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Abstract
We present a sufficient condition ensuring lower semicontinuity for nonlocal supremal
functionals of the type

W 1,∞(�;Rd) � u �→ ess sup
(x,y)∈�×�

W (x, y,∇u(x),∇u(y)),

where � is a bounded open subset of RN and W : �× �×R
d×N×R

d×N → R.

Keywords Nonlocality · Supremal functionals · Lower semicontinuity · Young
measures

Mathematics Subject Classification 49J45 · 26B25

1 Introduction

In recent years a great attention has been devoted to nonlocal functionals both in the
integral and supremal setting, due to the many applications to peridynamics, machine
learning, image processing, etc. [2, 6–8, 10, 15, 19] and to L∞-variational problems,
see e.g. [1, 3, 11, 14, 16, 20, 28], among a wide literature.
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Motivated by theDirectMethods in theCalculus ofVariations the study of necessary
and sufficient conditions ensuring lower semicontinuity of such functionals has been
conducted in many papers, see [9, 12, 22–26].

In particular, given a bounded open set � ⊂ R
N, in [23] characterizing con-

ditions for the sequential lower semicontinuity in L∞(�;Rd) of the functional
G : v ∈ L∞(�;Rd) → R defined as

G(v) ..= ess sup
(x,y)∈�×�

W (v(x), v(y)) (1.1)

have been provided. Furthermore, in [22] necessary and sufficient assumptions on the
supremandW have been determined to ensure that, in absence of lower semicontinuity,
the sequentiallyweakly∗ lower semicontinuous envelope ofG has the same form, i.e. it
can be expressed as a double supremal functional.We also emphasize that [22] contains
a power-law approximation result for functionals as in (1.1), which, on the other hand,
also appears in their inhomogeneous version in the context of image denoising (cf.
[15]).

Unfortunately, analogous results are not available in the context where the fields
v satisfy some differential constraint, in particular when v(x) = ∇u(x), with u ∈
W 1,∞(�;Rd). In this paper we will show that a sufficient condition for the functional

W 1,∞(�;Rd) � u �→ ess sup
(x,y)∈�×�

W (x, y,∇u(x),∇u(y)),

to be weakly∗ sequentially lower semicontinuous in W 1,∞(�;Rd×N ) is the sepa-
rate curl Young quasiconvexity in the second set of variables. The notion of curl
Young quasiconvexity was introduced in [1], as a sufficient condition for the sequen-
tial weak∗ lower semicontinuity of functionals of the type ess supx∈� f (x,∇u(x))
in W 1,∞(�;Rd) (see also [13] for a similar notion suited for L p-approximation of
supremal functionals, and [29] for the setting adopted in this paper).

Let Q be the unit cube ] 0, 1 [N, and let f : Rd×N → R be a lower semicontinuous
function, bounded from below. The function f is curl Young quasiconvex if

f

(∫
Rd×N

ξ dνx (ξ)

)
� ess sup

y∈Q
(
νy-ess sup

ξ∈Rd×N

f (ξ)
)
, for LN -a.e. x ∈ Q,

whenever ν ≡ {νx }x∈Q is aW 1,∞-gradient Young measure (see [21] for the introduc-
tion, [18, 30] for a comprehensive description). For the readers’ convenience we just
say that Young measures encode information on the oscillation behaviour of weakly
converging sequences. For a more detailed introduction to the topic, we refer to the
broad literature, e.g. [17, Chapter 8], [24], [30, Section 4].

In general dimensions l,m, n ∈ N, we denote byM(Rl) the set of bounded Radon
measures and by Pr (Rl) its subsets of probability measures.

Let U ⊂ R
n be a Lebesgue measurable set with finite measure. By definition, a

Youngmeasure ν = {νx }x∈U is an element of the space L∞
w (U ;M(Rm)) of essentially

bounded, weakly∗ measurable maps defined in U → M(Rm), which is isometrically
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isomorphic to the dual of L1(U ;C0(R
m)), such that νx

..= ν(x) ∈ Pr (Rm) for Ln-
a.e. x ∈ U . One calls ν homogeneous if there is a measure ν0 ∈ Pr(Rm) such that
νx = ν0 for Ln-a.e. x ∈ U .

A sequence (z j ) j of measurable functions z j : U → R
m is said to generate a Young

measure ν ∈ L∞
w (U ;Pr(Rm)) if for every h ∈ L1(U ) and ϕ ∈ C0(R

m),

lim
j→∞

∫
U
h(x)ϕ(z j (x)) dx =

∫
U
h(x)

∫
Rm

ϕ(ξ) dνx (ξ) dx =
∫
U
h(x)〈νx , ϕ〉 dx,

or ϕ(z j )
∗
⇀〈νx , ϕ〉 for all ϕ ∈ C0(R

m); in formulas,

z j
YM−−→ ν as j → ∞,

with 〈 · , · 〉 denoting the duality product between probability measures and continuous
functions C0(R

m).
To keep the brevity of this article we omit the fundamental theorem for Young

measures, for which we refer to [17, Theorems 8.2 and 8.6] and [30, Theorem 4.1,
Proposition 4.6].

We also recall that if (z j ) j ⊂ L p(U ;Rm), p ∈ (1,+∞], generates a Young
measure ν and converges weakly∗ in L p(U ;Rm) to a limit function u, then [νx ] =
〈νx , id〉 = ∫

Rm ξ dνx (ξ) = u(x) for Ln-a.e. x ∈ U . In the sequel we will mainly
restrict to gradient Young measure, namely with U ..= � ⊂ R

N a bounded open
set, and m = N ×d, a W 1,∞-gradient Young measure (see [21]) is a Young measure
generated by a sequence of (∇u j ) j with u j ∈ W 1,∞(�;Rd).

For our purposes, we also recall that in [29, Remark 4.3 and Proposition 4.4] curl
Young quasiconvexity has been characterized as follows.

The function f is curl Young quasiconvex if and only if it verifies

f

(∫
Rd×N

ξ dν(ξ)

)
� ν-ess sup

ξ∈Rd×N
f (ξ)

whenever ν is a W 1,∞-gradient Young measure.

2 Lower semicontinuity

The notion which will play a crucial role for us is the separate curl Young-
quasiconvexity.

Definition 2.1 Let W : Rd×N×R
d×N → R be a lower semicontinuous function. W

is said to be separately curl Young quasiconvex if

W ([ν], [μ]) � (ν ⊗μ)-ess sup(ξ,ζ )∈Rd×N×Rd×N W (ξ, ζ )

= ν-ess supξ∈Rd×N

(
μ-ess supζ∈Rd×N Wξ, ζ )

)
= μ-ess supζ∈Rd×N

(
ν-ess supξ∈Rd×N W (ξ, ζ )

) (2.1)
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for every ν, μ W 1,∞-gradient Young measures. If W : �×�×R
d×N×R

d×N → R

is a normal integrand bounded from below, then it is said to be separately curl Young
quasiconvex if W (x, y, · , ·) is separately curl Young quasiconvex for LN ⊗LN -a.e.
(x, y) ∈ �×�.

A key tool for the proof of our result is the following lemma, first stated in [4] in
the continuous and homogeneous case, and, then proved in its current version in [29].

Lemma 2.2 Let U ⊂ R
n be an open set with finite measure and let f : U ×R

m → R

be a normal integrand bounded from below. Further, let (uk) be a uniformly bounded
sequence of functions in L∞(U ;Rm) generating a Youngmeasure ν = {νx }x∈U . Then,

lim inf
k→∞ ess-sup

x∈U
f (x, uk(x)) � ess-sup

x∈U
f̄ (x),

where f̄ (x) ..= νx - ess supξ∈Rm f (x, ξ) for x ∈ U.

With the aim of analyzing nonlocal problems, in [23] to any function u ∈
L1(�;Rm) it has been associated the vector field

wu(x, y) ..= (u(x), u(y)) for (x, y) ∈ �×�. (2.2)

In the sequel we will consider nonlocal fields w∇u(x, y) = (∇u(x),∇u(y)) for
(x, y) ∈ �×�.

The following lemma, which was established by Pedregal in [24, Proposition 2.3],
gives a characterization of Young measures generated by sequences as in (2.2).

Lemma 2.3 Let (u j ) j ⊂ L p(�;Rm) with 1 � p � ∞ generate a Young measure
ν = {νx }x∈�, and let � = {�(x,y)}(x,y)∈�×� be a family of probability measures
on R

m×R
m. Then � is the Young measure generated by the sequence (wu j ) j ⊂

L p(�×�;Rm×R
m) defined according to (2.2) if and only if

�(x,y) = νx ⊗νy for LN ⊗LN -a.e. (x, y) ∈ �×�

and
{∫

�

∫
Rm |ξ |p dνx (ξ) dx < ∞, if p < ∞,

supp νx ⊂ K forLN -a.e. x ∈ � with a fixed compact set K ⊂ R
m, if p = ∞.

Remark 2.4 The class of separately curl Young quasiconvexity is not empty since
any separately level convex function is separately curl Young quasiconvex, indeed in
[23, Lemma 3.5 (iv)] it has been proven that any Borel function W , whose sublevel
sets are separately convex (i.e. W is separately level convex), satisfies (2.1) for every
ν, μ ∈ Pr(Rd×N ). On the other hand, the notions are not equivalent as we can see
considering the function W : R2×2×R

2×2 → [0,+∞], defined as

W (ξ, η) = (sup{h(|ξ |), k(ξ)})(sup{h(|η|), k(η)}),
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with h and k as in [1, Example 6.7], namely k(
) ..= arctan (det
) and

h(t) =

⎧⎪⎨
⎪⎩
0 if t � 1,

t − 1 if 1 � t � 2,

1 if t � 2.

Indeed for any fixed η or ξ the functionW ( · , η) orW (ξ, ·) turns out to be curl Young
quasiconvex but not generally level convex.

We are in position to establish our main result.

Theorem 2.5 Let W : �×�×R
d×N×R

d×N → R be a normal integrand, bounded
from below and such that W (x, y, · , ·) is separately curl Young quasiconvex for
LN ⊗LN -a.e. (x, y) ∈ �×�. Let F : W 1,∞(�;Rd) → R be the functional defined
by

F(u) = ess sup
(x,y)∈�×�

W (x, y,∇u(x),∇u(y)). (2.3)

Then the functional F is sequentially weakly∗ lower semicontinuous in W 1,∞(�;Rd).

Remark 2.6 We observe that this result extends to the non-homogeneous and differ-
ential setting [23, Proposition 3.6].

The same proof could be used to show that separate level convexity ofW (x, y, · , ·)
forLN ⊗LN -a.e. (x, y) ∈ �×� is sufficient to guarantee the sequential weak∗ lower
semicontinuity in L∞(�;Rd) of ess sup(x,y)∈�×�W (x, y, u(x), u(y)).

Nevertheless, as proven in the latter setting, under homogeneity assumptions, we
conjecture that separate curl Young quasiconvexity is not ‘really’ necessary for the
sequential lower semicontinuity of the functional in (2.3), since from one hand some
symmetry of W should be taken into account (cf. the notions of Cartesian separate
level convexity in [22, 23]), but also it is worth to observe that even in the local
setting it is currently an open question the necessity of curl Young quasiconvexity for
the sequential weak∗ lower semicontinuity of ess supx∈� f (∇u(x)), namely it is not
known, in general, if curl Young quasiconvexity is equivalent to the Strong Morrey
quasiconvexity introduced in [5], except some particular case as those considered in
[1, 27].

Finally, we also point out that, under suitable continuity conditions on the second
set of variables for W , our arguments could be successfully employed to prove the
lower semicontinuity of nonlocal supremal functionals under more general differential
constraints than curl.

Proof The result follows from Lemmas 2.2, 2.3 and Definition 2.1. Without loss of
generality we can assume that W is non-negative.

Let (w∇u j ) j ⊂ W 1,∞(�×�;Rd×N×R
d×N ) be the sequence of nonlocal vector

fields associatedwith (∇u j ) j , cf. (2.2), and� = {�}(x,y)∈�×� = νx ⊗νy for x, y ∈ �

the generated W 1,∞-gradient Young measure according to Lemma 2.3. Lemma 2.2
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implies that

lim inf
j→∞ F(u j ) = lim inf

j→∞ ess sup
(x,y)∈�×�

W (x, y,∇u j (x),∇u j (y))

� ess sup
(x,y)∈�×�

W (x, y),
(2.4)

where W (x, y) ..= �(x,y)-ess sup(ξ,ζ )∈Rd×N×Rd×N W (ξ, ζ ). By Lemma 2.3,

W (x, y) = νx ⊗νy-ess sup(ξ,ζ )∈Rd×N×Rd×N W (ξ, ζ )

= νx -ess supξ∈Rd×N

(
νy-ess supζ∈Rd×N W (ξ, ζ )

)

for LN ⊗LN -a.e. (x, y) ∈ �×�, and since W is separately curl Young quasiconvex,
it results that

W (x, y) � W (x, y, [νx ], [νy]) = W (x, y,∇u(x),∇u(y)) (2.5)

for LN ⊗LN -a.e. (x, y) ∈ �×�. The proof follows from (2.4) and (2.5). ��

3 Conclusions

In this paper we provide a sufficient condition for the lower semicontinuity of nonlo-
cal supremal functionals depending on the gradients of suitable Lipschitz fields. We
conjecture that this notion is also suitable to provide an L p-approximation result in
the spirit of what is proven for L∞-fields in [22]. This latter study and the search for
necessary conditions will be the subject of future research. We conclude observing
that analogous results in the case of nonlocal integral functionals, depending on the
gradient of scalar fields, can be found in [12].
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