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Abstract
Let M be a holomorphic symplectic Kähler manifold equipped with a Lagrangian
fibration π with compact fibers. The base of this manifold is equipped with a special
Kähler structure, that is, a Kähler structure (I , g, ω) and a symplectic flat connection
∇ such that the metric g is locally the Hessian of a function. We prove that any
Lagrangian subvariety Z ⊂ M which intersects smooth fibers of π and smoothly
projects to π(Z) is a torus fibration over its image π(Z) in B, and this image is also
special Kähler. This answers a question of Nigel Hitchin related to Kapustin–Witten
BBB/BAA duality.
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1 Introduction

The present paper is motivated by the observations made by Nigel Hitchin [11] who
worked on the Kapustin–Witten version of the geometric Langlands correspondence,
interpreted as Montonen–Olive generalization of electric-magnetic duality. This the-
ory originates in 1977, when Peter Goddard, Jean Nuyts and David Olive discovered
that magnetic sources in gauge theory with gauge group G are classified by irreducible
representations of the Langlands dual group LG [9]. Then Claus Montonen and Olive
conjectured that the Yang–Mills theories with the gauge groups G and LG are isomor-
phic on the quantum level. TheMontonen–Olive duality can be regarded as a quantum
field generalization of the usual electric-magnetic duality.

MichaelAtiyah suggested that theMontonen–Olive conjecture [19]might be related
to the Langlands duality, but it took many years until 2006, when Anton Kapustin and
Edward Witten explained this conjectural relation.

In their celebrated paper [16], Kapustin and Witten produced a rich dictionary of
the correspondence between the geometric Langlands program and S-duality in the 4-
dimensional N = 4 gauge theory. This approach is based on the comparison between
twoHitchin systems (the spaces of Higgs bundles on a curve) with values in Langlands
dual groups. Both of these Hitchin systems are equipped with a Lagrangian fibration.
Reminiscent of the Strominger–Yau–Zaslow interpretation of the Mirror Symmetry,
the Langlands duality is interpreted as a correspondence between certain categories
on these two spaces, associated with the duality of their fibers. For a less technical
survey of the Kapustin–Witten program, see [15].

TheKapustin–Witten interpretation ofMontonen–Olive/geometricLanglands dual-
ity can be understood as SYZ Mirror symmetry on the Hitchin space, but it is firmly
based on the hyperkähler geometry of the Hitchin space. In place of the Fukaya cate-
gory on the symplectic side of Mirror Symmetry, one has a category associated with
the holomorphic Lagrangian subvarieties (BAA, ABA and AAB branes). In place of
the derived category of coherent sheaves on the complex side of Mirror Symmetry one
has a category which has pairs (trianalytic subvariety, hyperholomorphic bundle on it)
as objects; these are called BBB branes. Since the fiberwise duality should somehow
exchange these two categories, Hitchin argued, the fibers of the BAA brane under the
Hitchin fibration map should be tori, and its image should retain the special Kähler
structure which exists on the base of the Hitchin fibration. We define all these notions
and state this result rigorously in Sect. 2.

Hitchin stated his theorem in bigger generality than required by the Kapustin–
Witten theory: he expected it to be true for any hyperkähler manifold equipped (such
as the Hitchin system) with a C

∗-action rotating the complex structures within the
twistor family. We prove the same result without a C

∗-action. Our main theorem is
the following.

Theorem 1.1 (Theorem 3.2) Let (M,�) be a holomorphic symplectic Kähler mani-
fold, and let π : M −→ B be a proper Lagrangian fibration. Consider an irreducible
Lagrangian subvariety Z ⊂ M such that π(Z) does not lie in the discriminant
locus D of π . Then for any smooth point x ∈ π(Z)\D which is a regular value
of π : Z −→ π(Z), the fiber π−1(x) ∩ Z is a union of translation equivalent subtori
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in the complex torus π−1(x), and the regular part of π(Z) is a special Kähler sub-
manifold in B\D.

2 Special Kähler manifolds

2.1 Special Kähler manifolds and Hessianmanifolds

Special Kähler manifolds first appeared in physics [6,7] as allowed targets for the
scalars of the vector multiplets of field theories with N = 2 supersymmetry on a 4-
dimensional Minkowski space-time. Originally they came in two flavours, the affine
special Kähler manifolds associated with rigid supersymmetry, and projective special
Kähler manifolds associated with the local supersymmetry. In the present paper we
are interested only in the affine version.

The first comprehensive mathematical exposition of this theory is due to Dan Freed
[8]. After this geometric structure was presented to the general mathematical read-
ership, special Kähler manifolds became prominent in differential geometry. In [2],
Baues and Cortés showed that special Kähler manifolds can be interpreted as “affine
hyperspheres”. This classical concept, going back to the work of Blaschke in affine
geometry, is described by solutions of real Monge–Ampère equation. This interpre-
tation leads to a classification of special Kähler manifolds. For more details on the
differential geometry of special Kähler manifolds, the reader is directed to the survey
[5].

Definition 2.1 A special complex manifold is a complex manifold (M, I ) equipped
with a flat, torsion-free connection ∇ such that the tensor ∇(I ) ∈ �1(M)⊗�1(M)⊗
T M is symmetric in the first two variables. A special complex manifold is special
Kähler if it is equipped with a Kähler form ω which satisfies ∇(ω) = 0.

Let (M, I ,∇, g, ω) be a special Kähler manifold. Since ∇(ω) = 0, and ∇(I ) is
symmetric in the first two variables, the tensor

∇(g) = ∇(I ◦ ω) ∈ �1(M)⊗ �1(M)⊗ �1(M) (2.1)

is symmetric in the first twovariables. This tensor is symmetric in the last twovariables,
because g is symmetric. Therefore, ∇g is a symmetric 3-tensor.

Definition 2.2 Let (M,∇) be a manifold equipped with a flat torsion-free connection,
and g a Riemannian metric. It is called Hessian if ∇(g) is symmetric in all three
variables.

Remark 2.3 It is not hard to see that the Riemannian metric g on (M,∇) is Hessian
if and only if g is locally the Hessian of a function, which is called the potential of
the Hessian metric. A priori the potential exists only locally, but when M is simply
connected, it can be defined globally on M .

This construction is due to Hitchin [10] who exhibited the special Kähler structure on
the moduli space of holomorphic Lagrangian subvarieties in a hyperkähler manifold,
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and exhibited many interesting differential-geometric properties of special Kähler
manifolds.

Remark 2.4 Let (M, I ,∇, g, ω) be a special Kähler manifold, Vol M the Riemannian
volume form, and f the potential of itsHessianmetric. SinceVol M = ωn, and∇(ω) =
0, the function f is a solution of the real Monge–Ampère equation det d2 f

dxi dx j
=

const. In the paper [3], Cheng and Yau studied Hessian manifolds with a prescribed
Riemannian volume form, and proved an analogue of Calabi–Yau’s theorem for such
manifolds.

Claim 2.5 Let (M, I ,∇, g, ω) be a Kähler manifold equipped with a flat connection
∇ which satisfies ∇(ω) = 0. Then (M, I ,∇, g, ω) is special Kähler if and only if the
metric g is Hessian.

Proof Follows immediately from (2.1). 
�

2.2 Special Kähler structure on the base of a complex Lagrangian fibration

Special Kähler manifolds naturally occur inmany situations associated with the geom-
etry of Calabi–Yau and hyperkähler subvarieties. For the present paper, the following
construction is most significant.

Definition 2.6 Let (M,�) be a holomorphic symplectic manifold. A Lagrangian sub-
variety of M is a subvariety such that its smooth part is a Lagrangian submanifold
in M . A (holomorphic) Lagrangian fibration on M is a proper holomorphic map
π : M −→ B with general fibers being Lagrangian submanifolds in (M,�).

The following claim is well known in classical mechanics.

Claim 2.7 A smooth fiber of a holomorphic Lagrangian fibration is always a torus.

Proof For any fibration π : M −→ B, any smooth fiber F has trivial normal bundle
N F . However, N F is dual to the tangent bundle T F whenever π is a Lagrangian
fibration. Therefore, the bundle T F is also trivial. For any function on B, its Hamil-
tonian gives a section of T F . Choose a collection of holomorphic functions such
that their Hamiltonians give a basis in T F . Since these Hamiltonians commute, the
corresponding vector fields in T F also commute. This gives a locally free action of
an abelian Lie group on F , and therefore F is a quotient of an abelian group by a
lattice. 
�
Definition 2.8 Let π : M −→ B be a proper fibration. Consider the first derived direct
image R1π∗(RM ), where RM is the trivial sheaf on M . This is a constructible sheaf;
at any point x ∈ B, the fiber of R1π∗(RM ) is equal to the first cohomology of the
fiber π−1(x). Outside of singularities of π , this sheaf is locally constant. The flat
connection on the corresponding vector bundle is called theGauss–Manin connection.
This connection is defined in the complement to the set Disc(π) of all critical values
of π ; this set is called the discriminant locus of π .
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Definition 2.9 Let π : M −→ B be a Lagrangian fibration, and let F be the fiber
over x ∈ B. Then π∗T B = N F = T ∗F . Identifying H0(N F) = Tx B with
H0(T ∗F) = H1(F,R), we obtain an identification of T B and the bundle R1π∗(RM )

of the first cohomology constructed above. Therefore, T B is equipped with a natural
flat connection, also called the Gauss–Manin connection.

Remark 2.10 Let π : M −→ B be a holomorphic Lagrangian fibration. A Kähler form
ω on M restricted to a smooth fiber F of π defines a cohomology class [ω] ∈ H2(F).
Since F is a torus, we can consider [ω] as a 2-form on R1π∗(RM ) = T B. This form is
clearly parallel under the Gauss–Manin connection. Abusing the notation, we denote
this 2-form by the same letter ω.

Theorem 2.11 ([8, Theorem3.4], [10, Theorem3])Let π : M −→ B be a holomorphic
Lagrangian fibration on a Kähler holomorphic symplectic manifold and let B0 ⊂ B be
the complement to the discriminant locus of B. Consider the 2-form ω on B constructed
in Remark 2.10, and the Gauss–Manin connection ∇ on T B defined in Definition 2.9.
Then (B,∇, ω) is a special Kähler manifold.

3 Special Kähler geometry and holomorphic Lagrangian subvarieties

3.1 Holomorphic Lagrangian subvarieties: main theorem

Recall that projective special Kähler manifold [17] is a special Kähler manifold
(M, g, I , ω) equipped with a vector field v acting on (M, g) by homotheties which
preserve the complex structure, such that the vector field I (v) acts by isometries.

In his talk [11] at the SCGP in October 2018, Hitchin stated the following theorem.

Theorem 3.1 (Hitchin, [11]) Let π : M −→ B be an algebraically integrable system
with aC∗-action defining a projective special Kähler structure. Then anyC∗-invariant
holomorphic Lagrangian submanifold has an open set with the structure of a fibration
over a projective special Kähler submanifold of B, and each fiber is a disjoint union
of translates of an abelian subvariety.

Hitchin asked whether there is an analogue of his result in the affine special Käher
setting. Here we prove it, and give examples of holomorphic Lagrangian submanifolds
projecting to special Kähler submanifolds.

Theorem 3.2 Let (M,�) be a holomorphic symplectic Kähler manifold, and let
π : M −→ B be a proper Lagrangian fibration. Consider an irreducible Lagrangian
subvariety Z ⊂ M such that π(Z) does not lie in the discriminant locus D of π . Then
for any smooth point x ∈ π(Z)\D which is a regular value of π : Z −→ π(Z), the fiber
π−1(x) ∩ Z is a union of translation equivalent subtori in the complex torus π−1(x),
and the smooth part of π(Z)\D is a special Kähler submanifold in B0 := B\D.

Before we prove Theorem 3.2, we state the following elementary linear-algebraic
lemma.
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Lemma 3.3 Suppose V ⊂ W ⊕ W ∗ is a Lagrangian vector subspace in W ⊕ W ∗ with
standard symplectic structure, and π : W ⊕ W ∗ −→ W the projection. Then π(V )⊥ =
V ∩ W ∗, where R⊥ ⊂ W ∗ denotes the annihilator of a subspace R ⊂ W , and W ∗ is
considered as a subspace in W ⊕ W ∗.

Proof of Theorem 3.2 Step 1: Let Zx := π−1(x) ∩ Z , where x ∈ π(Z)\D is a regular
value of π : Z −→ π(Z). Denote by T π M the fiberwise tangent bundle, and let T π

z M
be its fiber over z ∈ Zx . The holomorphic symplectic form induces non-degenerate
pairing between T π

z M and Tx B. Lemma 3.3 applied to V = Tz Z and W ⊕ W ∗ = Tz M
implies Tz Zx = π(Tz Z)⊥. Indeed, in this case Tz Zx = V ∩ W ∗ and π(Tz Z) = π(V ).
However, dim π(Z) = dim Z − dim Zx = dim π(Tz Z), hence in all points x ∈ B\D
and all z ∈ π−1(x), one has Txπ(Z) = π(Tz Z). This gives

Tz Zx = Tx (π(Z))⊥. (3.1)

Step 2: From (3.1), we obtain that π(Tz Z)⊥ is constant: for different z, z′ ∈ Zx ,
the spaces Tz Zx and Tz′ Zx are obtained by a translation within the torus π−1(x). In
other words, the space Tz Zx is constant in the standard coordinates on the torus, and
Zx ⊂ π−1(x) is a union of subtori which are translates of each other.

Step 3: Since π(Z) ⊂ B is a complex subvariety, in order to prove that it is special
Kähler it suffices to show that it is totally geodesic (that is, constant) with respect
to the Gauss–Manin connection ∇ on T B0. However, the connection ∇ is identified
with the Gauss–Manin connection under the identification T B0 = R1π∗(RM ), and it
preserves any sublattice in Tx B0 = H1(F,R), where F = π−1(x).

Since Zx ⊂ π−1(x) is a subtorus, it corresponds to a sublattice H1(Zx ) ⊂
H1(π

−1(x)) in homology, and in a neighbourhood U � x , all fibers Zx ′ ⊂ π−1(x ′)
correspond to the same sublattice. Therefore, its orthogonal complement in R1π∗(RM )

is constant. However, by (3.1), this orthogonal complement generates Tx (π(Z)).
This implies that T π(Z) is constant with respect to the Gauss–Manin connection
∇ on B0. 
�

4 Examples

Many (or most) holomorphic Lagrangian tori in hyperkähler manifolds occur as fibers
of Lagrangian fibrations. Indeed, in [12] it was shown that any Lagrangian subtorus
in a hyperkähler manifold is a fiber of a holomorphic Lagrangian fibration. However,
for any two distinct Lagrangian fibrations over a maximal holonomy hyperkähler
manifold, the intersection index of their fibers is positive ([14], second paragraph of
the proof of Theorem 2.11). Therefore, any fiber of the first fibration is projected to
the base of the second one surjectively and finitely in the general point. In this case,
Theorem 3.2 is tautologically true, because the fibers of π

∣
∣

Z are 0-dimensional, and
its base coincides with B.

It is much harder to find examples where the special Kähler geometry of π(Z)

is non-trivial. This is easy to explain. Indeed, π(Z) gives a flat submanifold in the
special Kähler manifold B0 = B\D. Therefore, the tangent space Txπ(Z) to any
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smooth point is fixed by the monodromy of the Gauss–Manin connection on B0.
However, the monodromy representation is quite often irreducible, or has very few
subrepresentaions.

The Hitchin system (moduli of Higgs bundles over a curve) is equipped with a
Lagrangian fibration (“Hitchin fibration”), which has abelian varieties (Jacobians of
the “spectral curve”) as its fibers. For some examples of the Hitchin system, the corre-
sponding monodromy representation was computed in [1]. From these computations
it follows that the monodromy representation is reducible [1, Corollary 4.23]. This
suggests that some interesting Lagrangian subvarieties, not transversal to fibers of the
Hitchin system,might exist in this case. Two of the first papers to study themonodromy
for the Hitchin fibration are [4,21].

Holomorphic Lagrangian fibrations on a deformation of the second Hilbert scheme
of a K3 were studied by Markushevich and by Kamenova [13,18]. They split into
two distinct cases. In the first case, studied by Markushevich, the Abelian fibers are
Jacobians of smooth genus two curves. If the fibers of π : M −→ B have no elliptic
curve then all Lagrangian subvarieties of M would either project to B surjectively or
would lie in the fibers of π . In the second case, studied by Kamenova, the fibers of
π are products of two elliptic curves, i.e., the fibers are Jacobians of singular genus
two curves. This situation occurs, for example, when one takes the punctual Hilbert
scheme of two points on an elliptic K3 surface S −→ P

1. Then the Hilbert scheme
S[2] is fibered over the base (P1)[2] = P

2 with general fibers that are products of
the fibers of the ellitic fibration S −→ P

1. As shown in [13], under some “genericity”
hypotheses, all deformations of the second Hilbert scheme of a K3, fibered with the
fiber that is a product of two elliptic curves, are obtained in this way.

The main (and, so far, the only) non-trivial example of the geometric construction
obtained in this paper is given by the Hilbert scheme of an elliptic K3 surface as
follows. Let π : M −→ S = CP1 be an elliptic fibration on a K3 surface. Consider
the corresponding fibration π [n] : M [n] −→ S[n] = CPn on its Hilbert scheme. A
multisection of π is a curve which is transversal to the fibers of π ; a multisection exists
if and only if M is projective. Fix points s1, . . . , sk ∈ S, and let Ck+1, . . . , Cn ⊂ M
be multisections. Denote by L̂k(s1, . . . , sk, Ck+1, . . . , Cn) ⊂ Symn M the set of n-
tuples of points (e1, . . . , ek, ck+1, . . . , cn) ∈ Symn M , such that ei ∈ π−1(si ) and
c j ∈ C j . Since the holomorphic symplectic form on Symn M is locally a product of
the holomorphic symplectic form on M , and the curves π−1(si ) and C j ⊂ M are
Lagrangian, the subvariety

L̂k(s1, . . . , sk, Ck+1, . . . , Cn) ⊂ Symn M

is Lagrangian. Then its proper preimage Lk(s1, . . . , sk, C) ⊂ M [n] is also Lagrangian.
Under the natural map π [n] : M [n] −→ S[n] = CP n, this subvariety is projected to a
subset of Symn S = CPn consisting of all n-tuples which contain (s1, . . . , sk).

Another example is due to Richard Thomas (private communication). In the early
versions of this paper, we did not specify the behaviour of the restriction π

∣
∣

Z outside
of its regular values, and this example shows that it can be pretty wild.

Let S be a compact complex torus, dimC S = n, and M = T ∗S the total space
of its cotangent bundle. Since T ∗S admits a natural trivialization, the manifold M is
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equipped with a Lagrangian fibration M −→ C
n, with the fibers obtained as translates

of S.
Let X ⊂ S be a complex submanifold, and Z := N S⊥ ⊂ M the total space of its

conormal bundle. It is always Lagrangian, and in many situations the projection of Z
to the base Cn is n-dimensional. To illustrate it, let us identify the base B = C

n of π

with T ∗
s S, for some s ∈ S. A vector v ∈ B belongs to π(Z) if and only if v ∈ Tx X⊥

for some x ∈ X , where Tx X⊥ = {ζ ∈ T ∗
x S | 〈ζ, Tx X〉 = 0}. Then π(Z) is a union of

subspaces Tx X⊥ parametrized by the family of x ∈ X . If, for example, X is a curve,
and Tx X is not constant, this is a union of a non-constant family of hyperplanes, hence
it is Zariski dense in B.

Unless the tangent space Tx X stays constant as we vary x ∈ X , the image π(Z)

is n-dimensional, and the corresponding fiber is 0-dimensional. However, the central
fiber π−1(0) is X , not a torus and of different dimension from the general fiber. The
proof of Theorem 3.2 fails for the central fiber, because π(Z) is not smooth at 0, and
the identification Tz Zx = π(Tz Z)⊥ ∩ T π

z M does not hold.
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