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Abstract
We provide a new, self-contained proof of the classification of homogeneous 3-
Sasakian manifolds, which was originally obtained by Boyer et al. (J Reine Angew
Math 455:183–220, [10]). In doing so, we construct an explicit one-to-one corre-
spondence between simply connected homogeneous 3-Sasakian manifolds and simple
complex Lie algebras via the theory of root systems. We also discuss why the real pro-
jective spaces are the only non-simply connected homogeneous 3-Sasakian manifolds
and derive the famous classification of homogeneous positive quaternionic Kähler
manifolds due to Alekseevskii (Funct Anal Appl 2(2):106–114, [2]) from our results.

Keywords Sasakian geometry · Quaternionic Kähler manifolds · Homogeneous
spaces · Wolf spaces · Root systems

Mathematics Subject Classification 53C25 · 53C26 · 53C30 · 17B22

1 Introduction

3-Sasakian geometry is arguably one of the most important odd-dimensional geome-
tries. It provides a rich source of compact Einstein manifolds, lies “sandwiched”
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between the famous hyperkähler, quaternionic Kähler (qK) and Kähler–Einstein
geometries and also has several links to algebraic geometry [9].

The history of the classification of homogeneous manifolds with these interrelated
geometries is rather long and complicated, as it involves work from as early as 1961
[6] and as recently as 2020 [11]. In this article, we would like to summarize, revisit
and improve upon these results by proving the following

Theorem 1.1 There is a one-to-one correspondence between simply connected homo-
geneous 3-Sasakian manifolds and simple complex Lie algebras.

Given a complex simple Lie algebra u, choose amaximal rootα of u and let v denote
the direct sum of the subspace ker α and the root spaces of roots perpendicular to α.
Let g and h be the compact real forms of u and v, respectively, and write k ∼= sp(1)
for the compact real form of the sl(2,C)-subalgebra defined by α. Let B denote
the Killing form of g, set g1 = (h⊕k)⊥B and consider the reductive complement
m = h⊥B = k⊕g1. Let G be the simply connected Lie group with Lie algebra g
and let H ⊂ G be the connected subgroup with Lie algebra h. Define a G-invariant
Riemannian metric g on M = G/H by extending the inner product on TeH M ∼= m
given by

g|k×k = − 1

4(n + 2)
B, g|g1×g1 = − 1

8(n + 2)
B, g|k×g1 = 0.

Consider a basis X1, X2, X3 of k satisfying the commutator relations [Xi , X j ] =
2εi jk Xk and extend Xi ∈ m ∼= TeHM to a G-invariant vector field ξi on M. Let ηi
denote the metric dual of ξi and ϕi the G-invariant endomorphism field defined by
extending

ϕi |k = 1

2
adXi , ϕi |g1 = adXi .

Then, (g, ξi , ηi , ϕi )i=1,2,3 is a G-invariant 3-Sasakian structure on M.
Conversely, given a simply connected homogeneous 3-Sasakian manifold M, rep-

resented as the quotient ˜G/ ˜H, where ˜G is a connected Lie group acting effectively on
M, then ˜G = Aut0(M), the connected component of the 3-Sasakian automorphism
group of M, and M is the unique space associated with the complexification of the Lie
algebra of ˜G.

Using this characterization, we rediscover the list of homogeneous 3-Sasakianman-
ifolds as given by Boyer, Galicki and Mann:

Corollary 1.2 Every homogeneous 3-Sasakian manifold M = G/H (not necessarily
simply connected) is isomorphic to one of the following spaces:

Sp(n + 1)

Sp(n)
∼= S4n+3 ,

Sp(n + 1)

Sp(n)×Z2

∼= RP4n+3,
SU(m)

S(U (m − 2)×U (1))
,

SO(k)

SO(k − 4)×Sp(1)
,

G2

Sp(1)
,

F4
Sp(3)

,
E6

SU(6)
,

E7

Spin(12)
,

E8

E7
.
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To avoid redundancy, we need to assume n � 0, m � 3 and k � 7.

As a consequence, we also arrive at the complete list of homogeneous positive qK
manifolds as discovered by Alekseevskii:

Corollary 1.3 Every homogeneous positive qK manifold is isometric to one of the
spaces

Sp(n + 1)

Sp(n)×Sp(1)
,

SU(m)

S(U (m − 2)×U (2))
,

SO(k)

SO(k − 4)×SO(4)
,

G2

SO(4)
,

F4
Sp(3)Sp(1)

,
E6

SU(6)Sp(1)
,

E7

Spin(12)Sp(1)
,

E8

E7Sp(1)
,

where the Riemannianmetric and quaternionic structure are also determined by Theo-
rem 1.1 via the so-called Konishi bundle (see Proposition 2.7 and Sect. 11 for details).

The discussion of Theorem 1.1 and its consequences will be divided into several
sections: We begin by recalling basic definitions and features of 3-Sasakian geometry
in Sect. 2. We then summarize the history of the classification (Sect. 3) and introduce
a certain Z-grading of semisimple complex Lie algebras based on their root systems
(Sect. 4). The first half of the proof of Theorem 1.1 is given in Sect. 5, where we con-
struct homogeneous 3-Sasakian manifolds from simple Lie algebras. The centerpiece
of this article is the converse argument in Sect. 6. For reasons that will become apparent
during the construction, the special case of the exceptional Lie algebra g2 needs to be
relegated to Sect. 7. We complete the proof of Theorem 1.1 by showing that no proper
subgroup of the identity component Aut0(M) of the automorphism group can act tran-
sitively in Sect. 8. In Sect. 9 we compute the isotropy groups described in Corollary 1.2
explicitly for the classical spaces and Lie theoretically via Borel–de Siebenthal theory
in the exceptional cases. In Sect. 10, we show that the only non simply connected
homogeneous 3-Sasakian manifolds are the real projective spaces RP4n+3, which are
the Z2-quotient of the previously described space S4n+3 = Sp(n+ 1)/Sp(n). Finally,
since our arguments are independent of the classification of homogeneous positive qK
manifolds, they allow for an alternative proof of the latter (Sect. 11).

2 Fundamentals of 3-Sasakian geometry

3-Sasakian geometry may be approached from a variety of different starting points,
including but not limited to: qK and hyperkähler geometry, Einstein geometry, spin
geometry and certain areas of algebraic geometry. For the sake of brevity, we decided
to limit the exposition in this article to the necessary minimum. The interested reader
is referred to the comprehensive monograph [9, Chapters 6, 8, 13].

Definition 2.1 A Sasakian structure is a tuple (M2n+1, g, ξ, η, ϕ), where ξ is a unit
length Killing vector field, the one form η = g(ξ, ·), the endomorphism field ϕ =
−∇gξ and the following curvature condition is satisfied:

R(X , ξ)Y = η(Y )X − g(X ,Y )ξ for all X ,Y ∈ X(M).
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We refer to the objects ξ, η and ϕ as the Reeb vector field, contact form and almost
complex structure of the Sasakian structure.

Remark 2.2 The definition entails several important identities. Other common defini-
tions of Sasakian manifolds in the literature are usually some selection of these. For
X ,Y ∈ X(M) we have

ϕ2 = − id + η⊗ξ, g(ϕX , ϕY ) = g(X ,Y ) − η(X)η(Y ), ϕξ = 0, η◦ϕ = 0,

g(X , ϕY ) + g(ϕX , Y ) = 0, dη(X ,Y ) = 2g(X , ϕY ), dη(ϕX , ϕY ) = dη(X ,Y ).

We also remark that the Reeb vector field ξ is characterized uniquely by the properties
η(ξ) = 1, dη(ξ, ·) = 0 and that the cone over a Sasakian manifold admits a Kähler
structure.

Definition 2.3 A 3-Sasakian structure is a tuple (M4n+3, g, ξi , ηi , ϕi )i=1,2,3 such that
each (M, g, ξi , ηi , ϕi ) is a Sasakian structure and g(ξi , ξ j ) = δi j , [ξi , ξ j ] = 2εi jkξk ,
where εi jk denotes the Levi-Civita symbol and (i, j, k) is a permutation of (1, 2, 3).

Remark 2.4 For any cyclic permutation (i, j, k) of (1, 2, 3) the definition implies the
compatibility conditions

ϕi ◦ϕ j − η j ⊗ξi = ϕk, ϕiξ j = ξk, ηi ◦ϕ j = ηk .

The cone over a 3-Sasakian manifold admits a hyperkähler structure.

Proposition 2.5 ([9, Corollary 13.2.3]) Every 3-Sasakian manifold M of dimension
4n + 3 is Einstein with Einstein constant 2(2n + 1). Moreover, if M is complete, it is
compact with finite fundamental group.

Definition 2.6 A3-Sasakian isomorphism between3-Sasakianmanifolds (M, g, ξi , ηi ,
ϕi ) and ( ˜M, g̃, ˜ξi , η̃i , ϕ̃i ) is an isometry φ : M → ˜M which satisfies one of the three
equivalent conditions φ∗ξi = ˜ξi , φ∗η̃i = ηi or φ∗◦ϕi = ϕ̃i ◦φ∗ for i = 1, 2, 3. We
will mostly be interested in the case ( ˜M, g̃, ˜ξi , η̃i , ϕ̃i ) = (M, g, ξi , ηi , ϕi ), in which
we call φ a 3-Sasakian automorphism of M .

We denote the group of all such transformations by Aut(M) and call M a homo-
geneous 3-Sasakian manifold if Aut(M) acts transitively. Homogeneous 3-Sasakian
manifolds are in particular Riemannian homogeneous and thus, complete and com-
pact. The Lie algebra aut(M) consists of the Killing vector fields X ∈ X(M) such
that LXξi = 0, LXηi = 0 and LXϕi = 0 for i = 1, 2, 3.

Proposition 2.7 ([9, Theorem 13.3.13 & Proposition 13.4.5]) The Reeb vector fields
ξ1, ξ2, ξ3 of a 3-Sasakian manifold M generate a 3-dimensional foliation F , whose
space of leaves M/F is a positive (i.e. its scalar curvature is positive) qK orbifold.

If M is a homogeneous 3-Sasakian manifold, then M → M/F is a locally trivial
Riemannian fibration over a homogeneous positive qK manifold with fiber Sp(1) or
SO(3).
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3 History of the classification

The earliest result concerning our topic was the classification for the related notion
of (compact simply connected) homogeneous complex contact manifolds (so-called
C-spaces) by Boothby in 1961 [6], who showed that these are in one-to-one corre-
spondence to simple complex Lie algebras. The much more famous next step was the
work of Wolf and Alekseevskii on qK manifolds in the 1960s. First,Wolf showed
in 1961 that there is a one-to-one correspondence between C-spaces and compact
simply connected symmetric positive qK manifolds [17, Theorem 6.1].

Boothby andWolf already emphasized the importance of the maximal root in the
root system of a simple Lie algebra, which will also play a key role in our construction:
Wolf demonstrated that the compact simply connected symmetric positive qK mani-
folds are precisely of the formG/NG(K ), whereG is a compact simple Lie group and
NG(K ) denotes the normalizer of the subgroup K corresponding to the compact real
form of the subalgebra generated by the root spaces of a maximal root and its negative.
These manifolds became known asWolf spaces. As we will show in this article, the
simply connected homogeneous 3-Sasakian manifolds are of the form G/(CG(K ))0,
where (CG(K ))0 is the identity component of the centralizer CG(K ) of K in G. In
1968 Alekseevskii fully classified compact homogeneous positive qK manifolds by
demonstrating that they are necessarily of the form G/NG(K ) [2, Theorem 1].

By 1994, Boyer, Galicki and Mann transferred these results to the 3-Sasakian
realm [10]. They combined the classification of homogeneous positive qK manifolds
with Proposition 2.7 to obtain the following diffeomorphism type classification:

Theorem 3.1 ([10, TheoremC]) Every homogeneous 3-Sasakianmanifold M = G/H
(not necessarily simply connected) is precisely one of the following:

Sp(n + 1)

Sp(n)
∼= S4n+3 ,

Sp(n + 1)

Sp(n)×Z2

∼= RP4n+3,
SU(m)

S(U (m − 2)×U (1))
,

SO(k)

SO(k − 4)×Sp(1)
,

G2

Sp(1)
,

F4
Sp(3)

,
E6

SU(6)
,

E7

Spin(12)
,

E8

E7
.

To avoid redundancy, we need to assume n � 0, m � 3 and k � 7.

They also provided a more precise description of the 3-Sasakian structures in the
four classical cases via 3-Sasakian reduction [10].

In 1996, Bielawski [5] described the Riemannian structure on these spaces uni-
formly. Both for his result and for several later discussions, we need to recall the
following construction: As was first described systematically by Kobayashi and
Nomizu [14], the study of G-invariant geometric objects on a reductive homoge-
neous space M = G/H = G/Gp can be greatly simplified by instead considering
Ad(H)-invariant algebraic objects on a fixed reductive complementm of h in g. More
precisely, the map ψ : m → TpM , X �→ X p (where X p denotes the fundamental
vector field of the left G-action at p) is an isomorphism that allows us to translate
between Ad(H)-invariant tensors onm and the restriction of G-invariant tensor fields
to TpM .
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While actually working on a more algebro-geometric problem (singularities of
nilpotent varieties) and employing very different methods (e.g. Nahm’s differential
equation), Bielawski obtained the following

Theorem 3.2 ([5, Theorem 4]) For every homogeneous 3-Sasakian manifold M =
G/H with reductive decomposition g = m⊕h, there is a natural decomposition
m = sp(1)⊕m′ such that the metric on M corresponds to an inner product on m of
the form

(X ,Y ) �→ − c B(Xsp(1),Ysp(1)) − c

2
B(Xm′ ,Ym′),

where B denotes the Killing form of g and c > 0 is some constant.

In 2020, the work of Draper,Ortega and Palomo gave a new hands-on descrip-
tion of homogeneous 3-Sasakian manifolds [11]. Their study was based on the
following

Definition 3.3 ([11, Definition 4.1]) A 3-Sasakian datum is a pair (g, h) of real Lie
algebras such that

• g = g0⊕g1 is a Z2-graded compact simple Lie algebra whose even part is a sum
of two commuting subalgebras,

g0 = sp(1)⊕h;

• there exists an hC-module W such that the complexified gC0 -module gC1 is iso-
morphic to the tensor product of the natural sp(1)C = sl(2,C)-module C

2 and
W :

gC1
∼= C

2⊗W .

Their main result is the following

Theorem 3.4 ([11, Theorem 4.2]) Let M = G/H be a homogeneous space such that
H is connected and the Lie algebras (g, h) constitute a 3-Sasakian datum.Consider the
reductive complement m ..= sp(1)⊕g1 and let X1, X2, X3 ∈ m denote the standard
basis of sp(1) and ξ1, ξ2, ξ3 the corresponding G-invariant vector fields on M. If g
and ϕi are the Riemannian metric and endomorphism fields described in Theorem 1.1
and ηi = g(ξi , ·), then the tuple (M, g, ξi , ηi , ϕi )i=1,2,3 constitutes a homogeneous
3-Sasakian structure.

Furthermore, they conducted a case-by-case study to show that every compact
simple Lie algebra admits a 3-Sasakian datum, thus providing a detailed analysis of
one homogeneous 3-Sasakian structure (it is, at this point, not clear if there could be
more than one such structure on a given space) on each of the diffeomorphism types
discovered by Boyer, Galicki and Mann.

We finish this section by giving an overview of the structure of our proof of Theorem
1.1: In Sect. 5, we first describe a way to construct a simply connected homogeneous
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3-Sasakian manifold from a simple complex Lie algebra u and a maximal root α of u.
More precisely, we first utilize the theory of root systems to generate a complexified
version (u, v) of a 3-Sasakian datum. We then pass to the compact real forms (g, h)
to obtain a “real” 3-Sasakian datum in the sense of Definition 3.3 and apply Theorem
3.4.

For the converse argument in Sects. 6 and 7, we start with a simply connected homo-
geneous 3-SasakianmanifoldM = G/H , whereG is a compact simply connected Lie
group acting almost effectively and transitively on M via 3-Sasakian automorphisms.
We prove that the Lie algebra g and its complexification u = gC are simple and that
the 3-Sasakian structure gives rise to a maximal root α of u. We can therefore apply
the previous construction and then show that this yields the same 3-Sasakian structure
that we started with.

Sect. 8 completes the proof ofTheorem1.1by showing that no subgroupofAut0(M)

can act transitively. In particular, this proves that any two homogeneous 3-Sasakian
manifolds M = G/H , M ′ = G ′/H ′ associated with two different simple complex Lie
algebras gC �= (g′)C are not isomorphic.

4 Root system preliminaries

Later on, we will need certain basic facts about root systems, which we decided to
collect in this section: Let u be a (finite-dimensional) semisimple complex Lie algebra.
Its Killing form is non-degenerate and thus gives rise to an isomorphism u → u∗ and
a non-degenerate, symmetric bilinear form 〈 · , · 〉 on u∗. We fix a Cartan subalgebra
c ⊂ u and denote the corresponding root system and root spaces by 
 ⊂ c∗ and
uα ⊂ u for α ∈ c∗, respectively.

Each root α ∈ 
 has an associated coroot Hα ∈ c defined as the unique element
of [uα, u−α] satisfying α(Hα) = 2. Furthermore, sα

..= uα ⊕u−α ⊕[uα, u−α] is
a subalgebra of u which is isomorphic to sl(2,C). This isomorphism can be made
explicit by choosing an sl2-triple, i.e. vectors Xα ∈ uα,Yα ∈ u−α satisfying the
commutation relations

[Hα, Xα] = 2Xα, [Hα,Yα] = − 2Yα, [Xα,Yα] = Hα. (1)

Moreover, it can be shown that for any root α ∈ 
 and any linear form β ∈ c∗:

cαβ
..= β(Hα) = 2〈β, α〉

〈α, α〉 .

In particular, cαβ = 0 if and only if α and β are perpendicular to each other (with
respect to 〈 · , · 〉). In caseβ is also a root, cαβ is an integer, whichwewill call theCartan
number of β with respect to α. Fixing a root α ∈ 
, we can therefore decompose

u =
⊕

k∈Z
u(k), where u(k) ..=

⊕

β∈c∗
cαβ=k

uβ.

123
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Since cαβ is linear in β, this decomposition is in fact a Z-grading, i.e. [u(k), u(�)] ⊂
u(k+�).Wealso note thatu(k) is precisely the k-eigenspace of ad(Hα).One canvisualize
this grading using parallel copies of hyperplanes perpendicular to α, e.g. for the root
system A2:

αu(2)

u(1)

u(0)

u(−1)

u(−2)

The structure of this grading is related to the notion of maximality of the root α:
Assuming we have chosen a set 
 ⊂ 
 of simple roots, we may introduce a partial
order � on 
 by stipulating that α � β if and only if β − α is a linear combination of
roots in 
 with non-negative coefficients. A root α ∈ 
 is called maximal if there is
a choice of simple roots such that there is no strictly larger root than α with respect to
the induced partial order. The following lemma was adapted from [17, Theorem 4.2]:

Lemma 4.1 For any root α ∈ 
, the following statements are equivalent:

(i) α is maximal.
(ii) |cαβ | � 2 for all roots β ∈ 
 and cαβ = ±2 if and only if β = ±α.

Proof (i)⇒ (ii): It is well known that for β ∈ 
\{±α}, the Cartan number is given
by cαβ = p − q, where p, q ∈ N0 are the greatest non-negative integers such that
β + rα ∈ 
 for every r ∈ {−p, . . . , q} [13, Proposition 2.29]. Suppose there was
some β ∈ 
\{α} such that cαβ � 2. Then p � 2, so that β − α, β − 2α ∈ 
 and
their negatives α − β, 2α − β ∈ 
 are roots. In fact, α − β has to be a non-negative
linear combination of simple roots (for some choice of simple roots with respect to
which α is maximal), since otherwise β > α. But then 2α − β � α and maximality
of α would imply 2α − β = α, i.e. β = α. For β ∈ 
\{−α} such that cαβ � −2, we
apply this argument to −β.

(ii)⇒ (i): We may choose a set of simple roots 
 in such a way that cαβ � 0
for all β ∈ 
. This can be achieved by first choosing positive roots using a slight
perturbation of the hyperplane perpendicular to α. Let β ∈ 
 such that β � α,
i.e. β − α = ∑n

i=1 λiαi , where λi � 0 and αi ∈ 
. Then,

cαβ = cαα + cα(β−α) = 2 +
n

∑

i=1

λi cααi
︸︷︷︸

�0

� 2.
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Hypothesis (ii) then implies β = α, so that α is maximal. ��
Finally, we remark that in an irreducible root system 
, the maximal root is unique

up to the action of theWeyl group: This follows because in an irreducible root system,
the maximal root is uniquely determined after choosing simple roots, and any two
choices of simple roots can be mapped to each other by the Weyl group.

5 Constructing homogeneous 3-Sasakianmanifolds from simple Lie
algebras

Our goal in this section is the following construction:

Theorem 5.1 Letubea simple complexLie algebra,α amaximal root in its root system,
g the compact real form of u and k ∼= sp(1) the compact real form of the subalgebra
sα = uα ⊕u−α ⊕[uα, u−α] ∼= sl(2,C). Let G denote the simply connected Lie group
with Lie algebra g, K the connected subgroup with Lie algebra k and H = (CG(K ))0
the identity component of the centralizer CG(K ) of K in G. Then, the simply connected
homogeneous space M = G/H admits a homogeneous 3-Sasakian structure whose
tensors are given by Theorem 1.1. All possible choices of a maximal root lead to
isomorphic 3-Sasakian manifolds.

Definition 5.2 A complex 3-Sasakian datum is a pair (u, v) of complex Lie algebras
such that

• u = ueven⊕uodd is a Z2-graded simple Lie algebra whose even part is a sum of
two commuting subalgebras,

ueven = v⊕sl(2,C);

• there exists a v-module W such that uodd ∼= C
2⊗W as ueven-modules.

Remark 5.3 We formulated the above definition in the given way because it allows us
to branch off into two cases: Our primary interest in this article will be to consider
the compact real forms (g, h) of (u, v) which then form a 3-Sasakian datum in the
sense of Definition 3.3. On the other hand, one may also look at the real form (g∗, h)
of (u, v) given by g∗ = h⊕sα ⊕ ig1, to obtain a generalized 3-Sasakian datum in the
sense of [1]. These give rise to homogeneous negative 3-(α, δ)-Sasakian manifolds by
a construction similar to Theorem 3.4, compare [1, Theorem 3.1.1].

Proposition 5.4 Let u be a simple complex Lie algebra and α ∈ 
 a maximal root in
its root system. Set 
0

..= {β ∈ 
 | cαβ = 0} as well as

v ..= ker α⊕
⊕

β∈
0

uβ.

Then, (u, v) is a complex 3-Sasakian datum.

123
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Proof Using the Z-grading from Sect. 4, we let

ueven ..= u(−2) ⊕u(0) ⊕u(2), uodd ..= u(−1) ⊕u(1).

Since |cαβ | � 2 for all β ∈ 
 by Lemma 4.1, we have u = ueven⊕uodd. Because ueven
and uodd are comprised of the u(k) with even and odd k respectively, this decomposition
is in fact a Z2-grading. We claim that

ueven = sα⊕v

as a direct sum of Lie algebras, where sα = uα⊕u−α⊕[uα, u−α]. Since cαβ = ±2 if
and only if β = ±α, we have the following vector space decompositions:

ueven = uα⊕u−α⊕c⊕
⊕

β∈
0

uβ, c = [uα, u−α]⊕ ker α.

In order to show that v is indeed a subalgebra of u, note that [uβ, uγ ] ⊂ uβ+γ for any
β, γ ∈ 
0. Now if β + γ is a root, then β + γ ∈ 
0, so uβ+γ ⊂ v. If β + γ is not a
root and not zero, then uβ+γ = 0 ⊂ v. If β + γ = 0, then [uβ, u−β ] = 〈Hβ〉 ⊂ ker α
because β ∈ 
0. To check that sα and v commute, we recall that v is a subset of
u(0) = ker adHα . For β ∈ 
0, we have [u±α, uβ ] ⊂ u±α+β ⊂ u(±2) = u±α , so u±α

and uβ commute.
Wenowverify the second condition fromDefinition 5.2 for thev-moduleW ..= u(1).

We choose an sl2-triple (Xα,Yα, Hα) and identify it (in order) with the three standard
matrices

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

1 0
0 −1

)

∈ sl(2,C).

This fixes isomorphisms sα
∼= sl(2,C) and ueven ∼= v⊕sl(2,C). We consider the

following linear map:

� : uodd = u(−1) ⊕u(1) → C
2⊗W ,

X = X (−1) + X (1) �→ (1, 0)⊗ X (1) + (0, 1)⊗[Xα, X (−1)].

If β ∈ 
 is such that cαβ = −1, then β + α must be a root and [uα, uβ ] = uα+β .
This shows that adXα : uβ → uβ+α and, by extension, � are linear isomorphisms.
It remains to be shown that � preserves the ueven-module structure, where ueven ∼=
v⊕sl(2,C) acts on C

2⊗W via the above fixed isomorphism. We remind the reader
of the commutator relations in (1).

If Z ∈ v ⊂ u(0), then adZ preserves the decomposition uodd = u(−1)⊕u(1). Since
v and sα are commuting subalgebras of u, so are their respective adjoint subrepresen-

123



Revisiting the classification of homogeneous 3-Sasakian… Page 11 of 28 11

tations,

�([Z , X ]) = (1, 0)⊗[Z , X (1)] + (0, 1)⊗[Xα, [Z , X (−1)]]
= (1, 0)⊗[Z , X (1)] + (0, 1)⊗[Z , [Xα, X (−1)]] = Z ·�(X).

Here, · denotes the adjoint representation of v onW , while in the following equations
it will signify the standard representation of sl(2,C) on C

2. Finally, we check the
representation of the basis (Xα,Yα, Hα) of sα:

�([Xα, X ]) = �([Xα, X (−1)]) = (1, 0)⊗[Xα, X (−1)] = Xα ·�(X).

By the Jacobi identity,

�([Yα, X ]) = �([Yα, X (1)]) = (0, 1)⊗[Xα, [Yα, X (1)]]
= (0, 1)⊗([[X (1), Xα]

︸ ︷︷ ︸

=0

,Yα] + [[Xα,Yα]
︸ ︷︷ ︸

=Hα

, X (1)])

= (0, 1)⊗ X (1) = Yα ·�(X).

Ultimately,

�([Hα, X ]) = �(X (1) − X (−1))

= (1, 0)⊗ X (1) + (0,−1)⊗[Xα, X (−1)] = Hα ·�(X). ��
Proof of Theorem 5.1 Starting from a simple complex Lie algebra u and amaximal root
α, Proposition 5.4 yields a complex 3-Sasakian datum (u, v). Asmentioned in Remark
5.3, the compact real forms (g, h) constitute a “real” 3-Sasakian datum in the sense of
Definition 3.3 and Theorem 3.4 endows M = G/H with a homogeneous 3-Sasakian
structure. Since v = Cu(sα) and thus h = Cg(k), it follows that H = (CG(K ))0. ��
Example 5.5 Let us illustrate the construction using the special case rk u = 2: Here,
the only simple Lie algebras are sl(3,C), sp(4,C) and g2, corresponding (in order) to
the root systems A2,C2 andG2. The diagrams on the next page depict the subalgebras
v and sα from the proposition in these three cases.

The corresponding homogeneous 3-Sasakian manifolds are (in order) the Aloff–
Wallach spaceW 1,1 = SU(3)/S1, the 7-sphere S7 = Sp(2)/Sp(1) and the exceptional
space G2/Sp(1).

We finish this section by showing that the maximal root is in fact an auxiliary
choice:

Lemma 5.6 All possible choices of a maximal root in Proposition 5.4 lead to isomor-
phic 3-Sasakian manifolds.
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v

sαA2

v

sαC2

v

sαG2

Proof Let u be a simple complex Lie algebra, g its compact real form, G the corre-
sponding simply connectedLie group and T ⊂ G amaximal torus. Letα, α̃ denote two
maximal roots in the root system 
 of u with respect to the Cartan subalgebra given
by the complexification of the Lie algebra of T . As mentioned at the end of Sect. 4, the
maximal root of 
 is unique up to the action of the Weyl group W (G) = NG(T )/T ,
so there is a representative w ∈ NG(T ) such that AdCw(Hα) = Hα̃ .

Because the Weyl group acts orthogonally on the root system, AdCw : u → u maps
the Z-grading u(k) with respect to α to the grading ũ(k) with respect to α̃. This implies
that Adw h = ˜h, where h,˜h ⊂ g are the compact real forms of the subalgebras v, ṽ ⊂ u
considered in Proposition 5.4. Consequently, wHw−1 = ˜H for the corresponding
connected subgroups H , ˜H ⊂ G andwehave awell-defined diffeomorphismG/H →
G/ ˜H , gH �→ wgw−1

˜H . One easily checks from the definitions in Theorem 1.1 that
this map is a 3-Sasakian isomorphism. ��
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6 Deconstructing homogeneous 3-Sasakianmanifolds

This section is the centerpiece of the article, where we explain a crucial step in the
proof of Theorem 1.1, namely:

Theorem 6.1 Every simply connected homogeneous 3-Sasakian manifold arises from
the construction described in Sect. 5.

From now on, let (M4n+3, g, ξi , ηi , ϕi )i=1,2,3 denote a simply connected homo-
geneous 3-Sasakian manifold and let G be a compact simply connected Lie group
acting almost effectively (i.e. the kernel of the action is discrete and hence finite) and
transitively on M by 3-Sasakian automorphisms. We will show that the Lie algebra
g of G and its complexification u = gC are simple and describe how the 3-Sasakian
structure gives rise to a maximal root α of u with respect to a suitably chosen Cartan
subalgebra. We can then apply the construction from Sect. 5 and prove that this yields
the same 3-Sasakian structure that we started with.

The prototypical example to have in mind is where G is the universal cover of
Aut0(M), the identity component of the 3-Sasakian automorphism group of M . By
Proposition 2.5, M is compact, so by the Myers–Steenrod theorem, the isometry
group Isom(M) of M is a compact Lie group. The subgroup Aut(M) ⊂ Isom(M) of
3-Sasakian automorphisms of M is clearly closed and thus also a compact Lie group.
Since M is connected, the identity component Aut0(M) still acts transitively. The
universal cover of Aut0(M) acts almost effectively, transitively and by 3-Sasakian
automorphisms. It will follow from the results that we are about to prove that the
universal cover of Aut0(M) is also compact.

Later on, we will show that, in fact, the effectively acting quotient of any group G
satisfying the above assumptions is automatically the full identity componentAut0(M)

of the automorphism group.
SinceG is compact, its Lie algebra g is reductive, i.e. decomposes as a direct sum of

a semisimple subalgebra and its center Z(g). We first show that g itself is semisimple.

Lemma 6.2 For X ,Y ∈ g, the fundamental vector fields satisfy the equation

dηi (X ,Y ) = ηi ([X ,Y ]).

Notably, evaluating the left-hand side at a point p ∈ M depends on X ,Y only through
their values at p, while the right-hand side a priori depends on the values in a neigh-
borhood of p.

Proof The standard formula for the exterior derivative reads

dηi (X ,Y ) = X(ηi (Y )) − Y (ηi (X)) − ηi ([X ,Y ]).

The Leibniz rule for the Lie derivative implies

X(ηi (Y )) = LX (ηi (Y )) = (LXηi )(Y ) + ηi (LXY ) = ηi ([X ,Y ]),
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where LXηi = 0 because G acts by 3-Sasakian automorphisms. Applying the same
reasoning to the second term yields Y (ηi (X)) = −ηi ([X ,Y ]). ��
Proposition 6.3 The Lie algebra g has trivial center and is therefore semisimple.

Proof Let X ∈ g be such that X �= 0. Since G acts almost effectively, there is a
point p ∈ M such that X p �= 0 and thus an index i ∈ {1, 2, 3} such that X p is not
proportional to (ξi )p. We show that there exists some Y ∈ g satisfying ηi ([X ,Y ]p) �=
0, which implies [X ,Y ] �= 0: Because G acts transitively, we may choose some Y ∈ g
such that Y p = ϕi X p. From the previous lemma, we have

ηi ([X ,Y ]p) = − dηi (X p,Y p) = − dηi (X p, ϕi X p).

One of the Sasaki equations in Remark 2.2 reads ϕ2
i X p = − X p + Pi X p, where Pi

denotes the orthogonal projection to the line through (ξi )p. Hence,

ηi ([X ,Y ]p) = 2gp(X p, X p − Pi X p) = 2‖X p − Pi X p‖2 �= 0. ��

Remark 6.4 The compactness assumption fails for homogeneous negative 3-(α, δ)-
Sasakian manifolds. Thus, unlike with the construction in the previous section,
a classification cannot be achieved by the method described here. Indeed, in [1]
homogenoeus negative 3-(α, δ)-Sasakian manifolds with a transitive action by a non-
semisimple Lie group are constructed.

Since g is now both semisimple and the Lie algebra of a compact Lie group, its
Killing form B is negative definite. We fix a point p ∈ M and let H ..= Gp denote
its isotropy group. We write θ : G → M , g �→ g · p for the orbit map, which has
surjective differential dθe : TeG ∼= g → TpM , X �→ X p. Let αi

..= θ∗ηi denote the
pullback of the contact form along the orbit map, which we may view — depending
on the context— as either a linear form on g or as a left-invariant differential one-form
on G. In their seminal 1958 article [7], Boothby and Wang exhibited the following
results

Lemma 6.5 ([7, Lemmata 2, 3, 4]) The one-form αi is Ad(H)-invariant, satisfies
αi (h) = 0 and dαi has rank 4n + 2. Furthermore, the Lie algebra of the subgroup
{g ∈ G |Ad∗

gαi = αi } is given by ker dαi , contains h and has dimension dim h + 1.

We now let ˜Xi ∈ g denote the Killing dual of αi , i.e. B(˜Xi , ·) = αi and consider
Xi

..= ˜Xi/B(˜Xi , ˜Xi ). Ad-invariance of B implies that {g ∈ G |Adg Xi = Xi } and
{g ∈ G |Ad∗

gαi = αi } coincide, so

Cg(Xi ) = ker dαi = h⊕〈Xi 〉.

Proposition 6.6 The fundamental vector fields Xi coincide with the Reeb vector fields
ξi at the point p and obey the same commutator relations [Xi , X j ] = 2εi jk Xk, where
(i, j, k) is a permutation of (1, 2, 3).
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Proof Clearly, Xi ∈ Cg(Xi ) = ker dαi , so that (Xi )p ∈ ker(dηi )p. Furthermore,
we have 1 = αi (Xi ) = (ηi )p(Xi )p. Thus, (Xi )p satisfies the uniquely defining
equations of the Reeb vector (ξi )p. Phrased differently, Xi (viewed as a left-invariant
vector field on G) and ξi are θ -related. Consequently, the Lie brackets [Xi , X j ] and
[ξi , ξ j ] = 2εi jkξk are also θ -related and in particular, [Xi , X j ]p = 2εi jk(ξk)p =
2εi jk(Xk)p. Hence, [Xi , X j ] and 2εi jk Xk could only differ by an element of h. But
B(Xk, h) = αk(h) = 0 and B([Xi , X j ], h) = B(Xi , [X j , h]) = 0, so that also
B([Xi , X j ] − 2εi jk Xk, h) = 0. ��

Let s be a maximal Abelian subalgebra of h. Since Cg(X1) = h⊕〈X1〉, it follows
that t ..= s⊕〈X1〉 is amaximalAbelian subalgebra of g. In particular, rk G = rk H+1.
The Riemannian metric g corresponds to an Ad(H)-invariant and thus also ad(h)-
invariant inner product on a reductive complement of our choice. The following lemma
states that this inner product is even ad(t)-invariant:

Lemma 6.7 For all Y , Z ∈ g, we have

gp([Xi ,Y ]p, Z p) + gp(Y p, [Xi , Z ]p) = 0.

Proof Since Xi is a Killing vector field (G acts isometrically) that coincides with ξi
at p, we obtain

gp([Xi ,Y ]p, Z p) + gp(Y p, [Xi , Z ]p) = − gp([Xi ,Y ]p, Z p) − gp(Y p, [Xi , Z ]p)
= − (Xi )p(g(Y , Z)) = − (ξi )p(g(Y , Z)).

Because the Levi-Civita connection∇ ismetric and torsion free and allG-fundamental
fields commute with ξi (G acts by 3-Sasakian automorphisms), we have

(ξi )p(g(Y , Z)) = gp(∇(ξi )pY , Z p) + gp(Y p,∇(ξi )p Z)

= gp(∇Y p
ξi , Z p) + gp(Y p,∇Z p

ξi ).

Finally, ∇ξi = −ϕi and g( · , ϕi ·) is skew-symmetric. ��
We now move on to the complex picture and let u ..= gC, v ..= hC, c ..= tC and

α ..= 2iαC
1 |c. Let us consider the vectors Hα, Xα,Yα ∈ u defined by

Hα
..= 1

i
X1, Xα

..= 1

2i
(X2 − i X3), Yα

..= 1

2i
(X2 + i X3),

which satisfy the commutation relations

[Hα, Xα] = 2Xα, [Hα,Yα] = − 2Yα, [Xα,Yα] = Hα.

Proposition 6.8 The linear form α is a root of u with respect to c, whose root space is
given by uα = 〈Xα〉. Furthermore, u−α = 〈Yα〉 and Hα is the coroot of α.
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Proof Firstly, [Hα, Xα] = 2Xα = α(Hα)Xα . Since X2, X3 commute with h, the
vector Xα commutes with v and in particular with sC. Likewise, α1 vanishes on h, so
that α vanishes on v and in particular on sC. ��

Let
 ⊂ c∗ denote the root system of uwith respect to c. We consider theZ-grading
of u introduced in Sect. 4, viz.

u(k) ..=
⊕

β∈c∗
cαβ=k

uβ.

Lemma 6.9 The 0- and ±2-components of the grading are given by u(0) = v⊕〈Hα〉
and u(±2) = u±α , respectively.

Proof u(0) = ker adHα = Cu(Hα) = v⊕〈Hα〉. Suppose there was a root β �= α such
that cαβ = 2. Then 〈β, α〉 > 0 and β − α was a root satisfying cα(β−α) = 0. We
would need to have [uα, uβ−α] = uβ , but uβ−α ⊂ u(0) = v⊕〈Hα〉 and [uα, v] = 0,
[uα, Hα] = uα . ��
Proposition 6.10 The Lie algebras g and u are simple.

Proof The semisimple Lie algebra g decomposes as a direct sum g = g(1)⊕ · · · ⊕g(m)

of simple ideals. Since the Killing form of g is negative definite, the same applies to the
ideals g(i), which thus cannot be the realification of a complex Lie algebra. Therefore,
their complexifications u(i)

..= gC(i) are also simple and yield a similar decomposition
u = u(1)⊕ · · · ⊕u(m) into simple ideals [13, Theorem 6.94]. Accordingly, the root
system is a disjoint union 
 = 
1 � · · · � 
m . We claim that g = g(i) (and hence
u = u(i)), where i is the unique index such that α ∈ 
i .

For j �= i , the ideal g( j) commutes with g(i) ⊃ (uα ⊕u−α) ∩ g � X2, X3, so
g( j) ⊂ h = gp. Since g( j) is an ideal and G is connected, it follows that g( j) =
Adg(g( j)) ⊂ Adg(gp) = gg·p for all g ∈ G. Because the G-action is almost effective,
we must have g( j) = 0. ��

It is well-known that for any root system 
 and any roots α, β ∈ 
, the Cartan
numbers are bounded by |cαβ | � 3. Furthermore, the only irreducible case where
|cαβ | = 3 occurs is when g = g2, α is one of the short roots and β is the long root
that forms an angle of 150 (210) degrees with α. We relegate the proof that this case
cannot actually occur in our situation to the next section.

In all the remaining cases, we have therefore shown that α is a maximal root (cf.
Lemma 4.1), so we may carry out the construction from Sect. 5. We now prove that
the 3-Sasakian structure obtained this way indeed coincides with the original one we
startedwith.We simplify the analysis by studying the reductive complementm ..= h⊥B .

Lemma 6.11 The reductive complement m decomposes B-orthogonally as

m = 〈X1, X2, X3〉⊕
⊕

β∈

cαβ=1

(uβ ⊕u−β) ∩ g =.. k⊕g1.
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Proof ⊃: Clearly, X1, X2, X3 are B-orthogonal to h. For β, γ ∈ c∗ with β + γ �= 0,
the subspaces uβ and uγ are BC-orthogonal. This implies that for all β ∈ 
 with
cαβ = 1, the subspaces u±β are also BC-orthogonal to h.

⊂: By Sect. 6.9, both sides of the equation have dimension 4n + 3. ��
We can compare the structure tensors of the two 3-Sasakian structures in question

via the isomorphism ψ : m → TpM , X �→ X p. Proposition 6.6 has already shown
that the vectors Xi correspond to the Reeb vector fields ξi . Looking back at Theorem
1.1, equality of the contact forms is equivalent to the following

Lemma 6.12 αi = − B(Xi , ·)/4(n + 2).

Proof By definition, αi = B(Xi , ·)/B(Xi , Xi ). We have

B(X1, X1) = BC(i Hα, i Hα) = − BC(Hα, Hα) = − tr ad2Hα

= − 4 ·(dim u(2)+ dim u(−2)) − 1 ·(dim u(1)+ dim u(−1)) = − 4(n + 2).

We also have B(X2, X2) = B(X3, X3) = −4(n + 2), since we could have used the
same arguments for a maximal torus of e.g. the form s⊕〈X2〉. ��

Because the contact forms coincide, so do their differentials, which are the fun-
damental 2-forms. Since the Riemannian metrics are determined by the fundamental
2-forms together with the almost complex structures, it suffices to show that the latter
coincide. Let Li : m → m denote the Ad(H)-invariant endomorphism of m cor-
responding to the G-invariant endomorphism field ϕi , i.e. Li = ψ−1◦(ϕi )p ◦ψ .
Looking back at Theorem 1.1, the claim reduces to showing that

Li |k = 1

2
adXi , Li |g1 = adXi .

The first equation is clear from Proposition 6.6 and the 3-Sasaki equations in Remark
2.4.

Proposition 6.13 The almost complex structures of the two 3-Sasakian structures in
question coincide.

Proof We first claim that L1 is not only ad(h)- but even ad(t)-invariant, i.e. that the
endomorphisms L1 and adX1 commute on g1. For all Y , Z ∈ g1, we have

2gp(Y p, L1Z p) = dη1(Y p, Z p)

= dη1([X1,Y ]p, [X1, Z ]p)
= 2gp([X1,Y ]p, L1[X1, Z ]p)
= − 2gp(Y p, [X1, L1[X1, Z ]p).

In the second equation, we used that adX1 corresponds to an almost complex struc-
ture on g1 which is compatible with the common fundamental 2-form dη1. The last

123



11 Page 18 of 28 O. Goertsches et al.

equation follows from Lemma 6.7. This shows that L1 = − adX1◦ L1 ◦adX1 on g1
and consequently, adX1◦ L1 = − ad2X1

◦L1 ◦adX1 = L1 ◦adX1 .

Let β be a root such that cαβ = 1. Since adHα leaves uβ invariant, so does adCX1
.

Because L1 is ad(t)-invariant, LC
1 is ad(c)-invariant and thus also leaves uβ invariant.

Now, adCX1
and LC

1 are C-linear maps on the one-dimensional subspace uβ which
square to −id, so they must be given by multiplication with ±i . Since both endomor-
phisms commute with complex conjugation, they act on u−β = uβ by multiplication
with ∓i . Therefore, L1 and adX1 coincide on (uβ ⊕u−β) ∩ g up to sign. We finish the
proof that L1 = adX1 on g1 by observing that for Y ∈ g1,Y �= 0, Lemma 6.2 implies

2gp([X1,Y ]p, L1Y p) = dη1([X1,Y ]p,Y p)

= η1([[X1,Y ],Y ]p) = − α1([[X1,Y ],Y ])
= B(X1, [[X1,Y ],Y ])

4(n + 2)
= − B([X1,Y ], [X1,Y ])

4(n + 2)
> 0.

Again, we can repeat the arguments for the maximal tori s⊕〈Xi 〉, i = 2, 3. Even
though the root spaces look differently then, the subalgebra g1 is still the same because
it can be defined independently of the maximal torus as the B-orthogonal complement
of k in m by virtue of Lemma 6.11. This proves that the almost complex structures in
question also coincide for i = 2, 3. ��

Remark 6.14 In later sections, instead of working with the simply connected, almost
effectively acting Lie group G with Lie algebra g, we may sometimes turn to a
non-simply connected (possibly effectively acting) group ˜G with Lie algebra g. For
g = so(k), using ˜G = SO(k) instead of G = Spin(k) allows us to describe the corre-
sponding coset space more explicitly via matrices. If we consider a description ˜G/ ˜H ,
then the isotropy group of the G-action on ˜G/ ˜H is given by the connected subgroup
H ⊂ G whose Lie algebra coincides with that of ˜H . This follows from the fact that
M is simply connected via the long exact sequence of homotopy groups. Hence, ˜G/ ˜H
and G/H are governed by the same Lie algebraic data and are therefore isomorphic
homogeneous 3-Sasakian manifolds.

7 Why the short root of g2 cannot occur

We need to fill the final gap left in the proof of Theorem 6.1 in the previous section:

Proposition 7.1 Even in the case of a homogeneous 3-Sasakian manifold with auto-
morphism algebra g2, the root described in Sect. 6 is maximal.

For the sake of contradiction, let us assume that α was one of the short roots of
g2. Again, we consider the reductive complement m ..= h⊥B as well as the maps
ψ : m → TpM , X �→ X p and Li

..= ψ−1◦(ϕi )p ◦ψ : m → m. Using the same
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arguments as in the proof of Lemma 6.11, we obtain the B-orthogonal decomposition

m = 〈X1, X2, X3〉⊕
⊕

β∈

cαβ∈{1,3}

(uβ ⊕u−β) ∩ g.

Under the isomorphism ψ : m → TpM , this induces a decomposition of the tangent
space:

TpM = 〈ξ1, ξ2, ξ3〉⊕
⊕

β∈

cαβ∈{1,3}

Vβ,

where Vβ
..= ψ((uβ ⊕u−β) ∩ g).

Lemma 7.2 The above decomposition of TpM is gp-orthogonal.

Proof If Y ∈ (uβ ⊕u−β) ∩ g, then

gp((ξi )p,Y p) = ηi (Y p) = αi (Y ) = B(Xi ,Y )/B(Xi , Xi ) = 0.

Hence, each Vβ is gp-orthogonal to 〈ξ1, ξ2, ξ3〉. If β1, β2 are roots such that β1 �= −β2,
then there exists some X ∈ c such thatβ1(X) �= −β2(X).We extendψ and gp complex
(bi-)linearly, let Y ∈ uβ1 , Z ∈ uβ2 and complexify Lemma 6.7 to obtain

β1(X)gp(ψY , ψZ) = gp(ψ[X ,Y ], ψZ)

= − gp(ψY , ψ[X , Z ]) = − β2(X)gp(ψY , ψZ).

Since β1(X) �= −β2(X), it follows that ψuβ1 and ψuβ2 are gp-orthogonal. This
implies that for β �= ±γ , the subspaces Vβ and Vγ are gp-orthogonal. ��
Lemma 7.3 For all Y , Z ∈ g, we have

gp(Y p, Li Z p) = 0 ⇐⇒ B(Xi , [Y , Z ]) = 0.

Proof By virtue of Lemma 6.2,

2gp(Y p, Li Z p) = dηi (Y p, Z p) = ηi ([Y , Z ]p)
= − αi ([Y , Z ]) = − B(Xi , [Y , Z ])

B(Xi , Xi ).
��

Lemma 7.4 For any root β ∈ 
, we have ϕ2Vβ ⊂ Vβ+α⊕Vβ−α .

Proof Let γ ∈ 
 be such that γ �= σα + τβ for all σ, τ ∈ {±1}. Then, σβ + τγ /∈
{±α} for all σ, τ ∈ {±1}. Consequently, the subspace [uβ ⊕u−β, uγ ⊕u−γ ] is BC-
orthogonal to uα ⊕u−α � Xα,Yα and thus also to X2 = i(Xα +Yα) (see the equations
above Proposition 6.8). The previous lemma now implies that ϕ2Vβ is gp-orthogonal
to Vγ . The claim then follows from Lemma 7.2. ��
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Proof of Preposition 7.1 Let us label some of the roots of g2 according to the following
diagram:

α
β

γ

δ

Lemma7.4 implies thatϕ2Vβ ⊂ Vγ . Sinceϕ2 is injective on the horizontal space,we
in fact have ϕ2Vβ = Vγ . Another application of Lemma 7.4 yields ϕ2Vγ ⊂ Vβ ⊕Vδ .
If we can show that there exists some Y ∈ Vγ such that ϕ2Y has a non-trivial Vδ-
component, then we arrive at a contradiction to the fact that ϕ2

2 = −id on Vβ .
Let Z∗ denote the complex conjugate of a vector Z ∈ u. We can choose Xγ ∈ uγ ,

Xδ ∈ uδ in such a way that

[Xγ , X∗
δ ] = Xα = 1

2i
(X2 − i X3).

We note that

X∗
α = − 1

2i
(X2 + i X3) = − Yα, i(Xα − X∗

α) = X2,

and

B([Xγ + X∗
γ , i(X∗

δ − Xδ)], X2) = B(i(Xα − X∗
α), X2) = B(X2, X2) �= 0.

Lemma 7.3 finally implies that ϕ2Y has a Vδ-component for Y ..= (Xγ + X∗
γ )p. ��

8 Why no proper subgroup of Aut0(M) acts transitively

We have shown that any simply connected homogeneous 3-Sasakian manifold M is
obtained from a complex 3-Sasakian datum as explained in Sect. 5. Hence, M can be
written as G/H , where G is a simply connected compact simple Lie group. As G is
simple, we pass to the effectively acting finite quotient ˜G which is then a subgroup of
Aut0(M). We can now write M = ˜G/ ˜H . Below we show that g = Lie ˜G = aut(M).
This concludes Theorem 1.1 as M determines its 3-Sasakian datum.
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Proposition 8.1 If a subgroup ˜G ⊂ Aut0(M) acts transitively on a simply connected
homogeneous 3-Sasakian manifold M, then ˜G = Aut0(M).

Proof We show that the Lie algebra g of ˜G is tied to purely geometric data of M .
Recall the setup from Theorem 1.1: We have a reductive decomposition g = h⊕m,
wherem = h⊥B andm = k⊕g1, where k corresponds to the Reeb vector fields ξi and
g1 = (h⊕k)⊥B . Note that we have the commutator relations (cf. Proposition 5.4)

[h, h] ⊂ h, [h, k] = 0, [h, g1] ⊂ g1, [k, k] ⊂ k, [k, g1] ⊂ g1, [g1, g1] ⊂ g0 = h⊕k.

Consider the subspace [m,m] + m ⊂ g. Using the commutator relations we find that
this is an ideal in g and thus (Proposition 6.10) already g itself. Hence, the knowledge
ofm embedded in the Lie algebra of Killing vector fields isom(M) on M via X �→ X
alone determines g ⊂ isom(M).

We now characterize m as the subset of Killing fields whose covariant derivatives
satisfy a certain behavior at o = e ˜H . By analogy, recall that in a symmetric space, the
analogue of m can be characterized as the Killing fields whose covariant derivative
vanishes at o. Let ∇ be the Levi-Civita connection on M , and α : m×m → m the
associated Nomizu operator defined by

α(X ,Y )o = ∇Xo
Y − [X ,Y ]o.

It satisfies

α(X ,Y ) =

⎧

⎪

⎨

⎪

⎩

0, X ∈ k and Y ∈ g1,
1
2 [X ,Y ]m, X ,Y ∈ k or X ,Y ∈ g1,

[X ,Y ]m, X ∈ g1 and Y ∈ k,

see [11, Theorem 4.2]. Thus, by definition of the Nomizu operator, we have

∇Xo
Y = α(X ,Y )o + [X ,Y ]o,

which means that

∇Xo
Y =

{

3
2 [X ,Y ]o = − 3

∑

ηi (Yo)ϕi Xo, X ∈ k,

2[X ,Y ]o = − 2
∑

ηi (Yo)ϕi Xo, X ∈ g1

for Y ∈ k and

∇Xo
Y =

{

[X ,Y ]o = ∑3
i=1 ηi (Xo)ϕi (Yo), X ∈ k,

3
2 ([X ,Y ]k)o = − 3

2

∑3
i=1 dηi (Xo,Yo)ξi , X ∈ g1
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for Y ∈ g1, where we used Lemma 6.2 in the last equation. Hence, the fundamental
vector field of Y ∈ m = k⊕g1 satisfies

∇vY = − 3
3

∑

i, j=1

ηi (v)η j (Yo)ϕiξ j − 2
3

∑

j=1

η j (Yo)ϕ j (vH)

+
3

∑

i=1

ηi (v)ϕi (Yo)H − 3

2

3
∑

i=1

dηi (v,Yo)ξi

(2)

for all v ∈ ToM and where vH denotes the projection of v toH = ⋂

ker ηi . Note that
(∇Y )o depends only on the value Yo ∈ ToM . We now consider the maps

m → {

Y Killing field on M | Y satisfies (2) for all v ∈ ToM
} → ToM,

where the first map is Y �→ Y ∈ isom(M) and the second is evaluation at o. The
evaluationmap is injective, as forKilling fieldsY1,Y2 in themiddle spacewith (Y1)o =
(Y2)o, by Property (2) also (∇Y1)o = (∇Y2)o, which implies that Y1 = Y2. Since
m ∼= ToM both maps are isomorphisms. Thus,

m = {

Y Killing field on M | Y satisfies (2) for all v ∈ ToM
} ⊂ isom(M).

Therefore we have shown that every connected Lie group ˜G with Lie algebra g acting
effectively and transitively on M has the same Lie algebra, namely g = aut(M). The
corresponding connected subgroup of Aut(M) is then ˜G = Aut0(M). ��

9 Determining the isotropy

Having proven Theorem 1.1, we now derive the precise list given in Corollary 1.2. By
Theorems 5.1 and 6.1 any simply-connected homogeneous 3-Sasakian manifold can
be written in the form G/H , where G is a simply-connected simple Lie group and
H = (CG(K ))0, where K ⊂ G is the connected subgroup with Lie algebra k ∼= sp(1)
determined by a maximal root. In this section, we will determine the isotropy groups
H , thereby proving Corollary 1.2 in the simply connected case. The classical cases
are dealt with in the following

Proposition 9.1 For G = Sp(n+1),SU(m) and ˜G = SO(k), the isotropy groups are
given by H = Sp(n), S(U (m−2)×U (1)) and ˜H = SO(k−4)×Sp(1), respectively.

Proof We use the explicit description of the root systems of the compact groups pro-
vided in [16, Chapter 11].
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G = Sp(n + 1): We may choose the maximal root α such that k = {diag(0n, sp(1))}
(by letting α = γn+1 in Tapp’s notation). Accordingly,

K = {diag(In,Sp(1))},
CG(K ) = {diag(Sp(n),±1)},

H = (CG(K ))0 = {diag(Sp(n), 1)}.

G = SU(m): We may choose α such that k = {diag(0m−2, su(2))} (by letting α =
αm−1,m in Tapp’s notation). Accordingly,

K = {diag(Im−2,SU(2))},
CG(K ) = H = {diag(SU(m − 2), z I2) | z ∈ U (1)} ∩ SU(m).

˜G = SO(k): We recall that there are two embeddings Sp(1)+,Sp(1)− ⊂ SO(4),
depending on whether Sp(1) is viewed as acting on H ∼= R

4 by multiplication from
the left or right, respectively. We may choose α such that k = {diag(0k−4, sp

−(1))}
(by letting α = α[k/2]−1,[k/2] in Tapp’s notation). Accordingly,

˜K = {diag(Ik−4,Sp
−(1))},

C
˜G(˜K ) = ˜H = {diag(SO(k − 4),Sp+(1))}. ��

We now present a different method based on Borel–de Siebenthal theory, which
allows us to first understand the isotopy algebra h in the exceptional cases:

Using the same notation as before, we let s ⊂ h be a maximal Abelian subalgebra
and consider the maximal Abelian subalgebra t ..= s⊕〈X1〉 of g. Let α denote the
maximal root that vanishes on sC. We fix a set of positive roots of g using a slight
perturbation of the hyperplane perpendicular to the maximal root α. By intersecting
this hyperplane with s, we also obtain a notion of positive root for h. By the very
definition of root spaces, as h commutes with X1, any root of h becomes, by extending
it by 0 on X1, a root of g.

Proposition 9.2 The simple h-roots are precisely those simple g-roots perpendicular
to α.

Proof By our notions of positivity, any h-simple root is also g-simple: If an h-root is the
sum of two positive g-roots, both of them have to lie in the hyperplane perpendicular
to α. Conversely, recall that by Proposition 5.4 the roots of h are exactly those roots
β perpendicular to the maximal root α. ��

We can thus determine the isotropy type of H by deleting the nodes in the Dynkin
diagram of G corresponding to simple roots that are not perpendicular to α. For each
simple G, these were determined by Borel and de Siebenthal in [8]: In the table
on p. 219 they draw the Dynkin diagrams for every simple g, extended by the lowest
root (denoted P in their notation). In order to find the isomorphism type of H one
therefore only needs to erase this lowest root, as well as all roots connected to it. As
an example, consider the Dynkin diagram of E6:
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α

Deleting α as well as the unique simple root connected to it results in the Dynkin
diagram of SU(6): The homogeneous 3-Sasakian manifold corresponding to E6 is
E6/SU(6).

Remark 9.3 If one removes only the nodes in the Dynkin diagram of G that are con-
nected toα, and notα itself, one obtains theDynkin diagram of the normalizer NG(K ),
which then yield the Wolf spaces G/NG(K ). Note that by the list in [8], in all cases
except G = SU(n) the maximal root α is connected to only one other node, which
means that in these cases the groups H and NG(K ) are semisimple, whereas in the case
G = SU(n) the groups H and NG(K ) have a one-dimensional center. Furthermore,
in the cases except SU(n), the normalizer NG(K ) is a maximal subgroup of maximal
rank: the types of such groups are exactly those that were classified by Borel and de
Siebenthal in [8]: Given a simple compact Lie group G, one adds the lowest root to
the Dynkin diagram and removes one other simple root from it.

Going through the list in [8], one obtains the Lie algebras of the isotropy groups of
the homogeneous spaces occurring in Corollary 1.2. As we determined the isotropy
groups in the classical cases above, in order to finish the proof of this corollary in the
simply connected case, we only need to argue that in the exceptional cases the isotropy
groups are simply connected. Ishitoya and Toda showed in [12, Corollary 2.2] that in
the cases G = G2, F4, E6, E7, E8, we have π2(G/NG(K )) = Z2, which is, because
G is simply connected, equivalent to π1(NG(K )) = Z2. (See also [8, Remarque II,
p. 220] for how to compute the fundamental group of a maximal subgroup of G of
maximal rank.) Moreover, by [12, Theorem 2.1] the normalizer NG(K ) is of the form
NG(K ) = (H ×Sp(1))/Z2, which then implies that H is simply connected.

10 WhyRP4n+3 is the only non-simply connected homogeneous
3-Sasakianmanifold

Having treated the simply connected case of Corollary 1.2, our goal is now to prove
the following

Theorem 10.1 The only homogeneous 3-Sasakian manifolds which are not simply
connected are the real projective spaces RP4n+3.

Let M = G/H be a homogeneous 3-Sasakian manifold (not necessarily simply
connected), where G is a simply connected compact Lie group and H is possibly
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disconnected. The universal cover of G/H is given by G/H , where H denotes the
identity component of H , and the homogeneous 3-Sasakian structure lifts to the simply
connected space G/H . As shown in Sect. 6, the automorphism group G has to be
simple. The vectors Xi ∈ g from Sect. 6 span a subalgebra k ..= 〈X1, X2, X3〉 ∼= sp(1)
and we let K ⊂ G denote the corresponding connected subgroup.

Since H is the identity component of H , we have H ⊂ NG(H). Furthermore,
the 3-Sasakian structure descends from G/H to G/H , so H ⊂ CG(K ). Conversely,
any subgroup H ⊂ NG(H) ∩ CG(K ) containing H allows us to define a 3-Sasakian
structure onG/H . Summarizing, the non-simply connected quotients of a given simply
connected homogeneous 3-Sasakian manifold G/H are classified by the subgroups
of the group

(NG(H) ∩ CG(K ))/H .

Thus, it suffices to show that this quotient isZ2 forG = Sp(n+1) and trivial otherwise.

Lemma 10.2 The numerator NG(H)∩CG(K ) is the subgroup generated by H∪Z(K ).

Proof Clearly, H ∪ Z(K ) ⊂ NG(H)∩CG(K ). The vector X1 ∈ g is the infinitesimal
generator of a circle subgroup S1 ⊂ K . Since Cg(X1) = h⊕〈X1〉 and the centralizer
of any torus (not necessarily maximal) in a compact connected Lie group is always
connected, it follows thatCG(S1) is the subgroup generated by H ∪ S1. Consequently,
any g ∈ CG(K ) ⊂ CG(S1) can be represented as g = hg1 for some h ∈ H , g1 ∈ S1.
Since H ⊂ CG(K ), we have g1 = h−1g ∈ CG(K ) ∩ K = Z(K ). ��
Proposition 10.3 The quotient (NG(H)∩CG(K ))/H is Z2 for G = Sp(n + 1) and
trivial otherwise.

Proof By the previous lemma, it suffices to check if Z(K ) is contained in H .

G = Sp(n+1):Wehave already seen in Sect. 9 that the center Z(K ) = {diag(In,±1)}
is not contained in H = {diag(Sp(n), 1)}.
G = SU(m): We have also shown that in this case Z(K ) = {diag(Im−2,±I2)} is
contained in H = S(U (m − 2)×U (1)).

G = Spin(k): We have seen that for ˜G = SO(k), the center Z(K ) =
{diag(Ik−4,±I4)} is contained in ˜H = SO(k−4)×Sp(1)+.We now transfer this state-
ment to G = Spin(k): Denote the universal covering map by π : Spin(k) → SO(k).
First, we observe that the connected subgroup of Spin(r) that maps onto a block-
diagonally embedded SO(r − 1) is Spin(r − 1), for r � 4: this is because Sr−1 =
SO(r)/SO(r − 1) is 2-connected for r � 4, hence equal to Spin(r)/Spin(r − 1) by
the long exact sequence in homotopy. Thus, for k � 7, the subgroups SO(k − 4) and
SO(4) lift to Spin(k−4) and Spin(4), respectively. As π is a 2 : 1-covering, the group
covering SO(k−4)×SO(4) is Spin(k−4)×Z2Spin(4), where theZ2 quotient means
that the nontrivial elements in the kernels of the respective projections are identified.
Now, Spin(k − 4)×Z2Spin(4) ∼= Spin(k − 4)×Z2(Sp(1)+ ×Sp(1)−). This implies
that the center of Sp(1)− is contained in H = Spin(k − 4)×Sp(1)+.
G = G2, F4, E6, E7, E8: Ishitoya and Toda showed that the subgroup U of the
corresponding symmetric base spaceG/U has to be of the formU = (H ×Sp(1))/Z2
and that the center Z(Sp(1)) is contained in H [12, Theorem 2.1]. ��
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11 Deriving the classification of homogeneous positive qKmanifolds

Weend this article by showing that the classification of homogeneous positive qKman-
ifolds in Sect. 1.3, which had originally been the stepping stone for the classification
of homogeneous 3-Sasakian manifolds, can in turn be derived from our results.

Let B be a positive qKmanifold. We recall that qKmanifolds may be characterized
by a subbundle Q ⊂ End T B of the endomorphism bundle which admits a local frame
satisfying the multiplication rules of the quaternions. In her 1975 article [15],Konishi
showed that the SO(3)- principal fibre bundle P → B of oriented orthonormal frames
of Q admits a 3-Sasakian structure. This construction is known as the Konishi bun-
dle over B and constitutes the inverse of the fibration introduced in Proposition 2.7.
Another natural and interesting bundle over B is the unit sphere bundle Z ..= S(Q) in
Q, known as the twistor fibration. Its total space Z is both a complex contact manifold
and a Fano variety [9, Chapters 12, 13].

A qK automorphism of B is an isometry φ : B → B such that conjugation with its
differential dφ leaves the bundle Q invariant. We call B a homogeneous qK manifold
if there is a Lie group G acting transitively on B by qK automorphisms. We first show
the following

Proposition 11.1 The Konishi bundle over a simply connected homogeneous positive
qK manifold is a homogeneous 3-Sasakian manifold.

Let B be a simply connected homogeneous positive qK manifold, so that we may
write B = G/U , where G is simply connected and U is connected. Because G acts
on B by qK automorphisms, the G-action lifts to the Konishi bundle P . In particular,
the isotropy group U acts on the fiber F of P over the identity coset eU ∈ B.

Choose and fix a frame p ∈ F . This allows us to identify F with SO(3) via the
orbit bijection θp : SO(3) → F , g �→ p ·g. The SO(3)-left action on itself by left
multiplication now induces a left action on F (which depends on the choice of p),
viz. g ·p q ..= θp(gθ−1

p (q)). Since theU -action commutes with the SO(3)-right action
on F , there exists a homomorphismρ : U → V onto a subgroupV ⊂ SO(3) (again, all
depending on p) such that u ·q = ρ(u) ·p q for all q ∈ F , namely ρ(u) ..= θ−1

p (u · p).
Clearly, d ..= dim V ∈ {0, 1, 3}.
Lemma 11.2 d = 3.

Proof Let us first assume that d = 0. Then, the connected groupU would act trivially
on F . Hence, we would obtain a well-defined global section B → P , gU �→ g · p,
meaning that the principal fiber bundle P was trivial. But the first Pontryagin class
p1(P) of P is (up to a factor) given by the class of the fundamental 4-form� ∈ �4(B)

of B and is therefore non-trivial [4, Proposition 14.92].
If we suppose that d = 1, then V is a connected one-dimensional subgroup of

SO(3) and is thus comprised of rotations around a fixed axis L ⊂ R
3. Choose a point

x ∈ L ∩ S2. We view the frame p ∈ F as a linear isometry R3 → Q and consider the
mapping B → Z , gU �→ (g · p)(x). This map is well-defined because

(u · p)(x) = (p ·θ−1
p (u · p))(x) = (p ·ρ(u))(x) = p(ρ(u)(x)) = p(x) for all u ∈ U .
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We would thus obtain a global section of the twistor fibration, which is impossible on
compact positive qK manifolds [3, Theorem 3.8]. ��
Proof of Proposition 11.1 From the previous lemma, we know that U acts transitively
on F and consequently, G acts transitively on P . This action preserves the 3-Sasakian
structure, since the Reeb vector fields are (by construction of the Konishi bundle) the
infinitesimal generators of the SO(3)-action, which commutes with G. ��
Proof of of Corollary 1.3 By Proposition 11.1, the Konishi bundle P over a simply con-
nected homogeneous positive qK manifold B is a homogeneous 3-Sasakian manifold,
i.e. one of the manifolds listed in Corollary 1.2. Dividing P by the action of the group
K ⊂ G from the previous sections, we obtain the list in Corollary 1.3. The statement
about the Riemannian metric and quaternionic structure follows from the fact that the
Konishi bundle is a Riemannian fibration.

Let us now assume that B = G/U was a non-simply connected homogeneous
positive qK manifold, where U is disconnected. Then, B is finitely covered by B =
G/U , where U denotes the identity component of U . The qK structure lifts from B
to B and the Konishi bundles P, P over B, B form a diagram

P P

B B

We obtain the existence of the dashed equivariant map P → P , so that P is a
non-simply connected homogeneous 3-Sasakian manifold. By Theorem 10.1, P can
only be RP4n+3, which leads to the same quotient B = Sp(n + 1)/(Sp(n)×Sp(1))
as P = S4n+3 . ��
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