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Abstract
Weprove that an element from the Chevalley group of type E6 or E7 over a polynomial
ring with coefficients in a small-dimensional ring can be reduced to an element of
certain proper subsystem subgroup by a bounded number of elementary root elements.
The bound is given explicitly. This result is an effective version of the early stabilisation
of the corresponding K1-functor. We also give a part of the proof of similar hypothesis
for E8.
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1 Introduction

This paper deals with the bounded reduction in exceptional Chevalley groups over
polynomial rings.

Chevalley groups over certain rings have bounded width with respect to the ele-
mentary generators. For example this holds for Dedekind domains of arithmetic type,
see [6, 7, 9, 10, 24, 29, 30, 50, 51]. Results on such bounded generation are of great
value, for example they are connected to the congruence subgroup property, see [26,
31]; to the Margulis–Zimmer conjecture, see [38]; and have applications in studying
strong boundedness, see [52–56]. However bounded generation occurs very rarely in
the sense that classes of rings for which it is known to hold are pretty narrow. Never-
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theless, for some applications it is enough to have a weaker result such as: bounded
length of conjugates of elementary generators (see [47]), bounded length of commuta-
tors (see [17, 39, 46]), or bounded generation with respect to a larger set of generators.
Bounded reduction is a variation of the last property.

A given Chevalley group G over a given ring is said to have bounded reduction if
any element of G can be decomposed as a product of bounded number of elementary
generators and one (not necessarily elementary) element from a certain subsystem
subgroup. In other words, it means that one can reduce any element to the subsystem
subgroup by bounded number of elementary transformations. Without requirement
for the number of elementary transformations to be bounded this property is called
the surjective stability of the K1-functor. In papers [15, 32–34, 43, 44] this problem is
considered for rings that satisfy certain conditions on stable rank, absolute stable rank,
or other similar conditions. Actually, from the proofs of the theorems in these papers
one can recover the bound on the required number of elementary transformations,
despite the fact that this bound is not stated in papers explicitly. Therefore, these are
results on bounded reduction.

However, conditions on stable rank are still very strong.Even though small Jacobson
dimension implies small stable rank, rings with large Jacobson dimension usually fail
to have small stable rank. In the present paper, we consider another important class
of rings. Namely we take a polynomial ring in arbitrary number of variables with
coefficients in a small-dimensional ring. Here we use Krull dimension because the
techniques require for dimension to behave well with respect to adding an independent
variable.

Without the bound on the number of elementary transformations similar result for
classical groups is known as early surjective stability of the K1-functor. For the special
linear group this was proved by Suslin in [48]. Similar result for the orthogonal group
follows from [49], and for the symplectic group it is proven in [20], see also [14, 21].
Note that if the ring of coefficient is a Dedekind domain or a smooth algebra over a
field, then this result for all Chevalley groups follows from the homotopy invariance
of the non-stable K1-functor, see [1, 41, 42].

In the case of special linear and symplectic groups, there are similar results for
Laurent polynomial rings, see [22, 23].

In the paper [58], Vaserstein obtained the effective version of the Suslin result,
i.e. he proved the bounded reduction for the special linear group over a polynomial
ring, and gave this bound explicitly. From this result he deduced that the elementary
subgroup of the general linear group over an arbitrary finitely generated commutative
ring has Kazhdan’s property (T).

In [36], the basic connection between bounded generation and property (T) has
been established and used to estimate the Kazhdan Constants for SLn(Z). Later the
bounds for these constants were improved in [19]. In order to deduce property (T)
from the Vaserstein result one needs to refer to [37].

In fact, property (T) for Chevalley groups and groups similar to them has already
been studied by other methods, see [11, 12]. However, we believe that the bounded
reduction has an independent value, andwe aim to study this question for other Cheval-
ley groups. It was noted in the concluding remarks of [58] that the bounded reduction
for the symplectic group follows formally from the case of special linear group. In
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[16] the bounded reduction for orthogonal groups was established, therefore, closing
the problem for classical groups.

In the present paper we deal with exceptional groups. We prove bounded reduction
for the groups of types E6 and E7; and we give part of the proof for the group E8.

The main result of the present paper is the following theorem.

Theorem 1.1 Let C be a commutative Noetherian ring and dimC = D. Let A =
C[x1, . . . , xn]. Let � � � be one of the following embeddings of root systems:

(a) D5 � E6;
(b) E6 � E7.

Assume that

D �
{
3 for D5 � E6,

4 for E6 � E7.

For the case E6 � E7 assume additionally that C is a Jacobson ring.
Then every element of the group G(�, A) can be reduced to the subgroup G(�, A)

by multiplication from the left by N elementary root elements, where

N =
{
36n2 + (72D + 80)n + 92 for D5 � E6,

52n2 + (104D + 249)n + 244 for E6 � E7.

Therefore, this theorem is an extension of [16, 58] to the groups of types E6 and E7.
The paper is organised as follows. In Sect. 2, we give all necessary preliminaries

and introduce basic notation. In Sect. 3, we recall the notion of an absolute flexible
stable rank introduced in [16]. In Sects. 4, 5, 6, and 7 we give the proof of the main
result.

2 Preliminaries and notation

2.1 Rings, ideals and dimensions

By a ring we always mean associative and commutative ring with unity.
If R is a ring, then by R∗ we denote the set of invertible elements in R. For the

elements r1, . . . , rk ∈ R, we denote by 〈r1, . . . , rk〉 the ideal in R generated by these
elements.

In the present paper we use three different notions of a ring dimension.

• By dim R we denote Krull dimension of the ring R. That is the supremum of the
lengths of all chains of prime ideals.

• By Jdim R = dimMax(R) we denote the dimension of the maximal spectrum
Max(R) of the ring R. It is equal to the supremum of the lengths of all chains of
such prime ideals that coincide with its Jacobson radical.
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• By BSdim R we denote the Bass–Serre dimension of a ring R. That is the mini-
mal δ such that Max(R) is a finite union of irreducible Noetherian subspaces of
dimension not greater than δ.

Obviously, for a Noetherian ring R we have

BSdim R � Jdim R � dim R.

The following property of Bass–Serre dimension is well known; see [2, Lemma
4.17].

Lemma 2.1 Let R be a ring with BSdim R = d < ∞. Then it has a finite col-
lection P1, . . . , Pm of maximal ideals such that for any s ∈ R \ ⋃

i Pi we have
BSdim R/(s) < d. In case where d = 0, this means that s ∈ R∗.

2.2 Chevalley groups

Let � be a reduced irreducible root system, let G(�,−), be a simply connected
Chevalley–Demazure group scheme over Z of type � (see [8]), and let T (�,−), be a
split maximal torus in it. If R is a commutative ring with unit, the group G(�, R) is
called the simply connected Chevalley group of type � over R.

For a subset X of a group we denote by 〈X〉 the subgroup generated by X .
To each root α ∈ � there correspond root unipotent elements xα(ξ), ξ ∈ R,

elementary with respect to T . The group generated by all these elements

E(�, R) = 〈xα(ξ) : α ∈ �, ξ ∈ R〉 � G(�, R)

is called the elementary subgroup of G(�, R). For any N ∈ N we denote by
E(�, R)�N the subset of E(�, R) consisting of elements that can be expressed as the
product of no more than N elementary root elements.

Any inclusion of root systems � ⊆ � induces the homomorphisms G(�, R) →
G(�, R), and E(�, R) → E(�, R) taking elementary root elements to elementary
root elements.

ByU = U (�, R)wedenote the subgroup of E(�, R) generated by elementary root
elements with positive roots, i.e. the unipotent radical of the standard Borel subgroup.

2.3 Basic representations and weight diagrams

Let us fix an order on �, and let �+,�− and � = {α1, . . . , αl} be the sets of positive,
negative, and fundamental roots, respectively. Our numbering of the fundamental roots
follows that of [5, 35]. By �1, . . . ,�l one denotes the corresponding fundamental
weights. Let W = W (�) be the Weyl group of the root system �.

Recall that an irreducible representation π of the complex semisimple Lie algebra
L is called basic (see [28]) if the Weyl group W = W (�) acts transitively on the
set 
∗(π) of nonzero weights of the representation π . The set of all weights of the
representation π we denote by 
(π).
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In case, where zero is not a weight of the basic representationπ , such representation
is calledmicroweight orminuscule representation, and the list of these representations
is classically known (see [4]).

Let L be a simple Lie algebra of type �. To each complex representation π of the
algebra L there corresponds a representation π of the Chevalley group G = G(�, R)

on the free R-module Vπ = Vπ (R) = Vπ (Z)⊗Z R (see [28, 45]). If π is faithful,
then we can identify G with its image under this representation. Thus, for g ∈ G and
v ∈ V we write gv for the action of g on v.

Decompose the module V = Vπ into the direct sum of its weight submodules

V = V 0⊕
⊕

λ∈
∗(π)

V λ.

Here all the modules V λ, λ ∈ 
∗(π), are one-dimensional. Matsumoto [28,
Lemma 2.3] has shown that there is a special base of weight vectors eλ ∈ V λ,
λ ∈ 
∗(π), v0α ∈ V 0, α ∈ �(π) = � ∩ 
∗(π) such that the action of root unipotents
xα(ξ), α ∈ �, ξ ∈ R, is described by the following simple formulas:

i. if λ ∈ 
∗(π), λ + α /∈ 
(π), then xα(ξ)eλ = eλ,
ii. if λ, λ + α ∈ 
∗(π), then xα(ξ)eλ = eλ ± ξeλ+α ,
iii. if α /∈ 
∗(π), then xα(ξ)v0 = v0, for any v0 ∈ V 0,
iv. if α ∈ 
∗(π), then xα(ξ)v−α = v−α ± ξv0(α) ± ξ2vα ,

xα(ξ)v0 = v0 ± ξα∗(v0)vα .

Weight diagram of the representation π is a graph whose vertices correspond to the
elements of 
∗(π) � �(π); and whose edges labeled by the numbers of fundamental
roots show the action of the corresponding elementary root elements on the weight
basis. These diagrams serve as a great visual aid for calculations in Chevalley groups.
The details of how to construct and operate with weight diagrams can be found in [35]
(see also [34, 43, 59]).

For a fundamental weight � , we may consider the basic representation with the
highest weight � . For simplicity, we call it the representation � .

Recall that in the present paper we study bounded reduction for the following
embedding of root systems: D5 � E6, E6 � E7, and E7 � E8. We denote by � the
bigger system, and by� the smaller one. For the rest of the paper we fix the following
representation � of the group G(�, R):

(a) � = �1 for D5 � E6;
(b) � = �7 for E6 � E7;
(c) � = �8 for E7 � E8.

By λ1, . . . , λdim� we denote the weights of this representation with multiplicities,
where numbering of weights for (E6,�1) and (E7,�7) follows that of [15] and [34].
We do not need to fix a numbering for (E8,�8), but we agree that the highest weight
has number 1, and the lowest weight has number −1.

By e1, . . . , edim� we denote the corresponding weight basis. Thus λ1 is the highest
weight and e1 is the highest weight vector. For b ∈ V� we denote by bi or bλi the
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corresponding coordinate of b in the basis e1, . . . , edim� . We will identify b with the
column vector with entries bi .

By V� = V� (R) we denote the underlying module of the representation � .
By Um� R we denote the set of unimodular vectors in V� (R), i.e., the set of such
vectors b ∈ V� (R) that the elements bi generate the unit ideal in R. By Eq� we
denote the set of equations that determine the orbit of the highest weight vector of the
representation � (see [25, 59]). By Orb� R we denote the set of vectors from V� (R)

that satisfy the equations from Eq� . Further set Um′
� R = Um� R ∩ Orb� R; and

Um′′
� R = G(�, R)e1.
Let �1 � � be the set roots that have positive coefficient in simple root αi , i = 1

for E6 and i = 7 for E7, and i = 8 for E8. Therefore, � ∪ �1 is a parabolic set of
roots with � being the symmetric part, and �1 being the special part. Let U1 be the
unipotent radical of the corresponding parabolic subgroup, and U−

1 be the unipotent
radical of the opposite parabolic subgroup.

The following lemmas can be derived from the proof of the Chevalley–Matsumoto
decomposition theorem (see [8, 28, 43]).

Lemma 2.2 Let b ∈ Um′R be such that b1 = 1. Then there exists u ∈ U−
1 such that

b = ue1.

Lemma 2.3 Let g ∈ G(�, R) be such that (ge1)1 = 1. Then

g ∈ U−
1 ·G(�, R) ·U1 = U−

1 U1G(�, R).

We also need the following lemma.

Lemma 2.4 If the ring R is semilocal, then Um′R = Um′′R.

Proof Let b ∈ Um′R. By Lemma 2.2, it is enough to prove that there exists g ∈
G(�, R) such that (gb)1 is invertible (we may then make it 1 by a toric element). Let
J be the Jacobson radical of the ring R. The reduction map E(�, R) → E(�, R/J )

is surjective; hence it is enough to find g ∈ E(�, R/J ) such that (gb)1 is invertible
in R/J , where b is the reduction of b (in fact, we have G = E for both R and R/J ).
So we may assume that J = 0, so R is a product of fields. Moreover, we can look for
such g separately for each factor, so we may assume that R is a field. If b has at least
one nonzero entry in a position that corresponds to a nonzero weight, then we can take
g to be the element of the extended Weyl group that shifts this weight to the highest
weight. That concludes the proof for E6,�1 and E7,�7 because these representations
are minuscule. It remains to consider the case for E8,�8, where b ∈ V 0. It follows
easily from the fact that the lattice E8 is self-dual that we have xαi (1)b /∈ V 0 for at
least one simple root αi ; so the problem is reduced to the previous case. ��

2.4 Branching tables

From theweight diagram it is immediate to read off the branching of the corresponding
representationwith respect to a subsystem subgroup. In the casewhere� = 〈�\{αh}〉
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is the symmetric part of the maximal parabolic subset obtained by dropping the h-
th fundamental root the procedure is particularly easy. Then the restriction of π to
G(�, R) looks as follows: one has to cut the diagram of π through the bonds with the
label h.

Given a representation π of the group G(�, R) and two fundamental roots αh1 ,
αh2 ∈ �, by “branching table, where vertical lines correspond to cutting through the
bonds marked with h1, and horizontal lines correspond to cutting through the bonds
marked with h2”, wemean the table build as follows: at the upper right corner wewrite
the representation π ; at the remaining cells of the upper row we write the components
of restriction of π to the group G(〈�\{αh1}〉,−); at the remaining cells of the left
column we write the components of restriction of π to the group G(〈�\{αh2}〉,−);
and in all the remaining cellswewrite the intersection of the corresponding restrictions.
When this intersection is zero we leave the cell blank; and when the intersection or
a component is one-dimensional, we denote it by ◦, which refers to the node of the
weight diagram. The columns of the table, except the left one, are denoted by bold
letters, and the rows except the upper one, are denoted by bold numbers.

Here is the example: the branching table for (E6,�1), where vertical lines corre-
spond to cutting through the bonds marked with 1, and horizontal lines correspond to
cutting through the bonds marked with 6.

a b c
E6,�1 ◦ D5, �5 D5, �1

1) D5, �1 ◦ D4, �1 ◦
2) D5, �5 D4, �4 D4, �3
3) ◦ ◦

2.5 ASR-condition

Recall that a commutative ring R satisfies the absolute stable rank condition ASRd if
for any row (b1, . . . , bd)with coordinates in R, there exist elements c1, . . . , cd−1 ∈ R
such that everymaximal ideal of R containing the ideal 〈b1+c1bd , . . . , bd−1+cd−1bd〉
contains already the ideal 〈b1, . . . , bd〉. This notion was introduced in [13] and used
in [43, 44] and then in [15, 32–34] to study stability problems.

If we assume that a row (b1, . . . , bd) is unimodular, then the absolute stable rank
condition boils down to the usual stable rank condition SRd (see [3, 57]).

Absolute stable rank satisfies the usual properties, namely for every ideal I � R
the condition ASRd for R implies ASRd for the quotient R/I , and if d � d ′, then
ASRd ′ implies ASRd . Finally, it is well known that if the maximal spectrum of R is a
Noetherian space of dimension Jdim R = d − 2, then both conditions ASRd and SRd

are satisfied (see [13, 27, 43]).
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3 Absolute flexible stable rank

In this section, we recall the definition and the basic properties of absolute flexible
stable rank introduced in [16]. Here is the definition.

Definition 3.1 A commutative ring A satisfies the absolute flexible stable rank condi-
tion AFSRd if for any row (b1, . . . , bd) with coordinates in A, there exists an element
c1 ∈ A such that for any invertible element ε1 ∈ A∗, there exists c2 ∈ A such that for
any ε2 ∈ A∗, . . ., there exists cd−1 ∈ A such that for any εd−1 ∈ A∗, every maximal
ideal of A containing the ideal 〈b1+ε1c1bd , . . . , bd−1+εd−1cd−1bd〉 contains already
the ideal 〈b1, . . . , bd〉.

One can think of it as follows. Two players are playing a game. Player 1 chooses
a row (b1, . . . , bd) with coordinates in A. Then they take turns starting with Player
2. Player 2 in his i-th turn chooses an element ci ∈ A; after that Player 1 in his turn
chooses an invertible element εi ∈ A∗. Player 2 wins if after d turns every maximal
ideal of A containing the ideal 〈b1+ε1c1bd , . . . , bd−1+εd−1cd−1bd〉 contains already
the ideal 〈b1, . . . , bd〉. A commutative ring A satisfies the absolute flexible stable rank
condition AFSRd if Player 2 has a winning strategy.

The following lemma shows that the condition AFSRd holds for small-dimensional
rings. That generalises the result of [13].

Lemma 3.2 ([16, Lemma 3.2]) Let A be a commutative ring. Assume thatMax(A) is
Noetherian and Jdim A � d − 2. Then A satisfies AFSRd .

Now the following lemma shows how one can use the AFSR condition.

Lemma 3.3 ([16, Lemma 3.3]) Let A be a commutative ring, and S be a multiplica-
tive system in A. Assume that the localisation A[S−1] satisfies AFSRd . Then for
any row (b1, . . . , bd) with coordinates in A[S−1] and for any s ∈ S, there exist
c1, . . . , cd−1 ∈ s A such that every maximal ideal of A[S−1] containing the ideal
〈b1 + c1bd , . . . , bd−1 + cd−1bd〉 contains already the ideal 〈b1, . . . , bd〉.

4 Reduction of Theorem 1.1 to Propositions 4.2, 4.3 and 4.4

In this section, we divide the proof of Theorem 1.1 into three steps. One of the steps,
namely Proposition 4.4, will be formulated and then proved also for the case E7 � E8,
so that if proofs of Propositions 4.2 and 4.3 are found for this case, it will finish the
proof of bounded reduction for Chevalley groups of type E .

Recall that byU1 wedenote theunipotent radical that corresponds to the set�1 � �,
which is the special part of the parabolic subset of roots � ∪ �1.

Note that

|�1| =
{
16 for D5 � E6,

27 for E6 � E7.

Therefore, Theorem 1.1 follows trivially from the following result and Lemma 2.3.
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Theorem 4.1 Under the condition of Theorem 1.1, for every column b ∈ Um′
� A there

exists a column

b′ ∈ E(�, A)�Nb,

where

N =
{
36n2 + (72D + 80)n + 60 for D5 � E6,

52n2 + (104D + 249)n + 190 for E6 � E7,

such that b′
1 = 1.

Consider the lexicographic order on the monomials in variables x1, . . . , xn . That is
the order where xk11 . . . xknn is bigger than xl11 . . . xlnn if for some m we have ki = li for
i < m, and km > lm . A polynomial in A = C[x1, . . . , xn] is called lexicographically
monic if its leading coefficient in lexicographic order is equal to one.

Further we reduce Theorem 4.1 to the following three propositions.

Proposition 4.2 Under the condition of Theorem 1.1, assuming n = 0 (i.e. A = C),
for every column b ∈ Um′

� A there exists a column

b′ ∈ E(�, A)�Nb,

where

N =
{
60 for D5 � E6,

190 for E6 � E7,

such that b′
1 = 1.

Proposition 4.3 Let j be a number of a vertex on a weight diagram of the represen-
tation � . Under the condition of Theorem 1.1, for every column b ∈ Um′

� A there
exists a column

b′ ∈ E(�, A)�Nb,

where

N =
{
116 for D5 � E6,

301 for E6 � E7,

such that its entry b′
j is lexicographically monic.

We state and prove the third proposition also for the case E7 � E8.
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Proposition 4.4 Let B be a commutative ring such that BSdim B = d < ∞. Let
A = B[y], b ∈ Um′

� A be such that its entry b j is monic, where j = 24 for E6,
j = −1 for E7 and E8. Then

E(�, A)�Nb ∩ Um� (B) �= ∅,

where

N =

⎧⎪⎨
⎪⎩
72d for D5 � E6,

104d for E6 � E7,

291d for E7 � E8.

First we need the following lemma.

Lemma 4.5 Let f ∈ C[x1, . . . , xn] be a lexicographically monic polynomial. Then
there exists an invertible change of variables

x1, . . . , xn ↔ y1, . . . , yn,

such that f becomes monic in yn.

Proof Take K > deg f . Set xi = yi + yK
n−i

n , i = 1, . . . , n − 1, and xn = yn . ��
Nowwe deduce Theorem 4.1 from Propositions 4.2, 4.3 and 4.4. Take b ∈ Um′

� A.
By Proposition 4.3 there exists a column

b′ ∈ E(�, A)�N ′
1b,

where

N ′
1 =

{
116 for D5 � E6,

301 for E6 � E7,

such that its entry b′
j is lexicographically monic, where j is as in Proposition 4.4.

Applying Lemma 4.5, we change variables to y1,. . .,yn so that b′
j is now monic in

yn . Now we apply Proposition 4.4 to B = C[y1, . . . , yn−1]. Note that BSdim B �
dim B = D + n − 1. Hence we can obtain a column from

E(�, A)�N ′′
1 b′ ∩ Um� B � E(�, A)�N1b ∩ Um� B,

where

N ′′
1 =

{
72(D + n − 1) for D5 � E6,

104(D + n − 1) for E6 � E7,

and N1 = N ′
1 + N ′′

1 .
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Repeating this argument n times we can obtain a column from

E(�, A)�Nnb ∩ Um� C ,

where

Nn =
{
72n(2D + n − 1)/2 + 116n for D5 � E6,

104n(2D + n − 1)/2 + 301n for E6 � E7.

Now Proposition 4.2 implies that there exists

b′′ ∈ E(�, A)�Nb,

where

N =
{
72n(2D + n − 1)/2 + 116n + 60 for D5 � E6,

104n(2D + n − 1)/2 + 301n + 190 for E6 � E7,

such that b′′
1 = 1.

5 Bounded reduction for low-dimensional rings

In this section, we prove Proposition 4.2. Note that the case E6 easily follows from
the proof of [15, Lemma 2]. Similarly, the proof for the case for the case E7 can
be obtained from the proof of the main theorem in [34]. In order to do so, we must
estimate how many elementary root elements it takes to apply [34, Lemma 2]. That
proof starts with picking an element e ∈ E(E6, R) such that (ae)λ1 ≡ 1 mod u and
(ae)λi ≡ 0 mod u for i �= 1. Note that it is enough to require (ae)λ1 to be invertible
modulo u and not necessarily congruent to 1. Therefore, the element e can be taken
from XU1 where

X = {
x−δE6

(ξ1) x−δA5
(ξ2) x−δD5(6) (ξ3) x−α1(ξ4)x−δD5(1) (ξ5) x−α2−α3−α4(ξ6)

x−α2(ξ7) x−α3(ξ8)x−α4(ξ9) x−α5(ξ10) x−α6(ξ11) : ξi ∈ R
}
,

where δE6 is the maximal root of the system E6; δA5 is the maximal root of the
system generated by α1, α3, α4, α5 and α6; δD5(6) is the maximal root of the system
generated by α1, α2, α3, α4 and α5; δD5(1) is the maximal root of the system generated
by α2, α3, α4, α5 and α6.

The next step in the proof uses the element e1 ∈ U1, hence ee1 ∈ XU1 �
E�27(E6, R). Now it is easy to count that the proof of Lemma 2 takes 67 elementary
root elements, and the whole proof of the main theorem in [34] takes 190 elementary
root elements.
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6 Obtaining amonic polynomial

In this section, we give the proof of Proposition 4.3. First we need some preparation.
The following lemma was proved in [16].

Lemma 6.1 ([16, Lemma 5.2]) Let C be a Noetherian ring, A = C[x1, . . . , xn]. Let
S be a multiplicative system of lexicographically monic polynomials in A. Then we
have dim A[S−1] � dimC.

Now we recall a definition from [58].

Definition 6.2 Let A be an associative ring with 1, s be a central element of A, l � 2,
v ∈ Al−1 (a column over A), u ∈ l−1A (a row over A). We define an l by l matrix
over A by

μ(u, s, v) =
(
1l−1 + vsu vs2

−uvu 1 − uvs

)
.

This matrix is invertible with μ(u, s, v)−1 = μ(u, s,−v). If s ∈ A∗, then

μ(u, s, v) =
(
1l−1 0
−u/s 1

) (
1l−1 vs2

0 1

) (
1l−1 0
u/s 1

)
.

The following lemma was proved in [58].

Lemma 6.3 ([58, Lemma 2.2])When l � 3, the matrixμ(u, s, v) is a product of 7l−3
elementary transvections in GL(l, R).

Now let S be a multiplicative system of lexicographically monic polynomials in A.
It follows from Lemmas 6.1 and 3.2 that the ring A[S−1] satisfies AFSR5 for the case
E6 resp. AFSR6 for the case E7, and so does any quotient of A[S−1].
Lemma 6.4 Let l � 3, let I be an ideal in A, and suppose that dimMaxA/I[S−1] �
l − 2. Let b ∈ VDl ,�1 A be such that it becomes unimodular in A/I[S−1]. Then there
exists a column

b′ ∈ E(Dl , A)�11l−7b,

such that b′
1 is congruent to a lexicographically monic polynomial modulo I.

Proof We perform the following steps (Fig. 1).

Step 1. Make the row (b2, . . . , b−1) unimodular in A/I[S−1] by l − 1 elementary
elements.

Let A = I + 〈b−l , . . . , b−1〉 � A[S−1]. Since A[S−1]/A satisfies AFSRl and the
row (b1, . . . , bl) is unimodular in A[S−1]/A, it follows from Lemma 3.3 that there
exist c2, . . . , cl ∈ A such that the row (b2 + c2b1, . . . , bl + clb1) is unimodular in
A[S−1]/A. Thus by applying the elements x−α1−···−αi−1(±ci ) for i = 2, . . . , l, we
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Fig. 1 (Dl , �1)

make the row (b2, . . . , bl) unimodular in A[S−1]/A without changing the ideal A.
Thus the row (b2, . . . , b−1) becomes unimodular in A/I[S−1].
Step 2.Make the row (b1, b−l . . . , b−1) unimodular in A/I[S−1] by l −1 elementary
elements.

Since the row (b2, . . . , b−1) is unimodular in A/I[S−1], it follows that the ideal
generated by I and (b2, . . . , b−1) in A contains a lexicographically monic polynomial.
So for some f2, . . . , f−1 ∈ A, and f ∈ I the polynomial

f +
−1∑
i=2

fi bi

is lexicographicallymonic.Multiplying polynomials f and fi by a large enough power
of x1, we may assume that the polynomial

b1 + f +
−1∑
i=2

fi bi

is also lexicographically monic.
Let us now apply the elements xα1+···+αi−1( fi ) for i = 2, . . . , l. Then the ideal

generated by I, the new b1, and old b−l , . . . , b−1 contains a lexicographically monic
polynomial. However, these elements do not change the ideal generated by b−l , . . .,
b−1. Hencewe actually achieve that the ideal generated byI, and new b1, b−l , . . . , b−1
contains a lexicographically monic polynomial. Thus the row (b1, b−l , . . . , b−1)

becomes unimodular in A/I[S−1].
Step 3.Make the row (b1, b−l . . . , b−2) unimodular in A[S−1] by 7l − 3 elementary
elements.

Let A = I + 〈b−l , . . . , b−1〉 � A[S−1]. Since b1 is invertible in A[S−1]/A, it
follows that there exist ξ2, . . . , ξl ∈ A[S−1] such that bi − ξi b1 ∈ A for i = 2, . . . , l.
Let s be a common denominator of ξi . Set

g1 =
∏

2�i�l

x−α1−···−αi−1(±ξi ),

where signs are such that (g1b)i = bi − ξi b1 ∈ A for 1 � i � l.

123



102 Page 14 of 33 P. Gvozdevsky

Since A/I[S−1] satisfies AFSRl , it follows from Lemma 3.3 that there exist
c−l , . . . , c−2 ∈ s2A such that every maximal ideal of A/I[S−1] containing the
ideal 〈(g1b)−l + c−l(g1b)−1, . . . , (g1b)−2 + c−2(g1b)−1〉 contains already the ideal
〈(g1b)−l , . . . , (g1b)−1〉 = A. Set

g2 =
∏

2�i�l

xα1+···+αi−1(±c−i ),

where signs are such that (g2g1b)i = (g1b)i + ci b−1 for −l � i � −2.
We claim that the elements (g2g1b)1, (g2g1b)−l , . . . , (g2g1b)−2 generate the unit

ideal in A/I[S−1]. Let us prove that.
Assume that some maximal ideal M of the ring A[S−1] contains I and all the

elements (g2g1b)1, (g2g1b)−l , . . . , (g2g1b)−2.
Since applying g1 does not change the ideal generated by b−l , . . . , b−1, by choice

of ci we have A � M. Hence (g1b)i ∈ M for 2 � i � l. Thus b1 = (g2g1b)1 +∑
2�i�7 ±c−i (g1b)i ∈ M. However, by the previous step, b1 and A generate a unit

ideal. This is a contradiction.
Since applying g−1

1 does not change the ideal generated by elements b1, b−l , . . .,
b−2, we obtain that the elements (g−1

1 g2g1b)i , where i = 1,−l, . . . ,−2, generate the
unit ideal in A[S−1].

It remains to notice that the element g−1
1 g2g1 is the image of the matrix μ(u, s, v)

for certain u and v under the embedding G(Al−1, A) → G(Dl , A) as a subsystem
subgroup. Therefore, by Lemma 6.3, g−1

1 g2g1 ∈ E(Dl , A)�7 l−3.

Step 4. Make the row (b−l . . . , b−2) unimodular in A/I[S−1] by l − 1 elementary
elements.

Since A/I[S−1] satisfies AFSRl and the row (b1, b−l . . . , b−2) is unimodular in
A/I[S−1], it follows from Lemma 3.3 that there exist c−l , . . . , c−2 ∈ A such that the
row (b−l + c−lb1, . . . , b−2 + c−2b1) is unimodular in A/I[S−1]. Thus by applying
the elements xα2+···+αi−1−δ(±c−i ) for i = 2, . . . , l, we make the row (b−l . . . , b−2)

unimodular in A/I[S−1].
Step 5.Make b1 congruent to a lexicographically monic polynomial modulo I by l−1
elementary elements.

Since the row (b−l . . . , b−2) is unimodular in A/I[S−1], it follows that the ideal
generated by I and (b−l , . . . , b−2) in A contains a lexicographically monic polyno-
mial. So for some f1, f−l , . . . , f−3 ∈ A and f ∈ I, the polynomial

f +
∑

−l�i�−2

fi bi

is lexicographicallymonic.Multiplying polynomials fi and f by a large enough power
of x1, we may assume that the polynomial

b−2 + f +
∑

−l�i�−2

fi bi
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Fig. 2 (E6, �1)

is also lexicographically monic.
Now applying the elements xδ−α2−···−αi−1(± f−i ) for i = 2, . . . , l, we achieve that

b1 is congruent to a lexicographically monic polynomial modulo I. ��
Remark 6.5 One can notice that the proof above repeats the proof of [16, Propo-
sition 4.2], which on its turn basically repeats the proof of stability theorem for
K1-functor given in [43].

Now we prove Proposition 4.3 for the case (E6,�1).

Proof Consider the branching table for (E6,�1), where vertical lines correspond to
cutting through the bonds marked with 1, and horizontal lines correspond to cutting
through the bonds marked with 6.

a b c
E6,�1 ◦ D5, �5 D5, �1

1) D5,�1 ◦ D4, �1 ◦
2) D5, �5 D4, �4 D4, �3
3) ◦ ◦

Take b ∈ Um′
(E6,�1)

A. We need to obtain a lexicographically monic polynomial
by 116 elementary elements. Since theWeyl group acts transitively on weights, it does
not matter in which position to obtain a lexicographically monic polynomial. Let us
make it with b1. We perform the following steps (Fig. 2).

Step 1. Make the row that consists of elements in all the cells except a1 unimodular
in A[S−1] by four elementary elements.

LetA� A[S−1] be the ideal generated by all the elements bi except for b1, . . . , b4,
b6. Since A[S−1]/A satisfies AFSR5, and the row (b1, . . . , b4, b6) is unimodular in
A[S−1]/A, it follows from Lemma 3.3 that there exist c2, c3, c4, c6 ∈ A such that
the row (b2 + c2b1, . . . , b6 + c6b1) is unimodular in A[S−1]/A. Thus by applying
the elements xα1(±c2), . . . , xα1+α3+α4+α5(±c6), we make the row (b2, b3, b4, b6)
unimodular in A[S−1]/A without changing the ideal A. Thus the row that consists of
elements in all the cells except a1 becomes unimodular in A[S−1].
Step 2. Make the row that consists of elements in columns a and c unimodular in
A[S−1] by 16 elementary elements.
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Since the row (b2, . . . , b27) is unimodular in A[S−1], it follows that the ideal
generated by (b2, . . . , b27) in A contains a lexicographically monic polynomial. So
for some f2, . . . , f27 ∈ A, the polynomial

27∑
i=2

fi bi

is lexicographically monic. Multiplying polynomials fi by a large enough power of
x1, we may assume that the polynomial

b1 +
27∑
i=2

fi bi

is also lexicographically monic.
Let us now apply the elements xλ1−λi (± fi ) for all λi from the column b. Then the

ideal generated by the new b1 and old bλ, where λ is from the column c, contains a
lexicographically monic polynomial. However, these elements do not change the ideal
generated by bλ, where λ is from the column c. Hencewe actually achieve that the ideal
generated by new b1, and bλ, where λ is from the column c contains a lexicographically
monic polynomial. Thus the row of elements in columns a and c becomes unimodular
in A[S−1].
Step 3.Make the row that consists of elements in cells a1 and c1 unimodular in A[S−1]
by 48 elementary elements.

Apply Lemma 6.4 to the column c and the ideal generated by b1.

Step 4. Make the element b1 lexicographically monic by 48 elementary elements.
Apply Lemma 6.4 to the row 1 and the zero ideal. ��

Remark 6.6 One can notice that the proof above basically repeats the proof of stability
theorem for K1-functor given in [15].

Before we prove Proposition 4.3 for (E7,�7), we need one more lemma.

Lemma 6.7 Under the condition of Theorem 1.1 in case E6 � E7. Let I be an ideal
in A. Let b ∈ OrbE6,�1 A/I be such that it becomes unimodular in A/I[S−1]. Then
there exists a column vector

b′ ∈ E(E6, A)�91b,

such that the row (b′
1, b

′
18) is unimodular in A/I[S−1].

Proof Let us choose in each irreducible component of Max(A/I[S−1]) a maximal
ideal ui , i ∈ I . Next denote by ũi the preimage of ui in A.

For each i choose a maximal ideal vi ∈ MaxA such that it contains ũi , and b is
unimodular in A/vi . Let us show that we can do it. The column b is unimodular in
A/I[S−1]; hence the ideal in A generated by I and entries of b contains a lexicograph-
ically monic polynomial f . Clearly, the ideal ũi is prime and f /∈ ũi . Since C is a
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Jacobson ring and A is finitely generated over C , it follows that A is a Jacobson ring;
hence there exists vi ∈ MaxA such that ũi � vi and f /∈ vi . Then b is unimodular in
A/vi .

Set I1 = {i ∈ I : vi = ũi }, and I2 = {i ∈ I : vi �= ũi }, so I = I1 � I2.
Now we perform the following steps.

Step 1. Achive that b1 /∈ ⋃
i∈I vi by 11 elementary elements.

In other words, we should make b1 invertible in A/
(⋂

i∈I vi
)
. The ring

A/
(⋂

i∈I vi
)
is semilocal, so we can do it in the same way we did in Sect. 5.

Step 2.Without changing b1, make the row (b2, . . . , b27) is unimodular in A/I[S−1],
and achive that elements b5, b7, b8, b9, b11, . . . , b27 belong to

⋂
i∈I1 vi by element

from U1, i.e. by 16 elementary elements.
It follows from Lemma 2.2 that for some b′ = u1b, where u1 ∈ U1, we have b′

λ ∈⋂
i∈I1 vi for all λ �= λ1. Now let A� A[S−1] be the ideal generated by I and the ele-

ments b′
5, b

′
7, b

′
8, b

′
9, b

′
11, . . . , b

′
27 except for b

′
1, . . . , b

′
4, b

′
6, b

′
10. Then A �

⋂
i∈I1 vi .

Since A[S−1]/A satisfies AFSR6, and the row (b′
1, . . . , b

′
4, b

′
6, b

′
10) is unimodular in

A[S−1]/A, it follows from Lemma 3.3 that there exist c2, c3, c4, c6, c10 ∈ A such that
the row (b′

2+c2b′
1, . . . , b

′
10+c10b′

1) is unimodular in A[S−1]/A. Thus by applying the
elements xα1(±c2), . . . , xα1+α3+···+α6(±c10), we make the row (b′

2, b
′
3, b

′
4, b

′
6, b

′
10)

unimodular in A[S−1]/A without changing the ideal A. Thus the row (b′
2, . . . , b

′
27)

becomes unimodular in A/I[S−1].
The composition of u1 with the elements as above is then the required element

of U1.

Step 3.Preserving the fact that the image of b1 in A/I[S−1] does not belong to⋃
i∈I ui ,

make the row that consists of elements in columns a and c (we use the same branching
table as in the proof above) unimodular in A/I[S−1] by 16 elementary elements.

Since the row (b2, . . . , b27) is unimodular in A/I[S−1], it follows that the ideal
generated by I and elements b2, . . . , b27 in A contains a lexicographically monic
polynomial. So for some f2, . . . , f27 ∈ A and f ∈ I , the polynomial

f +
27∑
k=2

fkbk

is lexicographically monic. Clearly for any i ∈ I2 the ideal vi contains some hi ∈ S.
Multiplying polynomials f and fk by

∏
i∈I2 hi and then by a large enough power of

x1, we may assume that, firstly all the fk belong to
⋂

i∈I2 vi , and secondly, that the
polynomial

b1 + f +
27∑
i=2

fi bi

is lexicographically monic.
Let us now apply the elements xλ1−λi (± fi ) for all λi from the column b. Clearly

we preserve the fact that b1 /∈ ⋃
i∈I2 vi ; hence we preserve the fact that the image

of b1 in A/I[S−1] does not belong to
⋃

i∈I2 ui . Further the ideal generated by I, the
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new b1, and old bλ, where λ is from the column c, contains a lexicographically monic
polynomial. However, these elements do not change the ideal generated by bλ, where
λ is from the column c. Hence we actually achieve that the ideal generated by new b1,
and bλ, where λ is from the column c contains a lexicographically monic polynomial.
Thus the row of elements in columns a and c becomes unimodular in A[S−1]. In
addition, the ideal generated by bλ, where λ is from the column c is contained in⋂

i∈I1 vi = ⋂
i∈I1 ũi , because we make it so at Step 2, and it was not changed. Hence

the image of new b1 in A/I[S−1] does not belong to
⋃

i∈I1 ui .
Step 4. Make the row (b1, b18) unimodular in A/I[S−1] by 48 elementary elements.

Since the image of b1 in A/I[S−1] does not belong to
⋃

i∈I ui , it follows that
dimMaxA/(I+ 〈b1〉)[S−1] � dimMaxA/I[S−1] − 1 � 3. Therefore, we can apply
Lemma 6.4 to the column c and the ideal I + 〈b1〉. ��
Remark 6.8 One can notice that the proof above basically repeats the proof of [34,
Lemma 2].

Remark 6.9 The lemma above is the only place, where we use the assumption that C
is a Jacobson ring. It is easy to see that this assumption can be lifted, if we assume
that dimC � 3.

Now we prove Proposition 4.3 for the case (E7,�7).

Proof Consider the branching table for (E7,�7), where vertical lines correspond to
cutting through the bonds marked with 1, and horizontal lines correspond to cutting
through the bonds marked with 7.

a b c
E7,�7 D6,�1 D6, �6 D6, �1

1) ◦ ◦
2) E6,�6 D5,�1 D5, �5 ◦
3) E6,�1 ◦ D5,�4 D5, �1
4) ◦ ◦

Take b ∈ Um′
(E7,�7)

A. We need to obtain a lexicographically monic polynomial
by 301 elementary elements. Since theWeyl group acts transitively on weights, it does
not matter in which position to obtain a lexicographically monic polynomial. Let us
make it with b1. We perform the following steps (Fig. 3).

Step 1. Make the row that consists of elements in all the cells except a1 unimodular
in A[S−1] by five elementary elements.

LetA� A[S−1] be the ideal generated by all the elements bi except for b1, . . . , b5,
b7. Since A[S−1]/A satisfies AFSR6, and the row (b1, . . . , b5, b7) is unimodular in
A[S−1]/A, it follows from Lemma 3.3 that there exist c2, . . . , c5, c7 ∈ A such that the
row (b2+c2b1, . . . , b7+c7b1) is unimodular in A[S−1]/A. Thus by applying the ele-
ments xα7(±c2), . . . , xα7+···+α3(±c7), we make the row (b2, . . . , b5, b7) unimodular
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Fig. 3 (E7, �7)

in A[S−1]/A without changing the ideal A. Thus the row that consists of elements in
all the cells except a1 becomes unimodular in A[S−1].
Step 2. Make the row that consists of elements in the rows 1, 3, and 4 unimodular in
A[S−1] by 27 elementary elements.

Since the row (b2, . . . , b−1) is unimodular in A[S−1], it follows that the ideal
generated by (b2, . . . , b−1) in A contains a lexicographically monic polynomial. So
for some f2, . . . , f−1 ∈ A, the polynomial

−1∑
i=2

fi bi

is lexicographically monic. Multiplying polynomials fi by a large enough power of
x1, we may assume that the polynomial

b1 +
−1∑
i=2

fi bi

is also lexicographically monic.
Let us now apply the elements xλ1−λi (± fi ) for all λi from the row 2. Then the

ideal generated by the new b1 and old bλ, where λ is from the rows 3 and 4, contains a
lexicographically monic polynomial. However, these elements do not change the ideal
generated by bλ, where λ is from the rows 3 and 4. Hence we actually achieve that
the ideal generated by new b1, and bλ, where λ is from the rows 3 and 4 contains a
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lexicographically monic polynomial. Thus the row of elements in the rows 1, 3, and 4
becomes unimodular in A[S−1].
Step 3.Make the row that consists of elements in the cells a1,b3, c3, and c4 unimodular
in A[S−1] by five elementary elements.

Let A � A[S−1] be the ideal generated by all the elements bλ for λ in rows 1,
3, and 4, except for b−28, . . . , b−23. Since A[S−1]/A satisfies AFSR6, and the row
(b−28, . . . , b−23) is unimodular in A[S−1]/A, it follows from Lemma 3.3 that there
exist c−27, . . . , c−23 ∈ A such that the row (b−27 + c−27b−28, . . . , b−23 + c−23b−28)

is unimodular in A[S−1]/A. Thus by applying the elements x−α1(±c−27), . . .,
x−α1−α3−···−α6(±c−23), we make the row (b−27, . . . , b−23) unimodular in A[S−1]/A
without changing the ideal A. Thus the row that consists of elements in the cells a1,
b3, c3, and c4 becomes unimodular in A[S−1].
Step 4.Make the row that consists of elements in the cells a1, a3, c3, and c4 unimodular
in A[S−1] by 16 elementary elements.

Let Γ be the set of weights in cells a1, b3, c3, and c4. Since the row that consists
of elements {bλ : λ ∈ Γ } is unimodular in A[S−1], it follows that the ideal generated
by {bλ : λ ∈ Γ } in A contains a lexicographically monic polynomial. So for some
fλ ∈ A, where λ ∈ Γ the polynomial

∑
λ∈Γ

fλbλ

is lexicographically monic. Multiplying polynomials fλ by a large enough power of
x1, we may assume that the polynomial

b−28 +
∑
λ∈Γ

fλbλ

is also lexicographically monic.
Let us now apply the elements xλ−28−λ(± fλ) for all λi from the cell b3. Then the

ideal generated by the new b−28 and old bλ, where λ is from the cells a1, c3, and
c4, contains a lexicographically monic polynomial. However, these elements do not
change the ideal generated by bλ, where λ is from the cells a1, c3, and c4. Hence
we actually achieve that the ideal generated by new b1, and bλ, where λ is from the
cells a1, c3, and c4, contains a lexicographically monic polynomial. Thus the row of
elements in the cells a1, a3, c3, and c4 becomes unimodular in A[S−1].
Step 5.Make the row that consists of elements in the cells a1, a2, a3, and c2 unimodular
in A[S−1] by 59 elementary elements.

Apply Lemma 6.4 to the column c and the ideal generated by elements from the
column a.

Step 6.Make the row that consists of elements in the cells a1, a2, and c2 unimodular
in A[S−1] by 39 elementary elements.

Let A � A[S−1] be the ideal generated by elements from column a. Since b28 is
invertible in A[S−1]/A, it follows that there exist ξ−7,. . .,ξ−11 ∈ A[S−1] such that
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bi − ξi b28 ∈ A for i = −7, . . . ,−11. Let s be a common denominator of ξi . Set

g1 =
∏

−11�i�−7

xλi−λ28(±ξi ),

where signs are such that (g1b)i = bi − ξi b28 ∈ A for −11 � i � −7.
Since A[S−1] satisfies AFSR6, it follows from Lemma 3.3 that there exist c7, . . .,

c11 ∈ s2A such that every maximal ideal of A[S−1] containing the ideal 〈(g1b)7 +
c7(g1b)−28, . . . , (g1b)11 + c11(g1b)−28〉 contains already the ideal 〈(g1b)7, . . .,
(g1b)11, (g1b)−28〉 = A. Set

g2 =
∏

7�i�11

xλi−λ−28(±ci ),

where signs are such that (g2g1b)i = (g1b)i + ci b−28 for 7 � i � 11.
We claim that the elements (g2g1b)λ, where λ is in the cells a1, a2, and c2, generate

the unit ideal in A[S−1]. Let us prove that.
Assume that some maximal ideal M of the ring A[S−1] contains all the elements

(g2g1b)λ, where λ is in the cells a1, a2, and c2.
Since applying g1 does not change the ideal generated by elements from column

a, by choice of ci we have A � M. Hence (g1b)i ∈ M for −11 � i � −7. Thus
b28 = (g2g1b)28 + ∑

7�i�11 ±ci (g1b)−i ∈ M. However, by the previous step, b28
and A generate a unit ideal. This is a contradiction.

Since applying g−1
1 does not change the ideal generated by elements from the cells

a1, a2, and c2, we obtain that the elements (g−1
1 g2g1b)λ, where λ is in the cells a1,

a2, and c2, generate the unit ideal in A[S−1].
It remains to notice that the element g−1

1 g2g1 is the image of the matrix μ(u, s, v)

for certain u and v under the embedding G(A5, A) → G(E7, A) as a subsystem
subgroup. Therefore, by Lemma 6.3, g−1

1 g2g1 ∈ E(E7, R)�39.

Step 7. Make the row that consists of elements in the cells a1, and a2 unimodular in
A[S−1] by 91 elementary elements.

It follows from the proof of [34, Lemma 1] that the elements in the row 2, taken
modulo the ideal 〈b1〉 � A, form an element of OrbE6,�6 A/〈b1〉. Therefore, we can
apply Lemma 6.7 to the row 2 and the ideal 〈b1〉.
Step 8. Make the element b1 lexicographically monic by 59 elementary elements.

Apply Lemma 6.4 to the column a and the zero ideal. ��

7 Eliminating a variable

In this section, we give the proof of Proposition 4.4. First we need some preparation.
For � = E6, E7 or E8, let �2 � � be the set roots that have positive coefficient

in simple root α2, and �2 be the set roots that have zero coefficient in α2. Therefore,
�2∪�2 is a parabolic set of roots with�2 being the symmetric part, and�2 being the
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special part. LetU2 be the unipotent radical of the corresponding parabolic subgroup,
and U−

2 be the unipotent radical of the opposite parabolic subgroup.
Note that

|�2| =

⎧⎪⎨
⎪⎩
21 for E6,

42 for E7,

92 for E8.

Further let 
 be the set of weights of the representation � . Denote by 
i � 


the subset of such weights λ that in the decomposition of λ1 − λ in simple roots the
coefficient in α2 is equal to i . Therefore,


 =
imax⋃
i=0


i ,

where

imax =

⎧⎪⎨
⎪⎩
2 for E6,

3 for E7,

6 for E8.

For an ideal I � R, set

U−
2 (I ) = 〈

xγ (ξ) : γ has negative coefficient in α2, ξ ∈ I
〉
.

Lemma 7.1 Let R be a commutative ring. Let 0 � r � imax − 1. Let b, b′ ∈ Orb� R
be such that for all 0 � i � r and for all λ ∈ 
i we have bλ = b′

λ. Let I =
〈bλ −b′

λ : λ ∈ 
〉� R. Suppose that the elements {bλ : λ ∈ 
0} generate the unit ideal.
Let γ1, . . . , γp ∈ � be all the roots with coefficient in α2 being equal to −(r + 1).
Then there exists an element u = xγ1(ξ1) . . . xγp (ξp), where all the ξ j are in I , such
that for all 0 � i � r + 1 and for all λ ∈ 
i we have (ub)λ = b′

λ.

Remark 7.2 In particular, this means that if r+1 is bigger than the maximal coefficient
in α2, then the assumptions on b and b′ imply that b = b′.

Proof Note that such an element u does not change the elements bλ for λ ∈ ⋃
i�r 
i .

Therefore, we must ensure the equalities (ub)λ = b′
λ only for λ ∈ 
r+1. It is easy

to see that these equalities are linear equations in ξ j . We must seek ξ j in form ξ j =∑
λ ζ j,λ(bλ − b′

λ). Therefore, we have a system of linear equations in ζ j,λ. For a
system of linear equations over a ring, existence of a solution is a local property, see,
for example, [18, Proposition 1]. Hence it is enough to consider the case where R is
a local ring.

Note that the system �2 has type A|
0|−1 and the summand of the representation
� that corresponds to
0 is the vector representation of G(�2,−). Hence in the local
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case, since the elements {bλ : λ ∈ 
0} generate the unit ideal, there exists an element
g ∈ G(�2, R) � G(�, R) such that (gb)λ1 = 1 and (gb)λ = 0 for all λ ∈ 
0 \{λ1}.
The same equalities hold for gb′. It follows by Lemma 2.2 that gb = u1e1 and gb′ =
u′
1e1 for some u1, u′

1 ∈ U−
1 . Since (gb)λ = (gb′)λ = 0 for all λ ∈ 
0 \{λ1}, it follows

that u1,u′
1 ∈ U−

2 .Wedenote byU−( j)
2 the subgroup ofU−

2 generated by root subgroups
for all roots that have coefficient in α2 less than or equal to −( j + 1). Similarly, we
define the subgroup U−( j)

2 (I ). Since g ∈ G(�2, R), the assumptions on b and b′

imply that (gb)λ = (gb′)λ for all λ ∈ ⋃
i�r 
i ; hence we have u1 ≡ u′

1 modU−(r)
2 .

Moreover, it is easy to see that the ideal generated by elements (gb)λ − (gb′)λ for all
λ ∈ 
 is equal to I . Therefore, u1 ≡ u′

1 modU−(r)
2 (I ). Set ũ = u′

1u
−1
1 ∈ U−(r)

2 (I ).
Then we have

b′ = g−1gb′ = g−1u′
1e1 = g−1ũu1e1 = g−1ũgb.

Since g ∈ G(�2, R), it follows that g−1ũg ∈ U−(r)
2 (I ). Therefore, g−1ũg = uû,

where u = xγ1(ξ1) . . . xγp (ξp), where ξ j ∈ I , and û ∈ U−(r+1)
2 . Then we have

(ub)λ = (g−1ũgb)λ = b′
λ for λ ∈ 
r+1. ��

Lemma 7.3 Let R be a commutative ring. Let b, b′ ∈ Orb� R be such that for all
λ ∈ 
0 we have bλ = b′

λ. Let I = 〈bλ − b′
λ : λ ∈ 
〉 � R. Suppose that the elements

{bλ : λ ∈ 
0} generate the unit ideal. Then there exists an element u ∈ U−
2 (I ) such

that ub = b′.

Proof Follows from Lemma 7.1 by induction. ��
Lemma 7.4 Let R be a commutative Noetherian ring, s ∈ R. Then there exists k ∈ N

such that for any b, b′ ∈ Orb� R that satisfy the following conditions:

• for all λ ∈ 
0 we have bλ = b′
λ,• s ∈ 〈bλ : λ ∈ 
0〉 � R,

• bλ − b′
λ is divisible by sk for all λ ∈ 
,

there exists an element u ∈ U−
2 such that ub = b′.

Proof The annihilators of the elements si, i ∈ N, form an ascending chain

Ann s � Ann s2 � · · · .

Since the ring R is Noetherian, it follows that for some l ∈ N, we have Ann sl+m =
Ann sl for any m ∈ N.

Now consider the ring Z [{̃bλ : λ ∈ 
}][{b̃′
λ : λ ∈ 
}][{̃aλ : λ ∈ 
0}] of polynomi-

als over Z in 2|
| + |
0| variables. Set

R̃ = Z [{̃b : λ ∈ 
}][{b̃′ : λ ∈ 
}][{̃a : λ ∈ 
0}]/I,

where the ideal I is generated by the following elements: equations form Eq� for the
column b̃, equations form Eq� for the column b̃′, elements b̃λ − b̃′

λ for all λ ∈ 
0.
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Then set

s̃ =
∑
λ∈
0

ãλb̃λ.

It follows by Lemma 7.3 that over the ring R̃[s̃−1] there exists an element ũ ∈ U−
2

such that ũb̃ = b̃′ in R̃[s̃−1]. Let ũ = xγ1(ξ̃1) . . . xγq (ξ̃q), where γ j are roots that have
negative coefficient in α2. Moreover, we can choose ξ̃ j to be in the ideal generated by

b̃λ − b̃′
λ in R̃[s̃−1]. Let k̃ ∈ N be such that for all i elements s̃ k̃ ξ̃ j belong to the ideal

generated by b̃λ − b̃′
λ in R̃, i.e.

ξ̃ j = s̃ −k̃
∑
λ∈


ζ̃ j,λ(̃bλ − b̃′
λ), ζ̃ j,λ ∈ R̃.

We claim that we can take k = k̃ + l. Let b, b′ ∈ Orb� R satisfy the conditions.
Then there exists a ring homomorphism ϕ : R̃ → R that maps b̃ to b, b̃′ to b′, and s̃
to s. Set ζ j,λ = ϕ(̃ζ j,λ). Let bλ − b′

λ = skcλ for all λ ∈ 
. We claim that we can take
u = xγ1(ξ1) . . . xγq (ξq), where

ξ j = sl
∑
λ∈


ζ j,λcλ.

It is easy to see that the homomorphism R̃[s̃−1] → R[s−1] induced by ϕ sends ũ to u.
Therefore, ub = b′ over R[s−1], i.e. for any λ ∈ 
 we have (ub)λ − b′

λ ∈ Ann sm for
somem. On the other hand, since all the ξ j are divisible by sl, it follows that (ub)λ−bλ

are divisible by sl ; hence (ub)λ − b′
λ are divisible by sl. Let (ub)λ − b′

λ = slθλ.
Then sm+lθλ = sm((ub)λ − b′

λ) = 0, i.e. θλ ∈ Ann sm+l = Ann sl . Therefore,
(ub)λ − b′

λ = slθλ = 0, i.e. ub = b′. ��
Set 
′

0 = 
0 \{ν}, where ν is the lowest weight in 
0.

Lemma 7.5 Let B be a commutative Noetherian ring, A = B[y]. Let b = b(y) ∈
Um′A, and s ∈ B ∪ 〈b(y)λ : λ ∈ 
′

0〉. Then there exists m ∈ N such that

b(y + smz) ∈ E(�, A[z])�Nb(y),

where

N =

⎧⎪⎨
⎪⎩
65 for D5 � E6,

94 for E6 � E7,

152 for E7 � E8.

Proof Take k fromLemma 7.4 (for R = A[z]) and setm = k+2. Let b =
(
b0

b1

)
, where

b0 is a columnwith entries bλ for λ ∈ 
0 and b1 is a columnwith entries bλ for λ /∈ 
0.
Recall that the system �2 has type A|
0|−1 and the summand of the representation �
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that corresponds to 
0 is the vector representation of G(�2,−). Therefore, it follows
from [58, Corollary 2.4] that there exists an element g(z) ∈ E(�2, A[z])�8|
0|−4 such
that g(z)b0(y) = b0(y+ s2z). Moreover, it follows from the proof that g is congruent
to the identity element modulo z, see the proof of [16, Lemma 6.5] for details.

Therefore, for some b̃1 ∈ A[z]|
\
0| we have

b′ =
(
b0(y + smz)

b̃1

)
= g(sk z)b ∈ E(�, A[z])�8|
0|−4b.

In addition, b̃1 is congruent to b1(y), and hence to b1(y + smz), modulo sk. Now
applying Lemma 7.4 to vectors b′ and b(y + smz), we obtain that

b(y + smz) ∈ E(�, A[z])�|�2| b′ ⊆ E(�, A[z])�8|
0|−4+|�2| b.

Here we used that s ∈ B, so the shift of the variable does not change the fact that
s ∈ 〈bλ : λ ∈ 
0〉. ��

Lemma 7.6 There is an element w ∈ W (E8) such that w(α2) = α8, w(α4) = α7,
w(α5) = α6, and w(−δA8) = δ, where δA8 is the maximal root of the subsystem
generated by α1, α3, . . . , α8, δ.

Proof Let δA7 be the maximal root of the subsystem generated by α1, α3, . . . , α8. Let
us show that there is w′ ∈ W (E8) such that w(α2) = α8, w(α4) = α7, w(α5) = α6,
and w(−δA7) = δ. Note that all the roots in the condition belong to the subsystem of
type D8 generated by α2, α3, . . . , α8, δ. We can realise this D8 in the Euclidean space
with the orthonormal basis e1, . . . , e8 so that δ = e1 −e2, α8 = e2 −e3, α7 = e3 −e4,
α6 = e4−e5,α5 = e5−e6,α4 = e6−e7,α2 = e7−e8,α3 = e7+e8, δA7 = e1+e8. An
element form W (D8) can perform any permutation of ei and in addition replace any
even number of ei with −ei . So we can take w′ ∈ W (D8) to be the element such that
w′(e1) = e1, w′(e2) = e8, w′(e3) = e7, w(e4) = e6, w(e5) = −e5, w(e6) = −e4,
w(e7) = −e3, w(e8) = −e2.

Now we can take w = w′wα1 , where wα1 is the reflection with respect to α1. ��

Lemma 7.7 Let B be a commutative ring, P1, . . . , Pm be distinct maximal ideals in B,
A = B[y], b = b(y) ∈ Um′

� A such that b j is monic, where j = 24 for E6, j = −1
for E7 and E8. Then there exists a column vector

b(1) ∈ E(�, A)�Nb

such that b(1)
j is monic and

(〈b(1)
λ : λ ∈ 
′

0〉 ∩ B
)\

m⋃
i=1

Pi �= ∅,
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Fig. 4 (E6, �1)

where

N =

⎧⎪⎨
⎪⎩
7 for D5 � E6,

10 for E6 � E7,

139 for E7 � E8.

Proof Set

R = B/

(
m⋂
i=1

Pi

)
=

m∏
i=1

B/Pi .

First we show that the last condition on b(1) holds if b(1)
1 is monic and the elements

{b(1)
λ : λ ∈ 
′

0} generate the unit ideal in R[y].
Let cλ ∈ A, where λ ∈ 
′

0, be such that
∑

λ∈
′
0
cλb

(1)
λ ≡ 1 mod Pi for every i .

Set f = ∑
λ∈
′

0 \{λ1} cλb
(1)
λ . Then b(1)

1 and f are coprime in B/Pi [y] for every i .
Since b(1)

1 is monic, it follows that the resultant res(b(1)
1 , f ) modulo Pi is equal to

the resultant of b(1) taken modulo Pi and f taken modulo Pi (even if f modulo Pi
has smaller degree).

Therefore, we have

res(b(1)
1 , f ) ∈ (〈b(1)

λ : λ ∈ 
′
0〉 ∩ B

)\
m⋃
i=1

Pi .

Thus it remains to prove that a given column b ∈ Um′
� A, with b j being monic,

can be transformed by N elementary elements so that b1 becomes monic, b j remains
monic, and the new elements {bλ : λ ∈ 
′

0} generate the unit ideal in R[y].
Proof for (E6,�1). Here we perform the following steps (Fig. 4).

Step 1. Make the polynomial b3 monic and the row (b1, . . . , b16, b18, . . . b22, b24)
unimodular in R[y] by the element xδ(ξ).
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Since R is a product of fields and b24 is monic, it follows that the ring
R[y]/〈b24〉 is semilocal; hence it is easy to see that there exists ξ̃ such that the row
((xδ (̃ξ )b)1, . . . , (xδ (̃ξ )b)16, (xδ (̃ξ )b)18, . . . (xδ (̃ξ )b)22, (xδ (̃ξ )b)24) is unimodular in
R[y]. Therefore, if we take

ξ = ξ̃ + yK b24

for some K ∈ N, then we guarantee that the row (b1, . . . , b16, b18, . . . b22, b24)
becomes unimodular in R[y]. It remains to notice that if K is large enough, then
we also make b3 monic.

Step 2. Make the polynomial b2 monic and the row (b1, . . . b21, b23) unimodular in
R[y] by the element xα3(ξ).

This is done similarly to Step 1.

Step 3. Make the polynomial b1 monic and the row (b1, . . . b17) unimodular in R[y]
by the element xα1(ξ).

This is done similarly to Step 1.

Step 4. Make the row (b1, b2, b3, b4, b6) unimodular in R[y] by the element
xα2(ξ4) xδD4

(ξ3) xα6(ξ2) xδD5
(ξ1), where δD5 is the maximal root of the subsystem

generated by α2, . . . , α6, and δD4 is the maximal root of the subsystem generated by
α2, . . . , α5.

Existence of such ξ1, . . . , ξ4 follows easily from the fact that R[y]/〈b1〉 is semilocal.
Note that neither of steps change b24; hence it remains monic. Also Step 4 does not

change b1; hence it remains monic after being made so in Step 3.

Proof for (E7,�7). Consider the branching table for (E7,�7), where vertical lines
correspond to cutting through the bondsmarkedwith 1, and horizontal lines correspond
to cutting through the bonds marked with 7.

a b c
E7,�7 D6,�1 D6, �6 D6, �1

1) ◦ ◦
2) E6,�6 D5,�1 D5, �5 ◦
3) E6,�1 ◦ D5,�4 D5, �1
4) ◦ ◦

Now we perform the following steps, which are similar to those for E6.

Step 1.Make the polynomial in the cell a3monic and the row that consists of elements
in the cells a1, a2, a3, b2, b3, and c4 unimodular in R[y] by the element xδ(ξ).

Step 2.Make the polynomial b2 (highest weight in the cell a2) monic and the row that
consists of elements in the cells a1, a2, a3, b2, c2, the upper half of the cell b3 with
respect to cutting through the bonds marked with 6, and the element that correspond
to the highest weight in the cell c3 unimodular in R[y] by the element xδD6

(ξ), where
δD6 is the maximal root of the subsystem generated by α2, . . . , α7.
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Fig. 5 Part of (E8, �8) and action of w

Step 3. Make the polynomial b1 monic and the row that consists of elements in the
cells a1, a2, b2, and c2 unimodular in R[y] by the element xα7(ξ).

Step 4. Make the row (b1, b2, b3, b4, b5, b7) unimodular in R[y] by the element
xα2(ξ7) xα2+α3+α4(ξ6) xδD5(1) (ξ5) xα1(ξ4)xδD5(6) (ξ3) xδA5

(ξ2) xδE6
(ξ1), where δE6 is the

maximal root of the system generated by α1, α2, α3, α4, α5 and α6; δA5 is the maximal
root of the system generated by α1, α3, α4, α5 and α6; δD5(6) is the maximal root of the
system generated by α1, α2, α3, α4 and α5; δD5(1) is the maximal root of the system
generated by α2, α3, α4, α5 and α6.

Proof for (E8,�8). Here we perform the following steps.

Step 0. Make the row (b1, b−1) unimodular in R[y] by the element u ∈ U .
Since R[y]/〈b−1〉 is semilocal, by Lemma 2.4 there exists g ∈ G(E8, R[y]/〈b−1〉)

such that gb = e1 in R[y]/〈b−1〉. By [40, Theorem 1.1], we have g = hu1vu,
where h ∈ T , u, u1 ∈ U , and v ∈ U−. Therefore, we have ub = v−1u−1

1 h−1e1 in
R[y]/〈b−1〉; hence (ub)1 is invertible in R[y]/〈b−1〉. Clearly u can be lifted to the
element of U (�, B[y]). Note that (ub)−1 = b−1; hence the row ((ub)1, (ub)−1) is
unimodular in R[y].

Now consider the subsystem D8 � E8 generated by α2, α3, . . . , α8, δ. If we restrict
our representation to the groupG(D8,−) one of the summands will be the representa-
tion (D8,�8). Takew ∈ W (E8) from Lemma 7.6. If we move our subsystem D8 with
elementw, then the highest weight of the representation (D8,�8) becomes the highest
weight of the entire (E8,�8). In addition, three weights next to it become weights
from
′

0 (Fig. 5). It is clear that lowest weight of (D8,�8) becomes the lowest weight
of (E8,�8).

Consider the weight diagram for (D8,�8). If we cut it through the bonds marked
with 2 (here marks refer to the numbering of simple root in D8 as shown in Fig. 6),
then we obtain the union of diagrams (D6,�6), (D6,�5)⊗(A1,�1), and (D6,�6).

Diagram for (D6,�5) differs from the diagram for (D6,�6) by swaping two labels;
so essentially we have four copies of diagram (D6,�6). We give number 1 to the
one containing the highest weight, number 2 to the upper half of the component
(D6,�5)⊗(A1,�1), number 3 to its lower half, and number 4 to the one containing
the lowest weight. Now we give to every vertex of the diagram (D8,�8) the number
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Fig. 6 Numbering of simple roots in Dl

Fig. 7 (D6, �6)

of the form i/ j , where i is the number of weight in (D6,�6) according to Fig. 7, and
j is the number of the copy of (D6,�6).
Now it remains to prove the following statement. For any column vector b = b(y) ∈

V(D8,�8)A such that it becomes unimodular in R[y] and that b32/4 ismonic, there exists
a column vector

b(1) ∈ E(�, A)�19b

such that b(1)
32/4 and b(1)

1/1 are monic and the row (b(1)
1/1, b

(1)
2/1, b

(1)
3/1, b

(1)
5/1) is unimodular

in R[y].
We prove this statement similarly to how we proved it for (E6,�1) and (E7,�7).

Here we perform the following steps (numbering of roots is as in Fig. 6).

Step 1. Make the polynomial b32/1 monic and simultaneously make the row that
consists of elements {bi/ j : 1 � i � 32, 1 � j � 3} ∪ {b32/4} unimodular in R[y] by
the element xδD8

(ξ).

Step2.Make the polynomialb8/1 monic and simultaneouslymake the row that consists
of elements {bi/ j : 1 � i � 24, 1 � j � 3} ∪ {b32/1, b8/4} unimodular in R[y] by
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the element xδD6
(ξ), where δD6 is the maximal root of the subsystem generated by

α3, . . . α8.

Step 3. Make the row of elements {bi/ j : 1 � i � 16, 1 � j � 3} ∪ {b32/1, b8/4}
unimodular in R[y] by the element xα3(ξ) (the polynomial b8/1 remains the same).

Step4.Make the polynomialb2/1 monic and simultaneouslymake the row that consists
of elements {bi/ j : 1 � i � 14, 1 � j � 3} ∪ {b26/1, b2/4} unimodular in R[y] by
the element xδD4

(ξ), where δD6 is the maximal root of the subsystem generated by
α5, . . . , α8.

Step 5. Make the row of elements {bi/ j : 1 � i � 12, 1 � j � 3} ∪ {b26/1, b2/4}
unimodular in R[y] by the element xα5(ξ) (the polynomial b2/1 remains the same).

Step 6. Make the row of elements {bi/ j : 1 � i � 8, 1 � j � 3} ∪ {b22/1, b2/4}
unimodular in R[y] by the element xα4(ξ) (the polynomial b2/1 remains the same).

Step 7. Make the row of elements {bi/1 : 1 � i � 8} ∪ {bi, j : 1 � i � 7, 2 � j �
3} ∪ {b22/1, b2/4} unimodular in R[y] by the element xα7(ξ) (the polynomial b2/1
remains the same).

Step 8. Make the row of elements {bi/1 : 1 � i � 8} ∪ {bi, j : 1 � i � 6, 2 � j �
3} ∪ {b22/1, b2/4} unimodular in R[y] by the element xα6+α8(ξ) (the polynomial b2/1
remains the same).

Step9.Make the polynomialb1/1 monic and simultaneouslymake the row that consists
of elements {bi/1 : 1 � i � 7} ∪ {bi, j : i ∈ {1, 2, 3, 5}, 2 � j � 3} ∪ {b21/1, b1/4}
unimodular in R[y] by the element xα8(ξ).

Step 10. Make the row (b(1)
1/1, b

(1)
2/1, b

(1)
3/1, b

(1)
5/1) unimodular in R[y] by the element

xα7(ξ10) xα6(ξ9) xα4(ξ8) xα5(ξ7) xα3(ξ6) xα4(ξ5) xα2(ξ4) xα3(ξ3) xα1(ξ2) xα2(ξ1). ��
Now we are ready to prove Proposition 4.4. For simplicity, we will write

v
N−−→ w

instead of

w ∈ E(�, R)�Nv,

where v and w are columns in V� .
Set

N1 =

⎧⎪⎨
⎪⎩
65 for D5 � E6,

94 for E6 � E7,

152 for E7 � E8,

and

N2 =

⎧⎪⎨
⎪⎩
7 for D5 � E6,

10 for E6 � E7,

139 for E7 � E8.
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Applying Lemmas 2.1 and 7.7 d times, we obtain elements s1, . . . , sd ∈ B and
columns b = b(0), b(1), . . . , b(d) ∈ Um′

� A such that, firstly,

b(i) N2−−→ b(i+1), i = 0, . . . , d − 1,

secondly, si ∈ 〈b(i)
λ : λ ∈ 
′

0〉 for i = 1, . . . , d, and thirdly,BSdim B/(s1, . . . , si+1) <

BSdim B/(s1, . . . , si ) for i = 0, . . . , d − 1. In particular, the elements s1, . . . , sd
generate the unit ideal.

By Lemma 7.5 we have

b(i)(y)
N1−−→ b(i)(y + smi

i z)

in A[z].
Therefore, we have the following chain of transformations in A[z1, . . . , zd ]:

b = b(0)(y) → b(1)(y) → b(1)(y + sm1
1 z1) → b(2)(y + sm1

1 z1) → · · ·
→ b(d)

(
y + sm1

1 z1 + · · · + smd−1
d−1 zd−1

)
→ b(d)

(
y + sm1

1 z1 + · · · + smd
d zd

)
.

Thus we have

b(y)
d(N1+N2)−−−−−−−→ b(d)

(
y + sm1

1 z1 + · · · + smd
d zd

)
.

Since the elements s1, . . . , sd generate the unit ideal, it follows that so do the
elements sm1

1 , . . . , smd
d . Specializing the indeterminates zi to elements in yB, we make

y + sm1
1 z1 + · · · + smd

d zd equal to zero; this concludes the proof of Proposition 4.4.

Author Contributions The author confirms sole responsibility for writing and reviewing the manuscript.
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