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Abstract
A near-Heyting algebra is a join-semilattice with a greatest element such that every
principal upset is a Heyting algebra. We will present several characterizations of the
concept of near-Heyting algebra. We will show that the class of near-Heyting algebras
is a subclass of Hilbert algebras with supremum.We introduce prelinear near-Heyting
algebras and present some of their characterizations.

Keywords Near-Heyting algebra · Hilbert algebra · Heyting algebra · Distributive
nearlattice

Mathematics Subject Classification 06D75 · 06D20

1 Introduction

It is known that the variety of implication algebras (also known as Tarski algebras) is
the algebraic counterpart of the implication fragment of propositional classical logic.
Recall that an algebra 〈A,→, 1〉 of type (2, 0) is an implication algebra if it satisfies the
following identities: 1 → x = x , x → x = 1, x → (y → z) = (x → y) → (x → z)
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and (x → y) → x = (y → x) → x . On the other hand, the class of semi-boolean
algebras was introduced by Abbott in [2] as join-semilattices with top element 1 where
every principal upset is a Boolean algebra. In [2], Abbott proved that there is a one-
to-one correspondence between the class of semi-boolean algebras and the variety of
implication algebras. Hence, if 〈A,→, 1〉 is an implication algebra, the join ∨ can be
expressed by means of the implication → as x ∨ y = (x → y) → y. The meet ∧
is only a partial operation and x ∧ y is defined if and only if the elements x and y
have a common lower bound. If a ∈ A is a common lower bound of x and y, then
x ∧ y can be defined as x ∧ y = (x → (y → a)) → a, and the complement of x in
[a) = {x ∈ A : a � x} is given by x → a. Therefore, [a) is a Boolean algebra.

It is a natural subject to study join-semilattices where the complement in each prin-
cipal upset is replaced by the pseudocomplement, that is, join-semilattices with top
element 1 where every principal upset is a pseudocomplemented distributive lattice.
In [15], the authors named this class of join-semilattices as sectionally pseudocom-
plemented distributive nearlattices. In [15] it is proved that there is a one-to-one
correspondence between the class of sectionally pseudocomplemented distributive
nearlattices and a variety of algebras of type (3, 2, 0) satisfying certain identities. It
was remarked in [22] that sectionally pseudocomplemented distributive nearlattices
can be equivalently defined as join-semilattices with top element 1 where every princi-
pal upset is a Heyting algebra. This is why in [22] they decided to name these algebras
as near-Heyting algebras.

Since Heyting algebras and Hilbert algebras are closely related, the main aim of
this paper is to connect the near-Heyting algebras with Hilbert algebras and obtain
several useful characterizations for this class of algebras.Wewill see several examples
showing that near-Heyting algebras arise naturally.

We close this section fixing some notations we use throughout the paper. Our main
references for Order and Lattice theory are [16, 23]. Let 〈P,�〉 be a poset. A subset
U ⊆ P is called an upset of P when for all a, b ∈ P , if a � b and a ∈ P , then b ∈ P .
For every a ∈ P , the upset [a) = {b ∈ P : a � b} is called a principal upset of P .
We say that P is a join-semilattice if there exists the least lower bound (supremum or
join) of {a, b}, for all a, b ∈ P . In a join-semilattice P , for all a, b ∈ P , a∨ b denotes
the least lower bound of a and b. In a poset P , for all a, b ∈ P , we write a ∧ b to
mean that the greatest upper bound (infimum or meet) of {a, b} exists and it is a ∧ b.

1.1 Hilbert algebras with supremum

We recall the basics about Hilbert algebras and Hilbert algebras with supremum. Our
main references for Hilbert algebras are [17, 27].

Definition 1.1 A Hilbert algebra is an algebra 〈A,→, 1〉 of type (2, 0) satisfying the
following identities:

(H1) x → x = 1,
(H2) 1 → x = x ,
(H3) x → (y → z) = (x → y) → (x → z),
(H4) (x → y) → ((y → x) → x) = (y → x) → ((x → y) → y).
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In every Hilbert algebra A there can be defined a binary relation � as follows:
a � b if and only if a → b = 1, for all a, b ∈ A. We present some basic properties
of Hilbert algebras needed for what follows.

Lemma 1.2 Let 〈A,→, 1〉 be a Hilbert algebra and a, b, c ∈ A. Then, the following
properties hold:

(H5) a → (b → a) = 1,
(H6) [a → (b → c)] → [(a → b) → (a → c)] = 1,
(H7) if a → b = 1 and b → a = 1, then a = b.
(H8) � is a partial order on A and 1 is the greatest element in 〈A,�〉,
(H9) b � a → b,
(H10) ((a → b) → b) → b = a → b,
(H11) if a � b, then c → a � c → b and b → c � a → c,
(H12) a → (b → c) = b → (a → c).

Proposition 1.3 An algebra 〈A,→, 1〉 is a Hilbert algebra if and only if it satisfies
conditions (H5)–(H7).

Definition 1.4 Let A be a Hilbert algebra. A subset F ⊆ A is called an implicative
filter (also known as deductive system) of A if (i) 1 ∈ F , and (ii) if a, a → b ∈ F ,
then b ∈ F .

Let us denote by Fi→(A) the collection of all implicative filters of A. Every
implicative filter is an upset of 〈A,�〉, and for all a ∈ A, [a) is an implicative fil-
ter of A. It is straightforward to check that Fi→(A) is an algebraic closure system.
For every subset X ⊆ A, we denote by Fig→(X) the implicative filter of A gen-
erated by X . Then, 〈Fi→(A),∩,∨, {1}, A〉 is a bounded distributive lattice, where
F1 ∨ F2 = Fig→(F1 ∪ F2) for all F1, F2 ∈ Fi→(A).

Let A be aHilbert algebra. A proper implicative filter F of A is said to be irreducible
when for all F1, F2 ∈ Fi→(A), if F1 ∩ F2 = F , then F1 = F or F2 = F . Let us
denote by X→(A) the set of all irreducible implicative filters of A.

Lemma 1.5 ([17]) Let A be a Hilbert algebra and F ∈ Fi→(A) be proper. Then, F is
irreducible if and only if for all a, b /∈ F, there is c /∈ F such that a, b � c.

Lemma 1.6 ([17]) Let A be a Hilbert algebra and F ∈ Fi→(A). If a /∈ F, then there
is P ∈ X→(A) such that F ⊆ P and a /∈ P.

Corollary 1.7 Let A be a Hilbert algebra, a, b ∈ A, and F ∈ Fi→(A). Then, a → b /∈
F if and only if there exists Q ∈ X→(A) such that F ⊆ Q, a ∈ Q and b /∈ Q.

A Hilbert algebra with supremum is a Hilbert algebra where the associated partial
order is a join-semilattice. The class of Hilbert algebras with supremum is a particular
class ofBCK-algebraswith lattice operations studied by Idziak in [26].Hilbert algebras
with supremum were introduced and studied in [12].

Definition 1.8 An algebra 〈A,∨,→, 1〉 of type (2, 2, 0) is called a Hilbert algebra
with supremum, HS-algebra for short, if:
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(HS1) 〈A,→, 1〉 is a Hilbert algebra,
(HS2) 〈A,∨, 1〉 is a join-semilattice with a greatest element 1,
(HS3) a → (a ∨ b) = 1,
(HS4) (a → b) → ((a ∨ b) → b) = 1

Proposition 1.9 Let 〈A,∨,→, 1〉 be an algebra of type (2, 2, 0). Then, 〈A,∨,→, 1〉
is an HS-algebra if and only if it satisfies (HS1), (HS2), and

(HS5) for all a, b ∈ A, a → b = 1 if and only if a ∨ b = b.

The above proposition tells us that in an HS-algebra A the partial order induced by
the join operation ∨ and the partial order induced by the implication → coincide.

Example 1.10 In every join-semilattice 〈A,∨, 1〉, it is possible to define the structure
of an HS-algebra by defining the implication → on A by a → b = 1 if a � b, and
a → b = b if a � b.

Remark 1.11 Let 〈A,∨,→, 1〉 be an HS-algebra and F ∈ Fi→(A) be proper. By
Lemma 1.5, F is irreducible if and only if a ∨ b ∈ F implies a ∈ F or b ∈ F , for all
a, b ∈ A.

Proposition 1.12 Let 〈A,∨,→, 1〉 be an HS-algebra. Then, for all a, b ∈ A, the
following property holds:

(HS6) a ∨ b � (a → b) → b.

Remark 1.13 Every implication algebra (see [2]) is an HS-algebra, but there are HS-
algebras that are not implication algebras. It is easy to see that the following are
equivalent: (i) 〈A,∨,→, 1〉 is an HS-algebra such that a ∨ b = (a → b) → b, for all
a, b ∈ H , and (ii) 〈A,→, 1〉 is an implication algebra.

1.2 Distributive nearlattices

Now, we recall the basics about distributive nearlattices. Our main reference for dis-
tributive nearlattices is [13].

Definition 1.14 A distributive nearlattice is a join-semilattice 〈A,∨, 1〉with a greatest
element 1 such that for every a ∈ A, the principal upset [a) is a bounded distributive
lattice concerning the order induced by ∨.

As we can see, distributive nearlattices are a nice generalization of distributive
lattices. These algebraic structures were studied by several authors from different
points of view: algebraic [3, 7, 8, 10, 11, 14, 15, 20, 24, 25]; topological [9, 21]; and
logical [18, 19].

Let 〈A,∨, 1〉 be a distributive nearlattice. Let a ∈ A. For every x, y ∈ [a), x ∧a y
denotes the meet of {x, y} in [a). Notice that if x, y ∈ [a)∩[b), then x ∧a y = x ∧b y.
Thus, if x, y ∈ [a), then x ∧ y exists in A, and x ∧ y = x ∧a y.

In [15], it was proved that there is a one-to-one correspondence between distributive
nearlattices and certain algebras of type (3, 0) satisfying some identities, we called
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them DN-algebras. However, they are different structures. The class of DN-algebras
forms a variety, while the class of distributive nearlattices does not. For example, let
us consider the distributive nearlattice 〈23,∨, 1〉, where 2 = 〈{0, 1},�〉 is the two-
element chain with 0 < 1 and∨ is defined as usual. It is easy to see that the subalgebra
B of 23 whose elements are the first element, the last element and the dual atoms of
23 is not a distributive nearlattice.

Definition 1.15 Let 〈A,∨, 1〉 be a distributive nearlattice. A subset F ⊆ A is said to
be a filter when for all a, b ∈ A, (i) 1 ∈ F ; (ii) if a � b and a ∈ F , then b ∈ F ; and
(iii) if a, b ∈ F and a ∧ b exists in A, then a ∧ b ∈ F .

Let A be a distributive nearlattice. We denote by Fi∧(A) the collection of all filters
of A. It is easy to see that Fi∧(A) is an algebraic closure system. For every sub-
set X ⊆ A, let us denote by Fig∧(X) the filter of A generated by X . Notice that
〈Fi∧(A),∩,∨, {1}, A〉 is a bounded lattice, where F ∨ G = Fig∧(F ∪ G).

Proposition 1.16 For every distributive nearlattice 〈A,∨, 1〉, Fi∧(A) is a distributive
lattice.

A proper filter F of a distributive nearlattice A is said to be prime when for all
a, b ∈ A, if a ∨ b ∈ F , then a ∈ F or b ∈ F . Let us denote by X∧(A) the collection
of all prime filters of A.

Lemma 1.17 Let 〈A,∨, 1〉 be a distributive nearlattice, F ∈ Fi∧(A), and a ∈ A. If
a /∈ F, then there is P ∈ X∧(A) such that F ⊆ P and a /∈ P.

Lemma 1.18 Let 〈A,∨, 1〉 be a distributive nearlattice. Let a, b ∈ A. If a � b, then
there is P ∈ X∧(A) such that a ∈ P and b /∈ P.

2 Near-Heyting algebras

A sectionally pseudocomplemented distributive nearlattice is a distributive nearlattice
such that every principal upset is a pseudocomplemented lattice [15]. In every sec-
tionally pseudocomplemented distributive nearlattice 〈A,∨, 1〉 is possible to define a
binary operation → as follows: For all x, y ∈ A, x → y is the pseudocomplemented
of x ∨ y in [y). In [13, Theorem 5.5.1] it is shown that sectionally pseudocomple-
mented nearlattices can be defined equivalently as algebras of type (3, 2, 0) satisfying
some conditions.

Definition 2.1 ([22]) An algebra 〈A,∨,→, 1〉 of type (2, 2, 0) is said to be a near-
Heyting algebra if 〈A,∨, 1〉 is a distributive nearlattice and the following identities
hold:

(NH1) y ∨ (x → y) = x → y,
(NH2) x → x = 1,
(NH3) 1 → x = x ,
(NH4) (x ∨ z) ∧z [((x ∨ z) ∧z (y ∨ z)) → z] = (x ∨ z) ∧z (y → z).
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Proposition 2.2 (See [13, Theorem 5.5.1]) If 〈A,∨, 1〉 is a sectionally pseudocom-
plemented distributive nearlattice, then the algebra 〈A,∨,→, 1〉 of type (2, 2, 0) is
a near-Heyting algebra, where x → y is the pseudocomplement of x ∨ y in [y), for
all x, y ∈ A. Conversely, if 〈A,∨,→, 1〉 is a near-Heyting algebra, then 〈A,∨, 1〉
is a sectionally pseudocomplemented distributive nearlattice such that x → y is the
pseudocomplement of x ∨ y in [y), for all x, y ∈ A.

We can notice, from conditions (NH1)–(NH3) of Definition 2.1, that the operation
→ behaves like an implication.

Theorem 2.3 Let 〈A,∨,→, 1〉 be an algebra of type (2, 2, 0). Then, 〈A,∨,→, 1〉 is
a near-Heyting algebra if and only if the following conditions hold: (i) 〈A,∨, 1〉 is a
join-semilattice with a greatest element 1, (ii) for each a ∈ A, 〈[a),∧a,∨,→, a, 1〉
is a Heyting algebra, and (iii) (x ∨ y) → y = x → y, for all x, y ∈ A.

Proof Let 〈A,∨,→, 1〉 be a near-Heyting algebra. Then, for all a ∈ A, 〈[a),∧a,∨,

a,∗a , 1〉 is a pseudocomplemented distributive lattice, where for each x ∈ [a), x∗a =
x → a. Thus, for all x, y ∈ A,

x → y = (x ∨ y)∗y = (x ∨ y) → y.

Then, by [4, Theorem IX.2.8] we have that 〈[a),∧a,∨, a,→a, 1〉 is aHeyting algebra,
where

x →a y = x∗(x∧a y) = x → (x ∧a y),

for all x, y ∈ [a). Now, for x, y ∈ [a), we have

x → y = (x ∨ y) → y = (x ∨ y) → ((x ∨ y) ∧a y)

= (x ∨ y) →a y = (x →a y) ∧a (y →a y) = x →a y.

Therefore, 〈[a),∧a,∨, a,→, 1〉 is a Heyting algebra, for each a ∈ A.
Assume now that 〈A,∨,→, 1〉 is an algebra satisfying conditions (i)–(iii). Let a ∈

A. Since 〈[a),∧a,∨,→, a, 1〉 is a Heyting algebra, it follows that 〈[a),∧a,∨, a, 1〉
is a pseudocomplemented distributive lattice. Moreover, it is clear that (x ∨a) → a is
the pseudocomplement of x ∨ a in [a). Hence, 〈A,∨, 1〉 is a sectionally pseudocom-
plemented distributive nearlattice, and by (iii) we have that x → y = (x ∨ y) → y
is the pseudocomplement of x ∨ y in [y), for all x, y ∈ A. Therefore, by Proposition
2.2, we obtain that 〈A,∨,→, 1〉 is a near-Heyting algebra. �


Now, if 〈A,∨,→, 1〉 is an algebra of type (2, 2, 0) satisfying only the conditions
(i) 〈A,∨, 1〉 is a join-semilattice, and (ii) for each a ∈ A, 〈[a),∧a,∨,→, a, 1〉 is
a Heyting algebra, we cannot assure that 〈A,∨,→, 1〉 is a near-Heyting algebra, as
shown in the following example.

Example 2.4 Consider the join-semilattice 〈A,∨, 1〉 depicted in Fig. 1, and the oper-
ation → defined on A as follows: x → x = 1, for all x ∈ {a, b, 1}, 1 → a = a,
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a b

1

Fig. 1 Corresponding to Example 2.4

1 → b = b, a → 1 = 1, b → 1 = 1, and a → b = b → a = 1. It is clear
that 〈A,∨, 1〉 is a distributive nearlattice and 〈[x),∧x ,∨,→, x, 1〉 is a Heyting alge-
bra, for each x ∈ {a, b, 1}. But 〈A,∨,→, 1〉 is not a near-Heyting algebra because
(NH4) is not true for x = y = a and z = b. Notice that, in general, the equality
(x ∨ y) → y = x → y is not true.

Lemma 2.5 ([22, Proposition 4.4]) Let 〈A,∨,→, 1〉 be a near-Heyting algebra. Let
F ∈ Fi∧(A) and a, b ∈ A. If a → b /∈ F, then there exists P ∈ X∧(A) such that
F ⊆ P, a ∈ P and b /∈ P.

Lemma 2.6 ([22, Lemma 5.4]) Let 〈A,∨,→, 1〉 be a near-Heyting algebra. Let F ∈
Fi∧(A) and a, b ∈ A. If a, a → b ∈ F, then b ∈ F.

3 Near-Heyting algebras are Hilbert algebras with supremum

In this section we will show that the class of near-Heyting algebras is a subclass
of Hilbert algebras with supremum. We also study a weaker class of algebras than
near-Heyting.

Definition 3.1 An algebra 〈A,∨,→, 1〉 of type (2, 2, 0) is called a distributive near-
lattice Hilbert algebra, or DNH-algebra for short, if

(DH1) 〈A,∨,→, 1〉 is an HS-algebra, and
(DH2) 〈A,∨, 1〉 is a distributive nearlattice.

Thus, a DNH-algebra is a Hilbert algebra with supremum (HS-algebra) where
every principal upset [a) is a bounded distributive lattice. For each DNH-algebra
〈A,∨,→, 1〉, we have the collections of filters Fi∧(A) and prime filters X∧(A) of the
distributive nearlattice 〈A,∨, 1〉, and the collections of implicative filters Fi→(A) and
irreducible implicative filters X→(A) of the Hilbert algebra 〈A,→, 1〉. The reader
may want to recall Lemma 1.6, Corollary 1.7, and Lemma 1.18.

Proposition 3.2 Let 〈A,∨,→, 1〉 be a DNH-algebra. For all a, b, c, d ∈ A, we have

(DH3) (a ∨ b) ∧b (a → b) � b,
(DH4) c → (a ∧ b) � (c → a) ∧ (c → b), whenever a ∧ b exists,
(DH5) a � b → c implies a ∧ b � c, whenever a ∧ b exists.
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0

a b

1

Fig. 2 A DNH-algebra where X∧(A) ⊂ X→(A)

Proof

(DH3) Suppose that (a∨b)∧b(a → b) � b. Then, byLemma1.6 there is P ∈ X→(A)

such that (a ∨ b) ∧b (a → b) ∈ P and b /∈ P . Since P is an upset, it follows that
a ∨ b, a → b ∈ P . Now, given that P is irreducible and b /∈ P , by Remark 1.11
we have a ∈ P . Thus a, a → b ∈ P . Then b ∈ P , which is a contradiction. Hence
(a ∨ b) ∧b (a → b) � b, for all a, b ∈ A.

(DH4) Assume that a ∧ b exists. Since a ∧ b � a and a ∧ b � b, it follows by (H11)
that c → (a ∧ b) � c → a and c → (a ∧ b) � c → b. Hence c → (a ∧ b) �
(c → a) ∧ (c → b).

(DH5) Assume that a ∧ b exists. Suppose that a � b → c and a ∧ b � c. Thus,
by Lemma 1.6, there exists P ∈ X→(A) such that a ∧ b ∈ P and c /∈ P . Then
a, b ∈ P , which implies that b, b → c ∈ P . Hence c ∈ P , a contradiction. Therefore,
a � b → c implies a ∧ b � c. �


Let 〈A,∨,→, 1〉 be a DNH-algebra. Notice that for all a, b ∈ A, such that a ∧ b
exists, a ∧ (a → b) exists. Thus, it follows by (DH5) that a ∧ (a → b) � b because
a � (a → b) → b.

Proposition 3.3 Let 〈A,∨,→, 1〉 be a DNH-algebra. Then, Fi∧(A) ⊆ Fi→(A). In
particular, X∧(A) ⊆ X→(A).

Proof Let F ∈ Fi∧(A). Let a, a → b ∈ F . Given that F is an upset,we havea∨b ∈ F .
Since b � a ∨ b and b � a → b, it follows that (a ∨ b) ∧ (a → b) exists in A. Then,
since a ∨ b, a → b ∈ F , we have (a ∨ b) ∧ (a → b) ∈ F . By (DH3), we obtain
b ∈ F . Hence F ∈ Fi→(A). Now, from the definition of prime filter and by Remark
1.11, it follows that X∧(A) ⊆ X→(A). �

Example 3.4 Consider the join-semilattice 〈A,∨, 1〉 depicted in Fig. 2, and the oper-
ation → defined on A as in Example 1.10. Then, 〈A,∨,→, 1〉 is a DNH-algebra.
It follows that Fi∧(A) = {{1}, [a), [b), A}, Fi→(A) = {{1}, [a), [b), {a, b, 1}, A},
X∧(A) = {[a), [b)} and X→(A) = {[a), [b), {a, b, 1}}. Hence Fi∧(A) ⊂ Fi→(A)

and X∧(A) ⊂ X→(A). Notice also that a ∧ b � 0 but a � b → 0 = 0.
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Definition 3.5 An algebra 〈A,∨,→, 1〉 of type (2, 2, 0) is called a quasi-Heyting
algebra if it is a DNH-algebra, and for all a, b, c ∈ A, satisfies the following condition:

a ∧ b � c implies a � b → c, (R)

whenever a ∧ b exists in A.

Remark 3.6 Let 〈A,∨,→, 1〉 be a quasi-Heyting algebra. Then, by (DH5) and condi-
tion (R), we obtain that for all a, b, c ∈ A,

a ∧ b � c if and only if a � b → c,

whenever a ∧ b exists in A.

Example 3.7 Each Heyting algebra is a quasi-Heyting algebra. Moreover, a quasi-
Heyting algebra is a Heyting algebra if and only if it has a least element.

Example 3.8 Implication algebras (also known as Tarski algebras) [1, 2] are also exam-
ples of quasi-Heyting algebras.

Proposition 3.9 Let 〈A,∨,→, 1〉 be a DNH-algebra. Then, the following are equiv-
alent:

(1) A is a quasi-Heyting algebra,
(2) Fi∧(A) = Fi→(A),
(3) X∧(A) = X→(A).

Proof (1)⇒ (2). Assume that 〈A,∨,→, 1〉 is a quasi-Heyting algebra. By Proposition
3.3, we have Fi∧(A) ⊆ Fi→(A). Let now F ∈ Fi→(A). We know that F is an upset
and 1 ∈ F . Let a, b ∈ F be such that a ∧ b exists in A. By condition (R), we have
a � b → (a ∧ b). Then, we obtain that a ∧ b ∈ F . Hence F ∈ Fi∧(A). Therefore,
Fi→(A) ⊆ Fi∧(A).

(2)⇒ (3). It is straightforward from the definition of prime filter and by Remark 1.11.

(3)⇒ (1). Assume that X∧(A) = X→(A). We only need to prove that condition (R)
holds. Let a, b, c ∈ A be such that a ∧ b exists in A and a ∧ b � c. Suppose that
a � b → c. Thus, by Lemma 1.6, there is P ∈ X→(A) such that a ∈ P and
b → c /∈ P . Then, by Corollary 1.7, there is Q ∈ X→(A) such that P ⊆ Q, b ∈ Q,
and c /∈ Q. Since Q ∈ X→(A) = X∧(A), we have that Q is closed under existing
finite meets. Thus, because a, b ∈ Q, we obtain a ∧ b ∈ Q. Then c ∈ Q, which is
a contradiction. Hence, a ∧ b � c implies a � b → c. Then, (R) holds. Therefore,
〈A,∨,→, 1〉 is a quasi-Heyting algebra. �

Theorem 3.10 Let 〈A,∨,→, 1〉 be a DNH-algebra. The following conditions are
equivalent:

(1) A is a quasi-Heyting algebra.
(2) If b ∧ c exists in A, then (a → b) ∧ (a → c) � a → (b ∧ c).
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Proof (1)⇒ (2). Assume that 〈A,∨,→, 1〉 is a quasi-Heyting algebra. Let a, b, c ∈ A
be such that b ∧ c exists in A. Since b ∧ c exists, it follows that b ∧ c � b � a → b
and b∧ c � c � a → c. Thus (a → b)∧ (a → c) exists in A. Now suppose, towards
a contradiction, that (a → b) ∧ (a → c) � a → (b ∧ c). Then, by Lemma 1.6 and
Corollary 1.7, there is P ∈ X→(A) such that (a → b) ∧ (a → c) ∈ P , a ∈ P ,
and b ∧ c /∈ P . Thus a → b, a → c ∈ P . Since P is an implicative filter, we have
b, c ∈ P . Now, by Proposition 3.9, P ∈ Fi→(A) = Fi∧(A); thus b ∧ c ∈ P , which is
a contradiction.

(2)⇒ (1). It only remains to verify that condition (R) holds. Let a, b, c ∈ A and assume
that a ∧ b exists and a ∧ b � c. From (H11), we have b → (a ∧ b) � b → c. By (2),
we obtain that (b → a) ∧ (b → b) � b → c. Then a � b → a � b → c. Therefore,
condition (R) holds. �

Remark 3.11 For every DNH-algebra 〈A,∨,→, 1〉, by (DH4) we have that condition
(2) of Theorem 3.10 is equivalent to

a → (b ∧ c) = (a → b) ∧ (a → c)

whenever b ∧ c exists in A.

Theorem 3.12 Let 〈A,∨,→, 1〉 be an algebra of type (2, 2, 0). The following are
equivalent:

(1) 〈A,∨,→, 1〉 is a quasi-Heyting algebra.
(2) 〈A,∨,→, 1〉 is a near-Heyting algebra.

Proof (1)⇒ (2). Let 〈A,∨,→, 1〉 be a quasi-Heyting algebra. Let a ∈ A. Notice that
→ is well defined in [a). Indeed, if x, y ∈ [a), then a � y � x → y. Since 〈A,∨, 1〉
is a distributive nearlattice, it follows that 〈[a),∧a,∨, a, 1〉 is a bounded distributive
lattice. Hence, by Remark 3.6 〈[a),∧a,∨,→, a, 1〉 is a Heyting algebra. Let a, b ∈ A.
From (HS4) we have that a → b � (a∨b) → b. Suppose that (a∨b) → b � a → b.
Then by Lemma 1.18 there is P ∈ X∧(A) such that (a∨b) → b ∈ P and a → b /∈ P .
Hence, byProposition 3.9 andCorollary 1.7 there exists Q ∈ X→(A) such that P ⊆ Q,
a ∈ Q and b /∈ Q. Thus a ∨ b ∈ Q and (a ∨ b) → b ∈ Q, and then b ∈ Q, which is a
contradiction. Therefore, by Theorem 2.3 we have that 〈A,∨,→, 1〉 is a near-Heyting
algebra.

(2)⇒ (1). Let 〈A,∨,→, 1〉 be a near-Heyting algebra. By Theorem 2.3 we have that:
(i) 〈A,∨, 1〉 is a join-semilattice with a greatest element 1, (ii) 〈[a),∧a,∨,→, a, 1〉 is
a Heyting algebra for every a ∈ A, and (iii) (x ∨ y) → y = x → y, for all x, y ∈ A.
From (ii), for all x, y, t ∈ [a), we have x → y ∈ [a) and

x ∧a t � y if and only if t � x → y. (3.1)

First, let us show that condition (R) is true. Let a, b, c ∈ A be such that a∧b exists
in A and a∧b � c. Since a, b, c ∈ [a∧b), by (3.1) we obtain a � b → c. Therefore,
condition (R) holds.

It is obvious that 〈A,∨, 1〉 is a distributive nearlattice. Thus, (DH2) holds.
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Now we need to show that 〈A,∨,→, 1〉 is an HS-algebra. To this end, we will
apply Proposition 1.9. It is clear that condition (HS2) holds. Let a, b ∈ A. Since
a∨b, b, 1 ∈ [b), by (3.1) we have that 1 � (a∨b) → b if and only if (a∨b)∧b 1 � b
if and only if a ∨ b = b. Hence, we obtain (a ∨ b) → b = 1 if and only if a ∨ b = b.
By condition (iii), it follows that a → b = 1 if and only if a ∨ b = b. Thus, (HS5)
holds true. Now, we will prove that 〈A,→, 1〉 is a Hilbert algebra, i.e., we prove
(H5), (H6) and (H7) (see Proposition 1.3). Let a, b ∈ A. Since a, a ∨ b ∈ [a), and
a ∧a (a ∨ b) � a, from (3.1) we have a � (a ∨ b) → a. Hence, by (iii) we have
a � b → a, i.e, (H5) holds true. Condition (H7) follows from (HS5). Let a, b, c ∈ A
be such that a → (b → c) � (a → b) → (a → c). From Lemma 1.18 there is
P ∈ X∧(A) such that a → (b → c) ∈ P and (a → b) → (a → c) /∈ P . Now, from
Lemma 2.5 there exists Q ∈ X∧(A) such that P ⊆ Q, a → b ∈ Q and a → c /∈ Q.
Applying again Lemma 2.5 there exists Q1 ∈ X∧(A) such that Q ⊆ Q1, a ∈ Q1 and
c /∈ Q1. Since also a → b ∈ Q ⊆ Q1, from Lemma 2.6 we have b ∈ Q1. Then, from
a → (b → c) ∈ P ⊆ Q ⊆ Q1, again by Lemma 2.6 we obtain b → c ∈ Q1, and
then c ∈ Q1, which is a contradiction. Hence (H6) holds true. Thus, 〈A,∨,→, 1〉 is
an HS-algebra, and hence (DH1) holds. �

Theorem 3.13 Let 〈A,∨,→, 1〉 be an algebra of type (2, 2, 0). The following are
equivalent:

(1) 〈A,∨,→, 1〉 is a quasi-Heyting algebra.
(2) 〈A,∨,→, 1〉 is an HS-algebra such that for each a ∈ A, 〈[a),∧a,∨,→, a, 1〉 is

a Heyting algebra.

Proof (1)⇒ (2). If 〈A,∨,→, 1〉 is a quasi-Heyting algebra, then by Theorem 3.12, A
is a near-Heyting algebra. Thus, by Theorem 2.3, we have that 〈[a),∧a,∨,→, a, 1〉
is Heyting algebra, for all a ∈ A.

(2)⇒ (1). It is clear that 〈A,∨, 1〉 is a distributive nearlattice. It only remains to
verify condition (R). Suppose that a, b, c ∈ A, a ∧ b exists and a ∧ b � c. Since
a, b, c ∈ [a ∧ b), we obtain a � b → c because each upset is a Heyting algebra.
Therefore, condition (R) holds true, and thus the proof is complete. �


We present now several examples of near-Heyting algebras showing that these
algebraic structures arise naturally.

Example 3.14 Let L be a distributive lattice (not necessarily bounded). Recall that a
subset I of L is an ideal of L if it is non-empty and for all a, b ∈ L , a ∨ b ∈ I
iff a, b ∈ I . Let Id(L) be the collection of all ideals of L . Then, 〈Id(L),�, L〉 is a
join-semilattice with top L , where for all I , J ∈ Id(L), I � J = {a∨b : a ∈ I , b ∈ I }.
Notice that for all I , J ∈ Id(L), I ∩ J is an ideal of L if and only if I ∩ J �= ∅.
Hence 〈Id(L),�, L〉 is a distributive nearlattice. Now for all I , J ∈ Id(L), it is defined
the operation ⇒ as follows: I ⇒ J = {a ∈ L : I ∩ (a] ⊆ J }. It is straightforward
show that the algebra 〈Id(L),�,⇒, L〉 satisfies the conditions (H5)–(H7) and (HS5).
Hence 〈Id(L),�,⇒, L〉 is a Hilbert algebra with supremum. Moreover it is also easy
to check that for all I , J , K ∈ Id(L), I ∩ J ⊆ K ⇐⇒ I ⊆ J ⇒ K . Therefore,
〈Id(L),�,⇒, L〉 is a near-Heyting algebra.
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Example 3.15 Let 〈H ,∧,∨,→, 0, 1〉 be a Heyting algebra (see [4]). Let H∗ = H \
{0}. It is clear that 〈H∗,∨,→, 1〉 is a subalgebra of the reduct 〈H ,∨,→, 1〉. Thus
〈H∗,∨,→, 1〉 is a Hilbert algebra with supremum. It is known that for all a ∈ H , the
principal upset [a) is a Heyting algebra concerning the restrictions of the operations of
H (see [4, Theorem IX.2.8]). Hence, for all a ∈ H∗, 〈[a),∧,∨,→, a, 1〉 is a Heyting
algebra. Therefore, it follows by Theorem 3.13 that 〈H∗,∨,→, 1〉 is a near-Heyting
algebra.

Example 3.16 Let 〈A,∨, 1〉 be a join-semilattice with greatest element 1 where every
principal upset [a) is a chain. Consider the operation → given by the partial order
of A, that is, a → b = 1 if a � b, and a → b = b otherwise. Then, it follows by
Theorem 2.3 that 〈A,∨,→, 1〉 is a near-Heyting algebra.

Example 3.17 Let � the set of all finite binary strings, that is, all finite sequences of
zeros and ones; the empty string is included. We order � by putting u � v if and
only if u = v or v is a prefix of u (that is, v is a finite initial substring of u). It is
straightforward that � is a join-semilattice with greatest element (the empty string)
concerning the order �. Moreover, for every string u ∈ �, the principal upset [u) is
a (finite) chain. Hence, by the previous example we obtain that � is a near-Heyting
algebra.

We close this section with a summary of all characterizations of near-Heyting
algebra.

Theorem 3.18 Let 〈A,∨,→, 1〉 be an algebra of type (2, 2, 0). The following are
equivalent:

(1) 〈A,∨,→, 1〉 is a near-Heyting algebra.
(2) 〈A,∨, 1〉 is a sectionally pseudocomplemented distributive lattice such that

a → b is the pseudocomplement of a ∨ b in [b), for all a, b,∈ A.
(3) (i) 〈A,∨, 1〉 is a join-semilattice with a greatest element.

(ii) For each a ∈ A, 〈[a),∧a,∨,→, a, 1〉 is a Heyting algebra.
(iii) (a ∨ b) → b = a → b, for all a, b ∈ A.

(4)(DH1) 〈A,∨,→, 1〉 is an HS-algebra.
(DH2) 〈A,∨, 1〉 is a distributive nearlattice.

(R) a∧b � c implies a � b → c, for all a, b, c ∈ A and whenever a∧b exists
in A.

(5)(DH1) 〈A,∨,→, 1〉 is an HS-algebra.
(DH2) 〈A,∨, 1〉 is a distributive nearlattice.

(3) X∧(A) = X→(A).
(6)(DH1) 〈A,∨,→, 1〉 is an HS-algebra.

(DH2) 〈A,∨, 1〉 is a distributive nearlattice.
(2) Fi∧(A) = Fi→(A).

(7)(DH1) 〈A,∨,→, 1〉 is an HS-algebra.
(DH2) 〈A,∨, 1〉 is a distributive nearlattice.

(2) If b ∧ c exists in A, then (a → b) ∧ (a → c) � a → (b ∧ c).
(8) 〈A,∨,→, 1〉 is an HS-algebra such that for each a ∈ A, 〈[a),∧a,∨,→, a, 1〉 is

a Heyting algebra.
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a b

c

1

Fig. 3 A non-prelinear near-Heyting algebra

4 Prelinear near-Heyting algebras

In this section, we introduce the concept of prelinear near-Heyting algebra as a natural
generalization of prelinear Heyting algebra.

Definition 4.1 Let 〈A,∨,→ 1〉 be a near-Heyting algebra. We say that 〈A,∨,→ 1〉
is prelinear if for all a, b ∈ A, we have

(a → b) ∨ (b → a) = 1.

Remark 4.2 If the near-Heyting algebra 〈A,∨,→, 1〉 is prelinear, then the Heyting
algebra [a) is prelinear, for all a ∈ A. But the converse is not true. For instance,
consider the distributive nearlattice 〈A,∨, 1〉 given in Fig. 3. Defining x → y = 1 if
x � y, and x → y = y if x � y, we obtain that 〈A,∨,→, 1〉 is a DNH-algebra.
Then, it is easy to check that Fi∧(A) = Fi→(A). Hence 〈A,∨,→, 1〉 is a near-Heyting
algebra. For every x ∈ A, [x) is a chain. Thus, [x) is a prelinear Heyting algebra, for
all x ∈ A. But (a → b) ∨ (b → a) = b ∨ a = c �= 1. Hence 〈A,∨,→, 1〉 is not
prelinear.

Now we will present several characterizations of prelinear near-Heyting algebras.
Recall that for every near-Heyting algebra A the lattice filters Fi∧(A) of A coincide
with the implicative filters Fi→(A) of A, and also X∧(A) = X→(A).

Theorem 4.3 Let 〈A,∨,→ 1〉 be a near-Heyting algebra. The following are equiva-
lent:

(1) 〈A,∨,→ 1〉 is prelinear.
(2) For all P ∈ X∧(A) and all F ∈ Fi∧(A) \ {A}, if P ⊆ F, then F is prime.
(3) For all P ∈ X∧(A), the family {F ∈ Fi∧(A) : P ⊆ F} is a chain.
(4) For all P ∈ X∧(A), the family {F ∈ X∧(A) : P ⊆ F} is a chain.
Proof (1)⇒ (2). Let P ∈ X∧(A) and F ∈ Fi∧(A)\{A} be such that P ⊆ F . Let
a, b ∈ A be such that a ∨ b ∈ F . Recall that (a ∨ b) → b = a → b and (a ∨ b) →
a = b → a. Now since (a → b) ∨ (b → a) = 1 ∈ P and P is prime, it follows
that a → b ∈ P or b → a ∈ P . If a → b ∈ P , then (a ∨ b) → b ∈ P ⊆ F . As
a ∨ b ∈ F and Fi∧(A) = Fi→(A), it follows that b ∈ F . Similarly, if b → a ∈ P ,
then the obtain that a ∈ F . Hence, F is prime.

123



68 Page 14 of 16 L.J. González et al.

(2)⇒ (3). Let P ∈ X∧(A). Let F,G ∈ Fi∧(A) be such that P ⊆ F ∩ G. Suppose
F � G and G � F , that is, there is a ∈ F\G and there is b ∈ G\F . Consider the
filter Q = Fig∧(P ∪ {a ∨ b}). We show that a, b /∈ Q. Suppose that a ∈ Q. Notice
that Q = Fig∧(P, a ∨ b) = Fig→(P, a ∨ b) = {x ∈ A : (a ∨ b) → x ∈ P} (see [17,
p. 18]). Then b → a = (a∨ b) → a ∈ P . Thus, b ∈ G and b → a ∈ G. Then a ∈ G,
a contradiction. Similarly if b ∈ Q. Thus Q �= A, and since P ⊆ Q, it follows by
hypothesis that Q is prime. This is a contradiction because a ∨ b ∈ Q and a, b /∈ Q.
Therefore, F ⊆ G or G ⊆ F .

(3)⇒ (4). It is immediate.

(4)⇒ (1). Suppose there exist a, b ∈ A such that (a → b) ∨ (b → a) < 1. Then
there exists P ∈ X→(A) such that (a → b) ∨ (b → a) /∈ P . Thus, a → b /∈ P
and b → a /∈ P . Since a → b /∈ P , then there exists Q1 ∈ X→(A) such that
P ⊆ Q1, a ∈ Q1 and b /∈ Q1. Similarly, since b → a /∈ P , then there exists
Q2 ∈ X→(A) such that P ⊆ Q2, b ∈ Q2 and a /∈ Q2. As X→(A) = X∧(A) and
Q1, Q2 ∈ {F ∈ X∧(A) : P ⊆ F} is a chain, then Q1 ⊆ Q2 or Q2 ⊆ Q1. If Q1 ⊆ Q2,
then a ∈ Q2 which is a contradiction. If Q2 ⊆ Q1, then b ∈ Q1 and again we have a
contradiction. Hence, 〈A,∨,→ 1〉 is prelinear. �

Theorem 4.4 Let 〈A,∨,→ 1〉 be a near-Heyting algebra. The following are equiva-
lent:

(1) 〈A,∨,→ 1〉 is prelinear.
(2) x ∨ y = ((x → y) → y) ∧x∨y ((y → x) → x).
(3) x → (y ∨ z) = (x → y) ∨ (x → z).

Proof (1)⇒ (2). By (HS6) we have x ∨ y � (x → y) → y and y ∨ x �
(y → x) → x . So,

x ∨ y � ((x → y) → y) ∧x∨y ((y → x) → x)

We see the other inequality. Let a, b, c ∈ A be such that a � c and b � c. Take

d = ((a → b) → b) ∧a∨b ((b → a) → a).

Since a � c, it follows that d → a � d → c. As d � (b → a) → a, then by (H10)
we have

b → a = ((b → a) → a) → a � d → a.

Thus b → a � d → c. Analogously, a → b � d → c. Then

1 = (a → b) ∨ (b → a) � d → c

and d → c = 1, i.e., d � c. We conclude that for all a, b ∈ A,

a ∨ b = ((a → b) → b) ∧a∨b ((b → a) → a).
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(2)⇒ (3). Let a, b, c ∈ A. By hypothesis and by Remark 3.11, we have

a → (b ∨ a) = a → [((b → c) → c) ∧b∨c ((c → b) → b)]
= [a → ((b → c) → c)] ∧b∨c [a → ((c → b) → b)]
(H3)= [(a → (b → c)) → (a → c)] ∧b∨c [(a → (c → b)) → (a → b)]
(H3)= [((a → b) → (a → c)) → (a → c)] ∧b∨c [((a → c) → (a → b)) → (a → b)]
= (a → b) ∨ (a → c).

Therefore, for all a, b, c ∈ A we have a → (b ∨ c) = (a → b) ∨ (a → c).

(3)⇒ (1). Let a, b ∈ A. Then by (NH2), by hypothesis and (iii) of Theorem 2.3 we
have

1 = (a ∨ b) → (b ∨ a) = [(a ∨ b) → a] ∨ [(a ∨ b) → b] = (b → a) ∨ (a → b).

Thus (a → b) ∨ (b → a) = 1. Hence, the near-Heyting algebra 〈A,∨,→ 1〉 is
prelinear. �


5 Future work

The main contribution of the present article was to prove several characterizations
of what we call near-Heyting algebras. We believe these may be useful in future
investigations about the class of near-Heyting algebras. We show the connections
between the concept of near-Heyting algebra and Hilbert algebra and Heyting algebra.
Indeed, we show that every near-Heyting algebra is a Hilbert algebra with supremum,
and for every element a in a near-Heynting algebra A, [a) is a Heyting algebra.

Taking into account that for every near-Heyting algebra A, we have Fi∧(A) =
Fi→(A), we believe that it would be possible to develop a topological duality for the
algebraic category of near-Heyting algebras following the techniques in [9, 12]. This
path is a Stone-like approach. On the other hand, we believe it may be developed a
Priestley/Esakia-style duality for the near-Heyting algebras. This could be achieved by
a direct approach, taking the collection {ϕ(a) : a ∈ A} ∪ {ϕ(b)c : b ∈ A} as a subbasis
for a topology on Fi∧(A) = Fi→(A), for each near-Heyting algebra A. An alternative
path to obtain a Priestley/Esakia-style duality could be as follows: first, try to get the
“free Heyting extension” of every near-Heyting algebra, and then follows the approach
given in [5, 6].
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