5] it is
isomorphic to the curve 2500.a.400000.1 given by y2 = −7x6−8x5+10x3−8x −7.
Moreover, introducing x ′, y′ by x = −2/(1 + x ′), y = y′/(1 + x ′)3, yields

(y′)2 = 432
[
(x ′)6 + 80(x ′)4 + 125(x ′)2 + 50

]
.

This makes the V4 symmetry evident, being generated by x ′ → −x ′ and y′ → −y′.
The elliptic curve obtained from quotienting by the action x ′ → −x ′ is

E4 : (y′)2 = 432
[
(x ′′)3 + 80(x ′′)2 + 125x ′′ + 50

]
,

jE4 = − 52×2413

23
= j(15τ0).

(17)

To our knowledge this elliptic curve has not been previously noted in discussions of
Bring’s curve. The elliptic curve obtained from quotienting by the action (x ′, y′) →
(−x ′,−y′) is the previously seen

E1 : (y′′)2 = 432
[
1 + 80z′ + 125(z′)2 + 50(z′)3

]
, jE1 = − 5×293

25
= j(τ0).

We now wish to identify the quotient 〈(12), (34), (345)〉/〈(345)〉 ∼= V4 with the V4
just described. It requires a little effort to see (12) : [s : t : u : v] → [−s − t : t : u : v],
24 Note in this case that the invariant v is not defined over Q, but over the cyclotomic extension Q[ρ].
25 This is to be expected, as it does not satisfy the conditions to be included in curves investigated in [7].
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which corresponds to x ′ → −x ′, and that (34) : [s : t : u : v] → [s : t : u : u3/v], which
fixes x ′ and so must be the map y′ → −y′. This means that the remaining involution
(x ′, y′) → (−x ′,−y′) comes from the group element (12)(34). As such we identify
E4 ∼= B/〈(12), (345)〉, and we have a curious isomorphism, namely

B/〈(12)(34), (345)〉 ∼= B/〈(12)(34), (13)(24)〉 ∼= E1

corresponding to
B C2

C1 E1

(345)

(12)(34) (12)(34)

(13)(24)

.

As before we can also consider distinguished points on the quotients coming from
fixed points. Whereas (345) has no fixed points when acting on B each involution
on C2 that gives a quotient to an elliptic curve has two fixed points. The fixed points
of (12) are the orbits under (345) of the six fixed points of (12) that are Weierstrass
points. The fixed points of (12)(34) are the orbits under (345) of the 3×2 fixed points
of (12)(34), (12)(45), and (12)(35) that are vertices.

4.5 Quotients by a transposition

The strategy of quotienting from theP
4-model using semi-invariants from the previous

sections can also be used to calculate the quotient of Bring’s curve by a transposition.
We take semi-invariants

(s1, s2, s3, s4)
T =

⎛

⎜⎜⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞

⎟⎟⎠ (x1, x2, x3, x4)
T,

and in terms of these variables the defining equations of Bring’s curve become

H2 = 1

2
(s21 + s22 ) + s23 + s24 + (s1 + s3 + s4)

2,

H3 = 1

4
(s31 + 3s1s22 ) + s33 + s34 − (s1 + s3 + s4)

3.

Taking invariants [s : t : u : v] = [s1 : s22 : s3 : s4] and eliminating t yields the elliptic
curve

E2 : 4s3 + 8s2u + 7su2 + u3 + sv2 − uv2 = 0, jE2 = − 25

2
= j(5τ0). (18)

We observe that (also curiously) the quotient of B by a transposition is isomorphic to
the quotient by a 4-cycle. It is not clear that there is any a priori reason for this to be
the case. We are however able to relate the elliptic curves E2 and E4 as follows.
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The normaliser of 〈(12)〉 in S5 is NS5(〈(12)〉) = 〈(12), (34), (345)〉 ∼= D12 where
now NS5(〈(12)〉)/〈(12)〉 ∼= S3.26 We may immediately identify the action of (34) as
the hyperelliptic involution on E2 as it acts as v → −v, but we also retain another
group action, that of (345). To understand this action recall that there are six fixed
points of the action of (12) on B, which are all Weierstrass points. This gives six
more distinguished points on the curve E2 in addition to the two images of the vertices
we have seen previously. The six Weierstrass points fixed by (12) break into two
orbits of three under (345) which we denote by {Hi }, {H ′

i }, i = 1, 2, 3. Just as (345)
gives Bring’s curve as an unramified cover of the genus 2 curve C2, quotienting each
by a transposition has (345) yielding an unramified automorphism of the quotient
curves. Hence there exists a quotient from E2 = B/〈(12)〉 to another elliptic curve
E4 = B/〈(12), (345)〉 such that the following diagram commutes:

B C2

E2 E4

(345)

(12) (12)

(345)

To view this action on the elliptic curve E2, we calculate that (345) : [s : t : u : v] →
[s : t : − s − u/2 − v/2 : s + 3u/2 − v/2]. In the s = 1 affine chart 4 + 8u + 7u2 +
u3 + (1 − u)v2 = 0 we can take as a cohomology basis

η ..= du

2v(1 − u)
,

and it is a simple algebraic calculation to see that this differential is invariant under
the action of (345). If {Hi }, {H ′

i } are the images of the Weierstrass points on E2 such
that (345)(Hi ) = Hi+1, (345)(Hi ) = Hi+1 and so forth, the invariance of η tells us
that

∫ H2

H1

η =
∫ H3

H2

η = · · · ,

∫ H ′
2

H ′
1

η =
∫ H ′

3

H ′
2

η = · · · ,

∫ H ′
1

H1

η =
∫ H ′

2

H2

η = · · ·

Thismeans that if� = 〈1, 5τ0〉 is the period lattice of the elliptic curveE2 then
∫ Hi+1

Hi
η

and
∫ H ′

i+1

H ′
i

η are the same fixed element of �/3. By choosing an appropriate basis we

may take (345) : z → z +1/3 for z ∈ C/〈1, 5τ0〉. Then the quotient map will be a 3 : 1
isogeny of elliptic curves and we have the period of E4 to be 15τ0 and jE4 = j(15τ0).
Under this isogeny the six images on E2 of the Weierstrass points [1 : 1 : α :β : γ ]
are mapped to two on E4. Indeed, one may construct the isogeny explicitly using the
Weierstrass-℘ function and the Abel–Jacobi map via the diagram

26 The cosets of 〈(12)〉 in the normaliser are {e, (12)}, {(345), (12)(345)}, {(354), (12)(354)},
{(34), (12)(34)}, {(35), (12)(35)}, and {(45), (12)(45)}.
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E2 E4

J (E2) J (E4)

P 
→∫ P
∞ η

z 
→3z

z 
→(℘ (z),℘′(z))

where J (E) represents the Jacobian of the elliptic curve viewed at C/〈1, τ 〉.

Remark 4.2 This calculation may be verified numerically, as shown in the notebooks.

Remark 4.3 Note that when we call (345) an automorphism of the elliptic curve, we
have to think about it only in the category of projective varieties with morphisms given
by rational maps. To consider the group structure on an elliptic curve E we need to
also give a base point O ∈ E which acts as the additive identity. A morphism from
pair (E, O) → (E ′, O ′)must map O → O ′. If we denote the group of automorphisms
of E as a projective variety as Aut(E), and the group of O-fixing automorphisms as
AutO(E), then we have short exact sequence

0 → TE → Aut(E) → AutO(E) → 0,

where TE is the group of translations of E . It is a classical theorem that AutO(E) ∈
{C2, C4, C6} (here we are over C).

Here (345) is indeed a translation. To see this take variables x, y defined by

u = − 70s3 + 6sx

2(25s2 + 3x)
, v = − 3y

25s2 + 3x
,

which in the affine patchwhere s = 1giveE2 as the curve x3−25/3x+2950/27+y2 =
0. In these coordinates (345) acts as

x 
→ 5(275 − 3x + 15y)

3(65 + 15x − 3y)
, y 
→ 20(55 − 15x − 3y)

(65 + 15x − 3y)
.

Indeed for the projective coordinates [X : Y : Z ] of our curve X3 − 25/3X Z2 +
2950/27Z3 + Y 2Z = 0 we have under (345) that

[X : Y : Z ] 
→ [
5(275Z/3 − X + 5Y ) : 20 (55Z − 15X − 3Y ) : 65Z + 15X − 3Y

]


→ [
275Z/3 − X − 5Y : − 220Z + 60X − 12Y : 13Z + 3X + (3Y )/5

]


→ [X : Y : Z ].

When working with a Weierstrass model of an elliptic curve it is standard to take the
distinguished point to be ∞ = [0 : 1 : 0] and we see in terms of (x, y) that ∞ 
→
(−25/3, 20) 
→ (−25/3,−20) 
→ ∞.
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4.6 Summarising

We can collect the information of the quotients we have seen into Fig. 3. Solid arrows
represent a covering map coming from a quotient, whereas ‘squiggly’ arrows indicate
isomorphisms that are unexplained by group theory alone.

This corresponds to the quotients by the following groups in Fig. 4, where an arrow
now indicates that a source group is normal in the target, whereas a dashed line just
indicates that a group is a subgroup. The label used corresponds to the list in Sect. 4.2,
except where that label is ambiguous and the exact group must be specified.

Finally, we recall from a Riemann–Hurwitz argument that each elliptic curve that
comes from a quotient a genus 2 curve with V4 symmetry has twomarked points which
are the branch points of the covering map, equivalently the images of the fixed points
of the involution being quotiented by. We have shown that the preimages of these
on Bring’s curve are geometric points. In Fig. 5 we illustrate the quotient structure
highlighting these points. (We do not decorate the curve B/A4 ∼= E3τ0 , but include it
so as to show every quotient with genus greater than 0.) Note the nodes of this diagram
do not correspond directly to the placements of those above.

With the information of the quotients, we can now discuss the isogeny class and
isomorphism class of the Jacobian of Bring’s curve with the following results.

B

E5τ0 C2 C1

E15τ0 P
1

P
1 Eτ0 Eτ0 E5τ0

P
1

P
1 E3τ0

P
1

Fig. 3 Quotient structure of Bring’s curve

{e}

〈(12)〉 C3 〈(12)(34)〉

C6 S3 〈(12), (34)〉 S′
3 〈(12)(34), (13)(24)〉 C4

D12 D8 A4

S4

Fig. 4 Subgroup structure of S5 corresponding to the quotients of Bring’s curve
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6× , 4⊗, 2 , 4�

6× 2× , 2 2 , 2�

2× 2 2� 2

Fig. 5 Quotient structure including marked points. The points × correspond to the Weierstrass points
[1 : 1 :α :β : γ ] (and permutations of α, β, γ ), the points ⊗ to the vertices [1 : − 1 : 0 : ± i : ∓ i] and
[1 : − 1 : ± i : 0 : ∓ i], the points � to the vertices [1 : − 1 : ± i : ∓ i : 0], and the points � correspond to
the vertices [1 : ± i : ∓ i : − 1 : 0] and [1 : ± i : − 1 : ∓ i : 0]

Proposition 4.4 ([54, Section 4], [66, Corollary 5.5]) The C-isogeny class of the Jaco-
bian of Bring’s curve is E4

3.

Proof. Aswewill later want to strengthen this result, wewill usemethods which relate
subvarieties of the Jacobian to idempotents, and thus to subgroups of the automorphism
group. Namely we will use [45, Section 4.2], which gives the isogeny decomposition
in terms of Prym varieties of the Jacobian of a curve with A5 action. Note, because of
comments made before, Bring’s curve is the unique genus 4 curve for which we could
apply this argument. The result follows as, using the notation of Lange, X A4 = E3,
X D5 = X Z5 = Y = P

1.
This proof also follows from [45, Proposition 5.1], which uses only the action of

S4 on the curve. Moreover, one could use [41, Theorem C] taking the subgroups to be
〈(12)〉, 〈(34)〉, C4 and A4. Alternatively, using the isomorphism A5 ∼= PSL2(F5) and
[41, Example 2] one can find JacB ∼ JacC1× JacC2 and proceed from there. These
proof strategies all follow the same approach of looking for idempotents.

Onemay also obtain the result following the samemethod as R&R.We use that fact
that isogenies act on the period matrix by right multiplication bymatrices R ∈ M4(Z),
and so we have the required isogeny by taking λ = 1 in the identity

(
λ−1 Id

) (
1 τ M

) (λ Id 0
0 M ′

)
=
(
Id

5

λ
τ Id

)
,

where

M ′ ..= 5M−1 =

⎛

⎜⎜⎝

2 −1 1 −1
−1 2 −1 1
1 −1 2 −1

−1 1 −1 2

⎞

⎟⎟⎠ .
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Note that we are able to construct the quotient B/A4 directly from the P
4-model

using transformations with coefficients inQ, and the resulting curve is defined overQ,
so by [41, Remark 6] the above proposition can be strengthened to a statement about
the Q-isogeny class of the Jacobian of Bring’s curve. Calculating using Sage we find
that the Q-isogeny class of B/A4 is 50a using the Cremona labels for elliptic curve
Q-isogeny classes. Hence the following result holds.

Proposition 4.5 ([57, Example 8.3.2 (b)]) The Q-isogeny class of the Jacobian of the
P
4-model of Bring’s curve is (50a)4.

Note in the above proposition we had to be careful to specify the Jacobian of theP
4-

model of Bring’s curve, as we have seen that HC-model is not birationally equivalent
over a field that does not contain Q[ζ ]. The Q-isogeny class of the elliptic curve
B/〈(12)(34), (13)(24)〉 calculated via the HC-model is 50b. Similarly, the Q-isogeny
class of the two elliptic curves covered by C2 is 450b, and the computation of the
quotient required the coefficient field to be Q[ρ]. In order to not have a contradiction
with Proposition 4.5, we must have that theQ-isogeny classes 50b and 50a merge over
Q[√5], and that the isogeny classes 450b and 50a merge over Q[ρ], which is indeed
the case.27

One could use computational tools such as those in [7, 47]28 to numerically find
the Q-isogeny class of the Jacobian of the HC-model of Bring’s curve, as we did
in the notebooks. Such computational results using idempotents can be helpful for
developing our understanding, for example one can use computer algebra to search
for relations between the characters IndS5

H (1H ), that is the characters of S5 induced from
the trivial representation of H � S5. Doing so gives relations between subvarieties of
the Jacobian of Bring’s curve following [41, Theorem 3], for example

J〈(12)〉 × J〈(12)(34),(13)(24)〉 ∼ J〈(12)(34)〉 × J〈(12),(34)〉,
J〈(12)(34),(13)(24)〉 × JS3 ∼ J〈(12),(34)〉 × JS′

3
.

(19)

Using Riemann–Hurwitz arguments these would let us say that B/〈(12)〉 ∼ B/C4
and B/〈(12)(34), (13)(24)〉 ∼ B/S′

3 without having to do any calculation, entirely
from group theory. The reason why these isogenies are actually isomorphisms is not
clear.

Proposition 4.4 can also be strengthened in a different direction.

Proposition 4.6 ([29]) The Jacobian of Bring’s curve is isomorphic as a complex torus
to E3

2×E1.

Proof The proof in [29] is very general, considering Jacobians whose period matrix
is invariant under Sn for any n. The isomorphism from the period matrix given in [54]
is

C
(
1 τ M

) (D 0
0 E

)
= (1, τ diag(5, 5, 5, 1)

)

27 The isogeny classes 450b and 50b merge over Q[√−15].
28 To make the reconstruction process of Lombardo more accessible, we recreated in Sage some of the
functions implemented by Lombardo in Magma.
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where

C =

⎛

⎜⎜⎝

−1 1 −1 2
1 0 0 1
0 −1 0 1
0 0 0 1

⎞

⎟⎟⎠ , D =

⎛

⎜⎜⎝

0 1 0 −1
0 0 −1 1

−1 −1 −1 4
0 0 0 1

⎞

⎟⎟⎠ ,

E =

⎛

⎜⎜⎝

−1 1 0 0
1 0 −1 0

−2 −1 −1 1
1 0 0 0

⎞

⎟⎟⎠ .

Note it would not be possible that the Jacobian is isomorphic to the product of the
elliptic curves as a principally polarised abelian variety, as it is well known that the
Jacobian of any smooth compact Riemann surface with canonical principal polarisa-
tion is irreducible. In particular this means the matrix

(
D 0
0 E

)
of the proposition is not

symplectic.

5 Theta characteristics

We now investigate the theta characteristics of Bring’s curve, which in [3] were shown
to be equivalent to spin structures, and as such we will use the terms interchangeably.
These are objects which have been studied greatly in a variety of contexts in algebraic
geometry, number theory, and even string theory, though in this paper we will not
discuss these applications and focus on calculation. Among other results we shall
identify the unique invariant spin structure of Bring’s curve.

For completeness we recall the main definition that we shall use in this paper.

Definition 5.1 A theta characteristic is a half-canonical divisor class, i.e. a divisor
class [D] such that 2[D] = [KB].
Lemma 5.2 Call a theta characteristic odd/even based on the parity of its index of
speciality. Then on a Riemann surface of genus g there are 2g−1(2g − 1) odd theta
characteristics and 2g−1(2g + 1) even theta characteristics.

There are many equivalent definitions of parity for a theta characteristic, and while
the above is not computationally the easiest, it is one of the easier to state. The paper
[26] provides a nice overview of these and their connections.

Example 5.3 It is a computational exercise to verifyKB ∼ (−xv3v4
v2

) = 2(3a +b −c),
and so � = 3a + b − c is a theta characteristic on Bring’s curve. A simple calculation
in Sage shows that it is even.

5.1 Abel–Jacobi and the Riemann constant vector

We will now take a detour to lay out some notation and definitions in preparation for
later.
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Definition 5.4 TheAbel–Jacobi map on aRiemann surfaceCwith basis of differentials
{ω j }, based at Q ∈ C, is given by

(AQ(P)) j =
∫ P

Q
ω j .

This is well defined up to periods on the curve. Letting τ be the Riemann matrix of C,
the Riemann Constant Vector (RCV) based at Q is given by

(K Q) j = − 1 + τ j j

2
+

g∑

k �= j

∮

ak

ωk(P)(AQ(P)) j .

The RCV is related to the canonical divisor by 2K Q ≡ AQ(KC). Indeed, [16]
shows how to find K Q from this relation given the theta function. We then have the
following theorem about the divisor of the Szegő kernel �S , defined in [28].

Theorem 5.5 ([28]) K Q = AQ(�S), and as such �S is a theta characteristic.

The definition of the RCV also requires that the differentials are normalised with
respect to the homology basis taken {a j , b j } such that

∮
a j

ωi = δi j . As such hidden
in the above result is the fact that the Szegő kernel divisor is homology dependent,
because the RCV is.

5.2 Tritangent planes and odd characteristics

Recall that when we consider the canonical embedding of a curve in P
g−1, the inter-

section with a hyperplane gives an effective element of the canonical divisor class of
the curve, as it corresponds to the zero-locus of a differential on the curve. A tritangent
plane is a plane that intersects the curve tangentially in three points. If a hyperplane
is tangent at each intersection (i.e. the intersection is of order 2) then this naturally
constructs an effective theta divisor on the curve, and moreover every such theta char-
acteristic θ gives a hyperplane [13]. For any sextic that is the intersection of a smooth
quadric and smooth quartic in P

3, for example Bring’s curve, the 120 tritangent planes
are in 1− 1 correspondence with the 120 odd theta characteristics [32, Theorem 2.2].

On Bring’s curve we have the following result about these planes.

Proposition 5.6 ([25]) The 120 tritangent planes on Bring’s curve split into two
classes, 60 in each class;

(i) those where all three contact points are Weierstrass points, and
(ii) those where only one contact points is a Weierstrass point.

Planes in the first and second class respectively have equations (recalling notation
from Sect. 3.1)

	
(1)
α jk

..=
{

x j

β
− xk

γ
= 0

}
,
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(2)
i jk

..= {(α − 1)(α + 4) xi + (β − 1)(β + 4) x j + (γ − 1)(γ + 4) xk = 0
}
,

where [xi ] ∈ P
4 and i, j, k distinct.

To clarify the notation we have used for the planes, recall that the position of the
indices on Weierstrass points Wi jk indicates which root was equal to xi . The same

principle holds for 	
(1)
α jk,	

(1)
iβk, and 	

(1)
i jγ .

Corollary 5.7 The orbit decomposition of odd theta characteristics on Bring’s curve
is

120 = 20 + 20 + 20 + 60. (20)

Proof The characteristics coming from the tritangent planes are

T (1)
α jk =

5∑

i=1
i �= j,k

Wi jk,

T (2)
i jk = Wi jk + O+

i jk + O−
i jk .

Here we define the points O±
i jk by, for example,

O±
345 =

[
1 ± i

√
15

2
: 1 ∓ i

√
15

2
: α2 + α + 1, β2 + β + 1, γ 2 + γ + 1

]
.

A simple orbit-stabiliser argument then gives the orbit decomposition as, for example,
T (1)

α45 is stabilised by the symmetric group S{1,2,3} and T (2)
345 is stabilised by S{1,2}.

Remark 5.8 While we were able to proceed analytically here characterising the orbits
of the odd characteristics using the work of earlier authors who had identified the
tritangent planes of the curve we also may obtain the orbit structure numerically using
Sage. Given a homology representation of the automorphism group, the algorithm to
compute the orbits is exact, but the current implementation in Sage requires floating
point arithmetic to calculate this representation.

5.3 Even characteristics

In the previous subsection, we were able to fully characterise the odd theta character-
istics on Bring’s curve without too much difficulty through the use of existing work
giving the stalls of the canonical embedding. The story for even characteristics is dif-
ferent, as the line bundle corresponding to a generic even theta characteristic has no
sections, which is an obstacle to their study [62]. In [19] the authors were able to use
the Scorza correspondence to calculate the orbit decomposition of even spin structures
on Klein’s curve, but at the time of writing the theory of the Scorza map has not been
developed far enough to cover Bring’s curve. The Scorza quartic necessary to extend
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Dolgachev and Kanev’s work beyond g = 3, wherein it becomes a codimension-1
hypersurface in P

g−1, has been proven to exist for a generic even spin curve (that is
a pair consisting of a curve and an even theta characteristic on it); it has only been
explicitly found for trigonal curves in g = 4 [62]. In [11], motivated by its realisation
via an elliptic modular surface, Burns identified a theta characteristic on Bring’s curve
invariant under the A5 subgroup of the automorphism group, though he described this
characteristic only in terms of two line bundles on the curve, not directly in terms of
points on the curve. We shall now fully classify the orbits of the even characteristics
and give an explicit description of Burns’ divisor in the process.

We have two distinct methods of probing the orbit decomposition of the theta
characteristics on Bring’s curve.

• Use the method of [40], wherein theta characteristics are identified with vectors
in F

2g
2 , and the action of automorphisms given by the homology representation of

the automorphism group of the curve as found using the methods of [10].
• Identify theta characteristics with the 22g translates by half-lattice vectors of a
half-canonical vector in the Jacobian of the curve, done using the implementation
of the Abel–Jacobi map developed by Disney-Hogg [17], and the action of auto-
morphisms given by the cohomology representation of the automorphism group
of the curve as found using the methods of [10].

The two methods have different strengths, namely that the first uses exact computa-
tions rather than approximations with multi-precision arithmetic, but the second can
concretely relate theta characteristics from their representation to an actual divisor
(class). Both methods not only verify Corollary 5.7 but also gives the following result.

Theorem 5.9 The orbit decomposition of even theta characteristics on Bring’s curve
is

136 = 1 + 5 + 5 + 5 + 10 + 10 + 10 + 30 + 30 + 30. (21)

Corollary 5.10 Bring’s curve has a unique theta characteristic invariant under the
action of the automorphism group, which is also the theta characteristic invariant
under the A5 subgroup found in [11].

The existence of the unique invariant theta characteristic was known in [8], but it
had not been identified. This we rectify with the following result.

Theorem 5.11 The theta characteristic � (defined in Example5.3) is the unique invari-
ant theta characteristic in on Bring’s curve.

Proof We first consider the action of S on a, b, c, d. We have

a ..= [0 : 0 : 1] � [2t3 : t : 1] S−→ [2t3 : ζ t : ζ−1] = [2ζ t3 : ζ 2t : 1]
= [2(ζ 2t)3 : ζ 2t : 1] = [2ε3 : ε : 1],

b ..= [0 : 1 : 0] � [2t2 : 1/t : 1] S−→ [2t2 : ζ/t : ζ−1] = [2ζ t2 : ζ 2/t : 1]
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= [2(t/ζ 2)2 : ζ 2/t : 1],
c ..= [1 : 0 : 0]2 � [1 : t : t4] S−→ [1 : ζ t : ζ−1t4] = [1 : ζ t : (ζ t)4],
d ..= [1 : 0 : 0]1 � [1 : t4 : t] S−→ [1 : ζ t4 : ζ−1t] = [1 : (ζ−1t)4 : ζ−1t].

Thus a, b, c and d are invariant under the symmetry S and consequently� = 3a+b−c
is also invariant.

Similarly, as mentioned in Proposition 2.13, the action of U on a, b, c, d can be
calculated as

a 
→ c 
→ b 
→ d 
→ a,

and so

� = 3a + b − c 
→ 3c + d − b = 3a + b − c − (3a + 2b − 4c − d)

= � − (x) ∼ �.

We have thus shown that � is invariant under 〈S, U 〉. To complete the proof that � is
the invariant theta characteristic, one could attempt to show that � is invariant under
the action of R by direct computation, but this proves to be difficult. It is instead better
to check in Sage that the unique spin structure invariant under thewhole automorphism
group is actually also the unique spin structure invariant under the subgroup generated
by S and U . In fact, by [40, Theorem 1.2] and our work in Sect. 4, we know there is a
unique theta characteristic invariant under 〈S〉,29 and this completes the proof.

This proof strategy is similar to the identification of the unique invariant theta
characteristic on Klein’s curve in [40].30

We now want to make the connection to [11]. Recall (3) and (4). This gives us
two degree-3 maps fi : B → P

1, namely fi = πi ◦ϕ−1|B, i = 1, 2, where ϕ was
the isomorphism P

1× P
1 → Q, and πi the projection to the two factors of P

1×P
1.

What are the corresponding divisors? Working in the La coordinates, we can use
Sage to find that f −1

1 ([1 : 0]) = 2 [0 : 0 : 0 : 1] + [1 : 0 : 0 : 0] = 2b + c ..= L ′, while
f −1
2 ([1 : 0]) = 2 [0 : 1 : 0 : 0] + [0 : 0 : 0 : 1] = 2d + b ..= L .

Proposition 5.12 The divisors L, L ′ satisfy the properties described in [11], namely

� ∼ 3(L ′ − L) + L, KB ∼ L + L ′, 0 ∼ 5(L ′ − L).

Proof This is straightforward verification from the definitions.

29 Under the action of S, the orbit decompositions are 120 = 24×5 and 136 = 1 + 27×5.
30 The final part of the proof in that paper, showing invariance under the order-2 generator of PSL2(F7),
is in our opinion incomplete; Kallel (private correspondence) believes our reasoning correct. The theorem
remains correct nevertheless, as one can check using their methodology that invariance under the order-7
generator is enough to specify the unique invariant spin structure, as the decompositions are 28 = 4×7
and 36 = 1+ 5×7. It is a curious coincidence that in both cases it was a generator of order 2 for which the
direct calculation was difficult.
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Note we can connect this back to the degree-3 map given by Klein. We know from
[66] that we expect this map to be branched at face-centres of the {5, 5 | 3} tessellation,
and these come from face-centres of the {5, 4}6 tessellation, and indeed recall we saw
that a, b, c, d were face-centres.

An additional characterisation of the invariant theta characteristic is given by the
following result.

Proposition 5.13 In the homology basis of [54], the RCV satisfies

Ka = 1

10
(3, 2,−2,−3) + Im(τ0)(1,−2,−2, 1) i = Aa(�).

As such, in the R&R homology basis, the unique invariant theta characteristic is the
divisor (class) of the Szegő kernel, i.e. � = �S.

Proof The first equality is shown analytically in [8]. The second is shown numerically
in the corresponding notebooks, using the Abel–Jacobi map developed by Disney-
Hogg [17]. To verify the RCV, we implemented the methodology of [16] using the
theta function in Sage developed by Bruin and Ganjian [9]. While these calculations
are numerical in nature, the calculations can be done with arbitrary binary precision.
Wewere satisfied by calculating with 400 binary digits of precision, giving an absolute
error of less than 10−118 for the first equality, and of less than 10−23 for the second
equality.

6 Conclusion

We have now seen that Bring’s curve has many interesting properties and appears in
a number of quite different settings; with this background now established we can
summarise the main new results of the paper. We have:

(a) Constructed an explicit birationalmap between theHC- andP
4-model of the curve,

Proposition 2.9.
(b) Constructed an explicit transform (6) between the period matrix of Weber and that

of R&R.
(c) Provided a complete realisation of the automorphism group of the curve in the

HC-model (Propositions 2.12 and 2.13) and the canonical model (9), (10).
(d) Unified the functional, algebraic and geometric pictures of the distinguished orbits

on the curve (those of size 24, 30, and 60) by explicitly identifying these points
(Propositions 3.3, 3.8, 3.9) and identifying the divisors of the holomorphic differen-
tials and meromorphic functions associated to the Weierstrass points (Proposition
3.6).

(e) Completed the classification of, and relations between, the quotients of Bring’s
curve (Figs. 3 and 4), finding a previously unidentified elliptic curve in the process
(15).We identify one of the known quotient curves with themodular curve X0(50).

(f) Proven in a new way the Q-isogeny class of the Jacobian (Proposition 4.5) and
established a number of isogenies between (products of) the various Prym varieties
associated with the quotients (19).
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(g) Computed the orbit decomposition of both the odd and even theta characteristics
on the curve (20), (21) and determined the unique invariant theta characteristic
(Proposition 5.11) identifying this with the Szegő divisor (Proposition 5.13) and
a divisor identified by Burns (Proposition 5.12).

At various points we have corrected the literature.
In addition to our written account there are the accompanying notebooks. Through-

out we have provided examples of how modern computational tools can simplify
calculation and provide insight to aid discovery. The notebooks utilise SageMath,
Maple, and Macaulay2 (all interfaced through Sage) and the code may be easily mod-
ified for other curves.

Finally we would draw attention to two areas that (for us) merit attention. First are
the isomorphisms in Fig. 3we have been unable to explainwithin the quotient structure
of the curve. Perhaps this is something that the modular theory of the Bring’s curve
can shed light on. The second area deals with the orbit decompositions of the theta
characteristics. In the case of even characteristics our construction was purely numeric
and not analytic: a solution to this likely involves extending the theory of the Scorza
quartic. Further, for both even and odd characteristics, there is a “threeness"we observe
that we have found no satisfying reason for. We look forward to the clarification of
these.
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