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Abstract
For a general cubic fourfold X ⊂ P

5 with Fano variety F , we compute the Hodge
numbers of the locus S ⊂ F of lines of second type and the class of the locus V ⊂ F
of triple lines, using the description of the latter in terms of flag varieties. We also give
an upper bound of 6 for the degree of irrationality of the Fano scheme of lines of any
smooth cubic hypersurface.
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1 Introduction

Let X ⊂ P
5
C be a general cubic fourfold and F = F(X) ⊂ G(2, 6) its Fano scheme

of lines, which is a four-dimensional hyperkähler variety. The normal bundle of a line
� ∈ F decomposes as one of the following two:

N�/X ∼= O(1)⊕O2, or O(1)2⊕O(−1)

and � is called of first or second type respectively. The locus of second type lines is a
smooth projective irreducible surface S ⊂ F which has drawn considerable interest
since the landmark paper [5] of Clemens–Griffiths. The aim of this paper is to study
some invariants of S and F .
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In Sect. 2 we summarise what is known about S and F and fix notation. In Sect. 4
we use Amerik’s description of the second type locus S as the degeneracy locus of the
universal Gauss map

f : Sym2 UF → Q∨
F

S = D2( f ) ⊂ F,

the Harris–Tu formula as well as Borel–Bott–Weil computations on the Grassmannian
from Sect. 3 to compute the Hodge numbers of S.

Theorem A If X ⊂ P
5 is a general cubic then the second type locus S ⊂ F is a smooth

irreducible surface whose Hodge numbers are as follows:

h1,0 = q = 0,

h2,0 = pg = 449,

h1,1 = 1665,

whereas π1(S, s) contains a non-trivial element of order 2.

The order of the torsion element in the above theorem was pointed out to us by
Huybrechts (see Remark 4.4), who also independently calculated the above invariants
in his lecture notes on cubic hypersurfaces, although our approach using Borel–Bott–
Weil directly on F leads to a more refined analysis of the projective embedding S in
the Plücker space.

In the final Sect. 6 we extend results from [11] to prove the following

Theorem B Let X ⊂ P
n+1 be a smooth cubic hypersurface and F(X) its Fano scheme

of lines. Then degree of irrationality of F(X), i.e., the minimal degree of a dominant,
generically finite, rational map to P

2(n−2), satisfies

irr(F(X)) � 6.

2 Background and notation

As the notation surrounding cubic fourfolds is substantial, we devote this section to
fixing that used in the paper and recalling some basic properties, so that it acts as a
reference for later sections.

For a vector bundle E we denote by P(E) = Proj(Sym(E∨)), so that projective
space parametrises one-dimensional subspaces. We denote by G(k, n) the space of k-
dimensional subspaces ofCn, with universal bundleU of rank k and universal quotient
bundleQ of rank n−k. We will denote by σI the standard Schubert cycles for an index
I so that, e.g., σi = ci (Q) for i � 1.

Throughout, X ⊂ P
5 will be a smooth cubic fourfold with HX = OX (1) and

F ⊂ G(2, 6) the Fano scheme of lines contained in X which is a hyperkähler fourfold
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[3]. To unburden notation, we will often be sloppy in distinguishing a line � ⊂ X and
the point [�] ∈ F that it defines. We denote by UF ,QF the restrictions of U,Q to F .

The subvariety F ⊂ G(2, 6) is given by a section of the rank four bundle
Sym3 U∗ ∼= q∗ p∗O

P5(3) where p, q are the projections from the universal family
G(2, 6) ← I → P

5. In fact it is the section induced, under this isomorphism, by
f ∈ k[x0, . . . , x5]3 whose vanishing is X (see [6, Proposition 6.4]) and its cohomol-
ogy class in the Grassmannian is given by c4(Sym3 U∗) which can be computed as
follows (see [9, Example 14.7.13]):

[F] = 18c1(U
∗)2c2(U∗) + 9c2(U

∗)2

= 18σ 2
1 σ1,1 + 9σ 2

1,1 = 27σ 2
2 − 9σ1σ3 − 18σ4.

(1)

Following [5], there are two types of lines � ∈ F , depending on the decomposition
of the normal bundle N�/X .

Definition 2.1 We say that a line � ⊂ X is

• of first type if N�/X ∼= O(1)⊕O2,
• of second type if N�/X ∼= O(1)2⊕O(−1).

An equivalent geometric description is as follows: � is of

• first type if there is a unique �� = P
2 tangent to X along �,

• second type if there is a family��,t = P
2, t ∈ P

1, of 2-planes tangent to X along �.

Denote by

S ..= {� : � is of second type} ⊂ F

the locus of second type lines.
Denote by HF = c1(U∨

F ) the Plücker ample line bundle on F and by HS the
restriction on S. The following is a combination of [1, Lemma 1], [19, Section3] and
[14, Proposition 6.4.9].

Theorem 2.2 If X ⊂ P
5 is a cubic fourfold then S is 2-dimensional and is the degen-

eracy locus of the Gauss map, i.e., the following morphism of vector bundles:

Sym2 UF → Q∨
F .

In particular c1(KS) = 3HS in H2(S, Q) and the class of S in CH2(F) is given by

[S] = 5(c1(U
∨
F )2 − c2(U

∨
F )) = 5c2(QF ) = 5σ2|F .

If X is general, S is a smooth projective irreducible surface.

Wemotivate now the study of S. Consider theVoisin map of [22] φ : F ��� F, � 
→
�′, taking a general line � and giving the residual line �′ in the tangent 2-plane �� to
�, i.e., �� ∩ X = 2� + �′. Note that this is not defined on S nor on any lines contained
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58 Page 4 of 16 F. Gounelas, A. Kouvidakis

in a plane contained inside X . Containing a plane is a divisorial condition, so for X
outside this locus, we can resolve this map with one blowup ˜F = BlS F along the
surface S. The map φ has been used in various contexts (see, e.g., [2, 21]), so it is
important to understand its locus of indeterminacy. See also [14, Sections2, 6] for
further references and motivation.

As another example, [19, Theorem 0.2] proves that if X is very general then for
every rational curve C ∈ F of class β, the generator of H2(X ,Z)alg, there exists a
unique s ∈ S so that C = φ(q−1(s)). In [18] this is used to count the number of
arithmetic genus 1 curves of fixed general j-invariant in F of class β, and in [12] to
count the number of nodal rational curves of class β respectively.

3 Cohomology of G(2, 6)

This section contains some ancillary computations necessary for the next section. We
briefly recall the necessary notation for theBorel–Weil–Bott Theoremused to compute
various cohomology groups of tautological bundles on the Grassmannian G(2, 6)with
universal sub and quotient bundleU,Q respectively. For a quick introduction we found
[4, Appendix A] and [17] helpful, although a more thorough reference is [23].

Denote by ρ = (6, 5, 4, 3, 2, 1), w = (w′, w′′) ∈ Z2⊕Z4 respectively and 	w the
standardWeyl module. Ifw+ρ is regular, i.e., all its components are distinct integers,
then the BWB Theorem states that

H�(w)
(

G(2, 6),	w′U∗⊗	w′′Q∗) ∼= 	σ(w+ρ)−ρC6

is the only non-trivial cohomology group of this sheaf. In the above, σ is the unique
element of the symmetric group S6 which permutes the components of w + ρ so that
they are non-increasing, i.e., σ(w + ρ) = (λ1, . . . , λ6) with λ1 � · · · � λ6, and �(w)

is defined as the length of σ in the sense of the number of transpositions of the form
(i i + 1) that σ constitutes of. If on the other hand w + ρ is not regular, then all
cohomology groups are zero.

We recall the formula, e.g., from [7, Theorem 6.3], that if λ = (λ1, . . . , λ6) is such
that λ1 � · · · � λ6 � 1 then

dim	λC6 =
∏

1�i< j�6

λi − λ j + j − i

j − i
,

whereas for an arbitrary non-increasing sequence λ, we may twist by some large
weight (e.g., (|λ6| + 1, . . . , |λ6| + 1)) to make all components positive — this has the
effect of tensoring the representation by a 1-dimensional one which does not change
the dimension.
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The first task is to decompose various tautological sheaves into irreducible repre-
sentations. Here are some examples of irreducible representations

	(1,1)U
∗ ∼= H ,

	(1,−1)U
∗ ∼= (Sym2 U)(H),

	(0,−1,−1,−1)Q
∗ ∼= Q∗(1).

Proposition 3.1 The non-zero cohomology groups of
∧pSym3 U⊗(Sym2 U)(t H) and

∧pSym3 U⊗Q∗(t H) on G(2, 6) for t = 1 are

H4(G(2, 6),
∧2 Sym3 U⊗Sym2 U(H)

) ∼= C36,

H0(G(2, 6),Q∗(H)) ∼= C20,

H5(G(2, 6),
∧3Sym3 U⊗Q∗(H)

) ∼= C

whereas for t = −2 they are

H8(G(2, 6),
∧3Sym3 U⊗ Sym2 U(−2H)

) ∼= C126,

H8(G(2, 6),
∧4Sym3 U⊗ Sym2 U(−2H)

) ∼= C1134,

H5(G(2, 6),Sym3 U⊗Q∗(−2H)
) ∼= C,

H8(G(2, 6),
∧4Sym3 U⊗Q∗(−2H)

) ∼= C560.

Proof Using the following code in the SchurRing package of Macaulay2,
loadPackage "SchurRings";
S = schurRing(QQ,s,2);
for i from 0 to 4 do (
print (exteriorPower(i,symmetricPower(3,s_1))*symmetricPower(2,s_1));)

we compute the weights of the irreducible components of the representation
∧pSym3 U⊗Sym2 U(H) as follows:

p w′ w + ρ = (w′; 0, 0, 0, 0) + ρ �(w)

0 (1,−1) (7, 4, 4, 3, 2, 1) −1
1 (1,−4)⊕(0, −3) (7, 1, 4, 3, 2, 1)⊕(6, 2, 4, 3, 2, 1) −1⊕−1

⊕(−1,−2) ⊕(5, 3, 4, 3, 2, 1) ⊕−1
2 (0, −6)⊕(−1,−5) (6, −1, 4, 3, 2, 1)⊕ (5, 0, 4, 3, 2, 1) 4⊕4

⊕(−2, −4)⊕2 ⊕(4, 1, 4, 3, 2, 1)⊕2 ⊕−1⊕−1
3 (−2, −7)⊕(−3,−6) (4,−2, 4, 3, 2, 1)⊕(3, −1, 4, 3, 2, 1) −1⊕−1

⊕(−4,−5) ⊕(2, 0, 4, 3, 2, 1) ⊕−1
4 (−5,−7) (1, −2, 4, 3, 2, 1) −1

since for example a decomposition into irreducibles for p = 2 is

∧2Sym3 U⊗Sym2 U(H) ∼= 	(0,−6)U
∗⊕	(−1,−5)U

∗⊕(	(−2,−4)U
∗)⊕2.
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58 Page 6 of 16 F. Gounelas, A. Kouvidakis

In the table, �(w) = −1 signifies that the weight w is not regular. From the Borel–
Weil–Bott Theorem, we obtain

H i (G(2, 6),
∧pSym3 U⊗Sym2 U(H)

) = 0 for p = 0, 1, 3, 4 and i � 0.

For p = 2, as

σ((6,−1, 4, 3, 2, 1) + ρ) − ρ = (0,−1,−1,−1,−1,−2),

σ ((5, 0, 4, 3, 2, 1) + ρ) − ρ = (−1,−1,−1,−1,−1,−1)

we obtain

H4(G(2, 6),
∧2Sym3 U⊗Sym2 U(H)

) ∼= 	(0,−1,...,−1,−2)C6⊕	(−1,...,−1)C6

∼= C35⊕C ∼= C36.

Similarly, the table for
∧pSym3 U⊗Q∗(H) is as follows:

p w′ w + ρ = (w′, 0, −1,−1,−1) + ρ �(w)

0 (0, 0) (6, 5, 4, 2, 1, 0) 0
1 (0, −3) (6, 2, 4, 2, 1, 0) − 1
2 (−1, −5)⊕(−3, −3) (5, 0, 4, 2, 1, 0)⊕ (3, 2, 4, 2, 1, 0) −1⊕−1
3 (−3,−6) (3, −1, 4, 2, 1, 0) 5
4 (−6,−6) (0, −1, 4, 2, 1, 0) − 1

so the only non-zero cohomology groups occur for p = 0, 3. Using the same formulas
as above we compute

H0(G(2, 6),Q∗(H)) ∼= 	(0,0,0,−1,−1,−1)C6 ∼= C20,

H5(G(2, 6),
∧3Sym3 U⊗Q∗(H)

) ∼= 	(−2,−2,−2,−2,−2,−2)C ∼= C.

The table for
∧pSym3 U⊗ (Sym2 U)(−2 H) is as follows

p w′ w + ρ = (w′ + (6, 5), 4, 3, 2, 1) �(w)

0 (−2, −4) (4, 1, 4, 3, 2, 1) − 1
1 (−2, −7)⊕(−3, −6) (4, −2, 4, 3, 2, 1)⊕ (3, −1, 4, 3, 2, 1) −1⊕−1

⊕(−4,−5) ⊕(2, 0, 4, 3, 2, 1) ⊕−1
2 (−3,−9)⊕ (−4,−8) (3, −4, 4, 3, 2, 1)⊕(2, −3, 4, 3, 2, 1) −1⊕−1

⊕(−5, −7)⊕2 ⊕(1, −2, 4, 3, 2, 1)⊕2 ⊕−1⊕−1
3 (−5,−10)⊕ (−6,−9) (1, −5, 4, 3, 2, 1)⊕(0, −4, 4, 3, 2, 1) −1⊕8

⊕(−7, −8) ⊕(−1, −3, 4, 3, 2, 1) ⊕8
4 (−8,−10) (−2, −5, 4, 3, 2, 1) 8
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giving

H8(∧3Sym3 U⊗(Sym2 U)(−2H)
) ∼= 	(−2,...,−2,−5)C6⊕	(−2,...,−2,−3,−4)C6

∼= C56⊕C70 ∼= C126,

H8(∧4Sym3 U⊗(Sym2 U)(−2H)
) ∼= 	(−2,−2,−2,−2,−4,−6)C6 ∼= C1134.

Similarly, the table for
∧pSym3 U⊗Q∗(−2 H) is as follows, noting thatQ∗(−2H)

∼= 	(3,2,2,2)Q
∗.

p w′ w + δ = (w′, 3, 2, 2, 2) + ρ �(w)

0 (0, 0) (6, 5, 7, 5, 4, 3) −1
1 (0,−3) (6, 2, 7, 5, 4, 3) 5
2 (−1,−5)⊕(−3, −3) (5, 0, 7, 5, 4, 3)⊕ (3, 2, 7, 5, 4, 3) −1⊕−1
3 (−3,−6) (3, −1, 7, 5, 4, 3) −1
4 (−6,−6) (0, −1, 7, 5, 4, 3) 8

giving

H5(Sym3 U⊗Q∗(−2H)) ∼= 	(1,1,1,1,1,1)C6 ∼= C,

H8(∧4Sym3 U⊗Q∗(−2H)
) ∼= 	(1,0,0,0,−2,−2)C6 ∼= C560. ��

4 Hodge numbers of S

In Theorem 2.2, we described how S is given as the degeneracy locus of the map

f : Sym2 UF → Q∨
F .

Restricting to S we thus have the following sequence of vector bundles:

0 → K → Sym2 US
f |S−−→ Q∨

S → C → 0 (2)

where K is a line bundle and C of rank 2. Note that there is a formula for the normal
bundle of a degeneracy locus in [13, Section3] giving

NS/F = K∨⊗C .

The map f is generically injective when considered on F , hence injective, and
Amerik [1, Section2] has constructed the following resolution of the ideal sheaf IS of
S ⊂ F :
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58 Page 8 of 16 F. Gounelas, A. Kouvidakis

0 → Sym2 UF (−2H) → Q∨
F (−2H) → IS → 0. (3)

A short explanation is in order concerning the above. The cokernel of f is torsion-free
by noting that the degeneracy locus S does not have any divisorial components (see the
local computations of [8, pp. 32–33]). From this one obtains coker( f ) = M⊗ IS for
some line bundle M , and an Euler characteristic computation in [1] gives M = 2H .

Proposition 4.1 For S the surface parametrising lines of second type on a cubic four-
fold X we have

• K 2
S = 2835,

• χ(OS) = 450.

Proof As c1(KS) = 3HS ∈ H2(S,Q) and H2
S = 315 from Theorem 2.2, we compute

that K 2
S = 2835. To simplify notation for this proof we denote by

E = Q∨
F ,

F = Sym2 UF .

To compute χ(OS) we compute first the Chern numbers of K and C . For this we use
the Harris–Tu formula [13], although we follow the notation of [20]. We denote the
Segre polynomial

st (E − F) ..=
∑

sk(E − F) tk ..= st (E)ct (F)

where st (E), ct (F) are the Segre and Chern polynomials of E and F respectively.
Written in terms of the standard Schubert cycles σi

..= ci (Q) on G(2, 6) we have

∑

sk(E − F) tk = 1 − 2σ1t + (4σ 2
1 − 5σ2) t

2 + (σ1σ2 + σ3) t
3

+ (2σ 2
2 − 4σ1σ3 + 2σ4) t

4 + (− 4σ2σ3 + 4σ1σ4) t
5,

and in what follows we denote by si ..= si (E− F). For a partition I = (i1, i2, . . .) we
denote by

sI (E − F) ..= det[(si p−p+q)p,q ]

so now [20, Example 5.4] (note there are some typos fixed in a later paper) gives the
following intersection numbers, all taking place on F , i.e., intersected with [F] from
(1):
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c2(C) = s(2,2)(E − F) = (s22 − s1s3) = 495,

c21(C) = (s(3,1) + s(2,2)) = (s1s3 − s4) = −180,

c21(K ) = (s(1,1,2) + s(1,1,1,1)) = (s41 − 3s21s2 + 2s1s3 + s22 − s4) = 315.

From the tangent sequence of S ⊂ F and the fact that KF = 0 we obtain

3HS = c1(KS) = c1(N ) = − 2c1(K ) + c1(C)

from which c1(K )c1(C) = −315 and hence c2(NS/F ) = 1125. On the other hand
from the tangent sequence of F ⊂ G(2, 6)

0 → TF → Q⊗U∨ → Sym3 U∨ → 0

we have c2(TF ) = − 3σ 2
1 |F + 8σ2|F , giving

c2(TS) = c2(TF )[S] − c2(NS/F ) − c1(TS) c1(NS/F ) = 2565.

From the Noether formula we compute now

χ(OS) = 1

12
(c1(TS)

2 + c2(TS)) = 450. ��
Remark 4.2 Using the fact that S is isomorphic to S′ a section of the vector bundle
E = π∗Q∨

F ⊗O
P(Sym2 UF )(1) on π : P(Sym2 UF ) → F , we have from [10, p. 54] the

formula

χtop(S) =
∫

S
ctop(E)c(E)−1c(P(Sym2 UF ))

which can also be used to computeχ(OS). In fact, recentlyHuybrechts [14, Proposition
6.4.9] has studied the ideal sheaf IS′ , proving that sequence (2) on S is

0 → L → Sym2 US → Q∨
S → NS/F⊗ L → 0 (4)

for a line bundle L satisfying −2L = 2HS . From this one can, by taking Euler
characteristics, also obtain that χ(OS) = 450. Studying cohomological vanishing on
P(Sym2 UF ) he also obtains h1(S,OS) = 0 like we do in what follows.

Our aim now is to compute q = h1(S,OS) or pg , noting that

χ(S,OS) = 1 − q + pg

so one determines the other from the above computation. This will be achieved by
computing cohomology from sequence (3). As F is the vanishing of a section of
Sym3 U∨, we can consider the Koszul resolution

0 → ∧4Sym3 U → · · · → Sym3 U → OG(2,6) → OF → 0 (5)
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from which it becomes clear that in order to compute groups such as

H i (F,Sym2 UF (H))

we will need to compute the groups

H i (G(2, 6),
∧pSym3 U⊗(Sym2 U)(H)

)

,

which was achieved using the Borel–Weil–Bott Theorem in Sect. 3.

Theorem 4.3 The Hodge numbers of S are as follows:

h1,0 = q = 0,

h2,0 = pg = 449,

h1,1 = 1665.

Also, Pic S ∼= NS(S) and Picτ S �= 0, i.e., S has torsion in the Néron–Severi group
and has non-trivial fundamental group.

Proof Tensoring sequence (5) with Sym2 U(t H) and Q∨(t H) and using the hyper-
cohomology spectral sequence [15, B.1.5], we obtain the following second quadrant
spectral sequences:

E p,q
1 = Hq(∧−pSym3 U⊗(Sym2 U)(t H)

) ⇒ Hp+q(F,Sym2 UF (t H)),

E p,q
1 = Hq(∧−pSym3 U⊗Q∨(t H)

) ⇒ Hp+q(F,Q∨
F (t H)).

From Proposition 3.1 for t = −2 and the first spectral sequence, we have that

d−4,8 : E−4,8
1 → E−3,8

1

is the only non-trivial differential between the only two non-trivial terms of the E1-
page. Since H5(F, (Sym2 UF )(−2 H)) = 0 as dim F = 4, it must be that E−3,8∞ = 0
and so that d−4,8 is surjective. This gives that E−4,8∞ = E−4,8

2
∼= C1008 and hence

that H4((Sym2 UF )(−2H)) = C1008 is the only non-zero cohomology group of this
sheaf. Similarly, the second spectral sequence gives that

H i (F,Q∨
F (−2H)) =

{

C561, if i = 4,

0, otherwise.

From sequence (3) we obtain now immediately that

H i (F, IS) = 0 for i � 2.

The sequence

0 → IS → OF → OS → 0

123
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and the fact that hi (F,OF ) is 1, 0, 1, 0, 1 for i = 0, . . . , 4 respectively give that
h1(S,OS) = 0. From450 = χ(S,OS) = 1−q+pg we immediately obtain pg = 449.
As h1,0 = h0,1 = 0, so are the Betti numbers b1 = b3 = 0. Since S is connected,
b0 = b4 = 1. Note that χtop = c2(TS) = ∑

(−1)i bi = 2565, giving that b2 = 2563
and hence from the Hodge decomposition and Hodge duality that h1,1 = b2−2h2,0 =
1665.

For t = 1, the first spectral sequence and Proposition 3.1 give E−2,4∞ = E−2,4
1

∼=
C36 as the only non-zero term. Hence

h2(F, (Sym2 U)(H)) = 36

is the only non-zero cohomology group of this sheaf. The second spectral sequence
for t = 1 gives that

h0(F,Q∨
F (H)) = 20, h2(F,Q∨

F (H)) = 1

are the only two non-trivial cohomology groups.
The resolution of the ideal sheaf twisted by 3H

0 → (Sym2 UF )(H) → Q∨
F (H) → IS(3H) → 0

and the computations above give that h3(F, IS(3H)) = 0. Kodaira vanishing gives
hi (F,OS(3H)) = 0 for all i � 1 so the sequence

0 → IS(3H) → OF (3H) → OS(3H) → 0

induces h2(S,OS(3H)) = h3(F, IS(3H)). If KS and 3 H were linearly equivalent
and not just equal in the group H2(S,Q), then 1 = h2(S, KS) = h3(F, IS(3H))

which is a contradiction to the computation above giving h3(F, IS(3H)) = 0.
Since q = h1(S,OS) = 0 is the tangent space to the abelian variety Pic0 S, thismust

be zero, giving Pic S = NS(S). Since 3 H and KS are cohomologically but not linearly
equivalent, there must be torsion in cohomology, or in other words Picτ S �= 0. ��
Remark 4.4 In [14, Remark 6.4.10], it is shown that there is a degree 2 étale cover of S
trivialising the above torsion element, which is, from (4), the difference KS − 3HS ∈
Pic S. This cover can be realised as the surface in P(US) parametrising the two distinct
ramification points of the Gauss map when restricted to a line.

5 The surface V and its invariants

Let X ⊂ P
5 be a smooth cubic, and denote by V ⊂ F ..= F(X) the surface of triple

lines, i.e., lines � ⊂ X so that there exists a 2-plane so that X ∩ P
2 = 3�. Denote also

by ˜V ⊂ BlS F , the strict transform of V . In [12, 4.3–4.4] we prove that if X is general,
then V is an irreducible surface and ˜V is its smooth normalisation, and we prove that
the class of V in the cohomology of F is 21c2(UF). In this section we will give a
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different geometric interpretation of ˜V than the one in [12] and use this to compute
the class of V again and some of the invariants of ˜V . After setting up the geometric
construction, we will perform the computations using Macaulay2 as they are similar
to the ones in previous sections.

We will need the following construction, suggested to us by Kuznetsov. Let
Fl = Fl(2, 3; 6) be the 11-dimensional Flag variety parametrising tuples (�,�) ∈
G(2, 6)×G(3, 6) so that � ⊂ �, and let U2 ⊂ U3 be the universal bundles on Fl and
L the kernel of the surjection U∨

3 → U∨
2 . Denote by E the rank 9 quotient of the

following natural inclusion:

0 → 3L → Sym3 U∨
3 → E → 0, (6)

which is a vector bundle as the inclusion of 3L is of full rank at every point. The
equation of the cubic X induces a section t : OFl → Sym3 U∨

3 , and hence a section
s : OFl → E . Denote by V (s) ⊂ Fl the vanishing locus of this section. Note that

H0(Fl,Sym3 U∨
3 ) = H0(G(3, 6),Sym3 U∨

3 ) = H0(P(U3),OP(U3)(3)) (7)

by the usual Leray argument (in the latter two groups U3 is now considered as
the universal bundle on G(3, 6)), and these vector spaces also agree with the 56-
dimensionalH0(P5,O

P5(3)) since the pullbackofOP5(1) to the universal familyP(U3)

is OP(U3)(1). As Sym
3 U∨

3 is globally generated, so is E , so V (s) has dimension 2
and a general section ofO

P5(3) induces a section of E whose zero locus is generically
reduced (see [6, Lemma 5.2]).

Note that the set V (s) ⊂ Fl consists of pairs (�,�) so that X ∩ � = 3� or � ⊂ X .
To see this, note that if (�,�) is already a zero of t then the equation of X vanishes
on � from equation (7). For the remaining zeros of s, note that L parametrises linear
forms on U3 which vanish on U2, so that from sequence (6) such a point is an (�,�)

so that X ∩ � = 3�.
If X is a general cubic, then S is smooth and the blowup of F at S parametrises

planes tangent to lines in X as it is known (see [14, Remark 2.2.19]) that it is isomorphic
to the incidence variety

BlS(F) ∼= {(�,�) : � ∩ X = 2� + �′} ⊂ Fl ⊂ G(2, 6)×G(3, 6).

Under the genericity assumption, X does not contain any P
2’s and V (s) is necessarily

reduced, so the discussion above gives.

Proposition 5.1 If X is a general cubic, then V (s) is isomorphic to ˜V .

We give now another proof of the following fact, using the above construction, that
was obtained by a different geometric construction in [12, Theorem 4.7].

Lemma 5.2 The class of V in the cohomology of F is given by

[V ] = 21c2(UF ).
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Proof This can be obtained as a consequence of the construction of Proposition 5.1,
and as it involves Schubert calculus computations very similar to the ones of sections
above, we perform it directly in Macaulay2 in the following code, which sets up
E,U2,U3 etc, computes the class of V (s) in Fl as the top Chern class of E , pushes it
forward to the Grassmannian G(2, 6), and then compares it with 21c2(UF ):

loadPackage "Schubert2";
G=flagBundle({2,4}); (U,Q)=G.Bundles; c1=chern_1 U; c2=chern_2 U;
F=flagBundle({2,1,3},6); U2=(F.SubBundles)_1; U3=(F.SubBundles)_2;
E=(symmetricPower(3, dual U3)) - (symmetricPower(3, dual (U3-U2)));
c2UF=((18*c1ˆ2*c2+9*c2ˆ2)*c2);
(map(G, F))_*(chern(9,E))==21*c2UF}

��

Note that as V (s) is the vanishing of a section of the vector bundle E , its ideal sheaf
has a Koszul resolution

0 → ∧9E∨ → · · · → ∧2E∨ → E∨ → OFl → OV (s) → 0.

Computing usingGrothendieck–Riemann–Roch and Schubert calculus we obtain that

χ(OṼ ) = 1071,

e.g., via the following Macaulay2 code

sum(10, i -> (-1)ˆi*(chi exteriorPower(i, dual E)))

On the other hand, as the normal bundle of ˜V in Fl is given by E |Ṽ (as ˜V and V (s)
are isomorphic), we can compute that KṼ = 3H , for H the pullback of the Plücker
polarisation restricted to V ⊂ F ⊂ G(2, 6), using

KtV=chern_1 (cotangentBundle F) + chern_1 E

which we also computed differently in [12, Proposition 4.6] by expressing ˜V as a
section of a rank two bundle in BlS(F). We can now easily compute K 2

Ṽ
= 8505 as

follows

integral ((chern_9 E)*(KtV)ˆ2)

What remains in terms of the invariants of ˜V ∼= V (s) are the geometric genus pg
and the irregularity q, which satisfy pg − q = 1070. As E involves indecomposable
bundles on the Flag variety, the Borel–Weil–Bott computations necessary to compute
either of these invariants is much more involved. Nevertheless, very recently, Mboro
[16] computed that pg = 1070 and q = 0 by computing the Hodge numbers of the
Fano scheme of 2-planes in the cyclic cover cubic 5-fold associated to X and proving
this is an étale 3-1 cover of ˜V , so all the Hodge number of ˜V are now also known.

6 A bound on the degree of irrationality of F

We recently proved in [11] that if Y ⊂ P
4 is a smooth cubic threefold and F(Y )

its Fano surface of lines, then the degree of irrationality irr(F(Y )), i.e., the minimal
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degree of a dominant rational map F(Y ) ��� P
2, satisfies

irr(F(Y )) � 6,

with equality if Y is general. In this section we extend the construction of a degree
6 map to the Fano scheme of lines of any smooth cubic hypersurface. Whether this
upper bound is optimal for a general hypersurface remains to be proven.

We recall first the construction in the case of threefolds, and elaborate on the linear
system it is induced by.

Lemma 6.1 Let Y ⊂ P
4 be a smooth cubic threefold and F(Y ) ⊂ G(2, 5) ⊂ P ..=

P(
∧2C5) = P

9 its Fano surface of lines. For any hyperplane H ⊂ P
4 there is a degree

6 rational map

φ : F ��� Y ∩ H

which is the restriction of the rational mapψ : P ��� H given by the sublinear-system
V ⊂ |OP(1)| of sections corresponding to Schubert cycles σ1(�) for � a hyperplane
in H.

Proof The map ψG(2,5) : G(2, 5) ��� H takes [�] and gives � ∩ H ∈ P
4. Consider

now a � ∈ |OH (1)|. Its pullback ψ∗
G(2,5)�, which corresponds to lines meeting �, is

of class σ1 and so a section of the Plücker line bundle OG(2,5)(1). Observe that this
section contains all lines contained inside H . In other words, if

V = |ψ∗
G(2,5)OH (1)| ⊂ |OG(2,5)(1)|,

then the base locus Bs(V ) is equal to G(2, H). Projecting now from the P
5 which is

the span of G(2, H) in P onto P
3 we obtain the map ψ whose restriction to G(2, 5) is

ψG(2,5). The map φ has degree 6 as there are 6 lines through a general point of Y . ��
Remark 6.2 In particular, ψ is the projection from the P

5 ⊂ P containing the Plücker
embedding of G(2, H) = G(2, 4).

Proposition 6.3 Let X ⊂ P
n+1 be a smooth cubic hypersurface for n � 3 and F =

F(X) ⊂ G(2, n + 2) its Fano scheme of lines. Then

irr(F) � 6.

More precisely, we have a degree 6 rational map

φ : F ��� R×Y

where Y = X ∩H, for H = P
n, is a hyperplane section of X with one node and hence

rational and R ∼= P
n−3 ⊂ P

n+1 is general. The map φ is the restriction of the map

(α, β) : P ..= P(
∧2Cn+2) = P

n(n+3)
2 ��� R×H
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where β is given by the n + 1 sections of OP(1) cutting out the projective space
P(

∧2Cn+1) ⊂ P containing the Plücker embedding of G(2, H) and α is given by the
space of sections of OP(1) which correspond to Schubert cycles

σ1(T ) = {� ∈ G(2, n + 2) : � ∩ 〈T ,�〉 �= ∅}

for some fixed � ∼= P
2 and T runs over all hyperplanes in R.

Proof Let Y = X ∩ H be a hyperplane section with exactly one node. Note that by
projecting from the node inside H = P

n, we obtain a birational map Y ��� P
n−1.

Fix now R = P
n−3 and � = P

2 general inside P
n+1. We will construct a degree

6 map φ : F ��� R×Y . Consider a general point [�] ∈ F . For the following two
points:

p� = R ∩ 〈�,�〉,
q� = � ∩ Y ,

define now φ([�]) = (p�, q�). For any q ∈ X , there is a subvariety Fq ⊂ F of
dimension n − 3 parametrising lines [�] ∈ F so that � passes through q. This variety
Fq in fact embeds in the original P

n+1 as a complete intersection of type (1, 1, 2, 3).
Fix a (p, q) ∈ φ(F). The lines through q are parametrised by the space Fq we just
described. Note now that, the points [�] ∈ Fq so that p = R ∩ 〈�,�〉 are precisely
the six points of the intersection 〈p, q,�〉 ∩ Fq . In other words φ has degree six and
we can compose with a birational map R×Y ��� P

2(n−2) to obtain a degree six map
F ��� P

2(n−2). ��
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