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Abstract
We give a sufficient condition in order that n closed connected subsets in the n-
dimensional real projective space admit a common multitangent hyperplane.
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1 Introduction

The motivation for the present note is a step in the proof of the following statements
[2, Corollary 5.5 and Theorem 6.1] or [3, 4, Section 5.3]:

Theorem 1.1 Let X be a real del Pezzo surface of degree 2 such that X(R) is home-
omorphic to the disjoint union of four spheres. Then a smooth map f : X(R) → S

2

can be approximated by regular maps if and only if its topological degree is even.

Theorem 1.2 Let X be a real del Pezzo surface of degree 1 such that X(R) is home-
omorphic to the disjoint union of four spheres and a projective plane. Then every
smooth map f : X(R) → S

2 can be approximated by regular maps.

In the statements above S
2 ⊂ R

3 is the real locus of the quadric x21 + x22 + x23 = 1
and a regular map is only regular on real algebraic loci, see [3, 4, Definitions 1.2.54
and 1.3.4] for details.

Translated by Egor Yasinsky and Susanna Zimmermann from a preprint originally written in French.
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One key point in the proof of the former statements was the existence of a bitangent
line to any pair of connected components of a plane quartic and the existence of a
tritangent conic to any triple of connected components of certain space sextic. To be
precise we need the following:

Proposition 1.3 Let n = 2, 3 and X ⊂ P
n be a smooth real algebraic curve of degree

2n whose real locus X(R) has at least n + 1 connected components. If n = 3, assume
furthermore that X lies on a singular quadric.

Choose n connected components �1, . . . , �n of X(R). Then there exists a hyper-
plane of P

n(R) which is tangent to �i for all 1 � i � n.

Given a pair of embedded circles in the plane, it seems rather clear that a line tangent
to each of them exists provided the circles are unnested. Anyway, finding a rigorous
proof of this is not straightforward andwe did not find proper reference in the literature.
It is less obvious to find a tritangent conic to three embedded circles in a cone. More
generally, we can wonder how to generalize the obvious necessary condition to be
unnested in a more general setting and, even better we can seek for a necessary and
sufficient condition. We find a sufficient (but still not necessary) condition in a rather
general setting. This is the main result of this short note (Theorem 3.3) from which we
derive easily Proposition 1.3 as a particular case. Sections 2 and 3 are devoted to the
proof of this theorem. In Sect. 3, we prove Proposition 1.3 and propose a conjecture
with a sufficient condition weaker than Theorem 3.3. We refer to the cited references
for the proofs of Theorems 1.1 and 1.2.

2 Some reminders

We start with some well-known definitions from convex geometry.

Definition 2.1 (Convex hull) Let E be a Euclidean space of dimension n. A subset
A ⊂ E is called convex in E if and only if for all x, y ∈ A and every t ∈ [0, 1] we
have

t x + (1 − t) y ∈ A,

i.e. the line segment joining x and y is contained in A. The convex hull of a subset
A ⊂ E is the smallest (in the inclusion sense) convex subset of E containing A.

Definition 2.2 (Extremal point) Let E be a Euclidean space of dimension n and A ⊂ E
be a subset. We say that a point x ∈ A is an extremal point of A if the convex hull of
A\{x} is still convex.
Theorem 2.3 (Krein–Milman, see for instance [1, Chapter II.4, Theorem 1]) Every
non-empty compact convex subset of a Euclidean space admits an extremal point.

Corollary 2.4 Every non-empty compact subset of a Euclidean space admits an
extremal point.
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Proof Let A be a non-empty compact subset of a Euclidean space. Let Ac be the
convex hull of A. By Krein–Milman, there exists an extremal point x ∈ Ac. If x /∈ A,
then the convex set Ac\{x} contains A and it is a strict subset of Ac, which contradicts
Ac being the convex hull of A. Therefore, x ∈ A. ��

3 n-supporting hyperplanes

Definition 3.1 (Supporting hyperplane) Let H be a hyperplane of a Euclidean space
E given by the equation l(x) = a, where l is a linear form and a ∈ R. We denote by
H+ and H− the half-spaces

H+ ..= {x ∈ E | l(x) � a}, H− ..= {x ∈ E | l(x) � a}.

Let A ⊂ E be a subset of E and x ∈ A. We say that H is a supporting hyperplane of
A in x (or that H leans on A in x) if and only if the following hold:

(a) x ∈ A ∩ H ,
(b) A ⊂ H+ or A ⊂ H−.

If A is a subset of P
n(R) and x ∈ A, we say that H leans on A in x if and only if

there exists an affine chart E of P
n(R) such that x ∈ E and H leans on A in x inside

E .

Definition 3.2 (r -supporting hyperplane) Let A1, . . . , Ar be subsets ofP n(R).We say
that H is a hyperplane of r-support of A1, . . . , Ar if there exist points x1 ∈ A1, x2 ∈
A2, . . . , xr ∈ Ar such that H is a supporting hyperplane of Ai in xi for all 1 � i � r .

Theorem 3.3 Let n ∈ N and let A1, . . . , An ⊂ P
n(R) be closed connected subsets

of P
n(R). Suppose that there exists a point p ∈ P

n(R) such that no hyperplane
passing through p meets all the Ai . Then there exists an n-supporting hyperplane of
A1, . . . , An.

Proof We write P = P
n(R) and P

∗ = (P n(R))∗ for the dual projective space. To
each hyperplane H ⊂ P given by an equation

∑
λk xk = 0, we associate the point

H∗ ..= (λ0 : λ1 : . . . : λn) in P
∗. To each point q ∈ P we associate the dual hyperplane

q∗ ..= {H∗ | q ∈ H} in P
∗.

The hypothesis that there exists a point p ∈ P such that no hyperplane passing
through pmeets all the Ai implies that the Ai are pairwise disjoint. LetH be the set of
hyperplanes in P that meet all the Ai . Since there is a hyperplane through n points in
P, we see thatH is non-empty. LetH∗ be the image ofH in the dual space P

∗. via the
above correspondence. Since p∗ corresponds to the set of hyperplanes in P passing
through p, the setH∗ is contained in the complement of the hyperplane p∗ in P

∗. Let
Up be the open affine complement of p∗ in P

∗.

Lemma 3.4 The set H∗ is compact in Up.
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Proof For each 1 � i � n, let Hi be the set of hyperplanes that meet Ai . We have
H∗ = ⋂n

i=1(Hi )
∗ The set Ai being closed implies that (Hi )

∗ is closed. We start by
showing that the complement of H∗ in Up is open.

Indeed, the natural map R
n+1\{0} → P, (x0, x1, . . . , xn) 	→ [x0 : x1 : . . . : xn]

induces a continuous double cover S
n → P. The inverse image Bi of Ai through this

map is a closed subset in the unit sphere of R
n+1 If H is an hyperplane in P that does

not meet Ai , then its preimage H ′ is a hyperplane in R
n+1 which does not meet Bi .

The intersection H ′∩ S
n is the unit sphere of dimension n − 1 in H ′ and in particular

is closed in S
n .

If d > 0 is the distance between the two compacts Bi and H ′, we can take Ui the
subset of P

∗. formed by the duals of hyperplanes whose traces on S
n are at distance

less than 1/2 of Bi . Then Ui \{p} is open in Up.
This shows that the complement of (Hi )

∗ in P
∗. is open. It follows thatH∗ is closed

in P
∗. Moreover, the set H∗ is bounded in Up because it is closed and H∗∩ p∗ = ∅.

Hence H∗ is compact in Up. �

By Corollary 2.4 of Krein–Milman and Lemma 3.4, the setH∗ admits an extremal
point H∗ Let us show that H is an n-supporting hyperplane of A1, . . . , An .

We proceed by contradiction and without loss of generality, we can suppose that
H does not support A1. Since H ∈ H, there exists for each i = 2, . . . , n a point
yi ∈ Ai ∩ H . Let P1 be a hyperplane passing through p and y2, . . . , yn and recall that
P1 does not meet A1 by hypothesis. Since H does not lean on A1, it does not lean
on A1 in the aff ine chart E = P\ P1. We place ourselves inside E . The hyperplane
H ∩ E defines two half-spaces H+ and H− in E and there exists x1 ∈ A1 ∩ H+\H
and x2 ∈ A1 ∩ H−\H .

Let S be the closed segment [x1, x2] in E . It intersects H . Let us show that

any hyperplane in E that meets S also meets A1. (1)

Let P be a hyperplane of E meeting S. If it meets S in x1 or x2, we are finished.
Suppose that P∩ S ⊂]x1, x2[ and A1∩ P = ∅. Let O+ = P+\ P and O− = P−\ P .
The sets O+ and O− are open subsets of E and A1 ⊂ O+ ∪ O−. The subspace A1
being connected in E , we have A1 ⊂ O+ or A1 ⊂ O− This is impossible because
x1 ∈ O+ and x2 ∈ O− (or the other way around). this ends the proof of (1).

Let y ∈ S. Since y2, . . . , yn are pairwise distinct and are not contained in E
(remember that yi ∈ Ai ∩ P1 for i ∈ {2, . . . , n} by definition of P1) and S ⊂ E , there
exists a hyperplane Hy ⊂ P through y, y2, . . . , yn . The hyperplane Hy is contained
inH because it meets A1 by property (1).

The points y2, . . . , yn define a line D in P
∗. and we have (Hy)

∗ ∈ D. Therefore,
the set of (Hy)

∗, y ∈ S, is a closed segment S∗ It is contained inUp, because p /∈ Hy ,
and S∗ is contained inH∗ as a consequence of (1). Let y0 = S ∩ H , where H∗ is the
extremal point of H∗ from above. Then H∗ = (Hy0)

∗ is a point in the interior of S∗
It is therefore contained in the convex hull of H∗ and cannot be an extremal point,
because we lose convexity if we take it away. Hence the contradiction. ��
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4 Conclusion

Proof of Proposition 1.3 First recall that any hyperplane meets any connected compo-
nent of X(R) in an even number of intersection points, counted with multiplicity, see
e.g. [3, 4, Lemma 2.7.8]. Let p be a point of X(R)\ ⋃

�i . By definition of the degree,
a hyperplane passing through p cannot meet n other components of X(R) because X
has degree 2n in P

n

The conclusion follows from Theorem 3.3. ��
Theorem3.3 is enough to proveProposition 1.3, but it is easy to see that the existence

of a point p such that no hyperplane passing through pmeets all the Ai is not necessary.
Take for example two intersecting circles in the plane: as in Theorem 3.3, these are
two subsets in the 2-dimensional plane, but by any point p, there is a line meeting the
two circles. Anyway, there is clearly a line tangent to them.

We propose the following conjecture using a weaker sufficient condition (which
can be applied to the former example):

Conjecture 4.1 Let {Ai }1�i�n be closed connected subsets contained in an affine
subset of P

n(R). Let Ci be the union of all (n − 2)-dimensional linear subspaces
P ⊂ P

n(R) such that for all j �= i , 1 � j � n, P meets the convex hull of A j .
Assume that for all 1 � i � n, Ai is not included in interior of Ci , then there exists
an n-supporting hyperplane of A1, . . . , An.

Remark that this new sufficient condition is still unnecessary: consider three disjoint
spheres A1, A2 and A3 with the same radius and whose centers are on the same line. If
A1 is not the sphere in the middle it is in the interior of the union of all lines meeting
A2 and A3.

We can see that the sufficient condition of the conjecture is weaker than the one
of Theorem 3.3, by contraposition. If the condition of the conjecture is not satisfied,
then there exists i such that Ai is included in the interior of the union of the (n − 2)-
dimensional linear subspaces meeting each convex hull of A j , j �= i . Then there exists
an (n − 2)-dimensional linear subspace P meeting each convex hull of Ai . Let p ∈ P,
then the hyperplane generated by p and P meets each convex hull of Ai , hence each
Ai as they are connected, which contradicts the condition of the theorem.

We could also ask about the number of multi-tangent planes.

Proposition 4.2 Under the conditions of Theorem 3.3, if each Ai contains a non-
empty open subset, then there is at least n + 1 distinct n-supporting hyperplanes of
A1, . . . , An.

Proof If each Ai contains a non-empty open subset, so does H∗ This implies that
there are at least n + 1 distinct extremal points for H∗ Indeed, if H∗ has less than
n + 1 extremal points, it is the convex hull of its extremal points and therefore it is a
hyperplane of dimension at most n − 1 hence it does not contain any open set. Then,
the proof of Theorem 3.3 establishes that each extremal point for H∗ corresponds to
distinct n-supporting hyperplanes. ��
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However, it seems that the conditions of this theorem imply thatwe have 2n extremal
points (in dimension 2: 4 bitangent lines, 8 in dimension 3, etc.) by going either below
or above each Ai . This suggests that H∗ reassembles to a cube. Moreover, all the
examples we studied lead us to propose the following conjecture.

Conjecture 4.3 The main condition of Theorem 3.3 is sufficient and necessary to have
2n multi-tangent planes when the Ai are not thin (i.e. contain an open subset).
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