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Abstract
We deal with complete linear Weingarten hypersurfaces immersed into locally sym-
metric Riemannian manifolds whose sectional curvature obeys certain standard
constraints. Under an assumption that such a hypersurface satisfies a suitableOkumura
type inequality, we apply a version of the Omori–Yau maximum principle to prove
that it must be either totally umbilical or isometric to an isoparametric hypersurface
having two distinct principal curvatures. When the ambient space is Einstein, we also
use a technique recently developed by Alías and Meléndez (Mediterr J Math 17(2):
61, 2020 [6]) to establish a sharp integral inequality for compact linear Weingarten
hypersurfaces.
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1 Introduction

The study of geometric properties of hypersurfaces immersed into Riemannian mani-
folds, under certain curvature constraints, constitutes an important topic of Differential
Geometry. In this field, Brasil Jr., Colares and Palmas [9] used the Omori–Yau maxi-
mumprinciple to characterize complete hypersurfaceswith constant normalized scalar
curvature in the unit Euclidean sphere Sn+1. In [3], Alías and García-Martínez used
a weak Omori–Yau maximum principle due to Pigola, Rigoli and Setti [20] to study
the behavior of the normalized scalar curvature R of a complete hypersurface with
constant mean curvature immersed into a space form Q

n+1
c of constant sectional cur-

vature c, deriving a sharp estimate for the infimum of R. Afterwards, the same authors
jointly with Rigoli [4] obtained another suitable weak maximum principle for com-
plete hypersurfaceswith constant scalar curvature inQn+1

c , and gave some applications
of it in order to estimate the norm of the traceless part of its second fundamental form
and, in particular, they improved the result of [9].

In [16], Li, Suh and Wei obtained characterization results concerning compact
(without boundary) linear Weingarten hypersurfaces immersed into S

n+1 (that is,
compact hypersurfaces of Sn+1 whose mean and normalized scalar curvatures are
linearly related). Later on, the second author jointly with Aquino and Velásquez
[7,8] established another characterization results related to complete linear Wein-
garten hypersurfaces immersed into Qn+1

c , under appropriate constraints on the norm
of the traceless part of the second fundamental form. Next, the second author jointly
with Alías, Meléndez and dos Santos [1] extended these results to the context of com-
plete linear Weingarten hypersurfaces immersed into locally symmetric Riemannian
manifolds obeying certain standard curvature conditions (in particular, in Riemannian
spaces with constant sectional curvature).We recall that a Riemannianmanifold is said
to be locally symmetric if all covariant derivative components of its curvature tensor
vanish identically. Under appropriate constrains on the scalar curvature function, they
proved that such a hypersurface must be either totally umbilical or isometric to an
isoparametric hypersurface with two distinct principal curvatures, one of them being
simple.

More recently, the first and second authors [14] obtained a sharp estimate on
the norm of the traceless second fundamental form of complete hypersurfaces with
constant scalar curvature immersed into a locally symmetric Riemannian manifold
obeying the same curvature constraints as assumed in [1]. When the equality holds,
they proved that these hypersurfaces must be isoparametric with two distinct principal
curvatures. Their approach involved a suitable Okumura type inequality which was
introduced by Meléndez in [17], corresponding to a weaker hypothesis when com-
pared with the assumption that these hypersurfaces have a priori at most two distinct
principal curvatures. We point out that the same authors [12] had already used this
Okumura type inequality to prove a sharp estimate on the scalar curvature of stochas-
tically complete hypersurfaces with constant mean curvature immersed into a locally
symmetric Riemannian manifold (see also [15] for other characterization results con-
cerning complete hypersurfaces immersed into such an ambient space and having two
distinct principal curvatures). Meanwhile, Alías and Meléndez [6] studied the rigidity
of closed hypersurfaces with constant scalar curvature isometrically immersed into
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390 E.L. de Lima et al.

the unit Euclidean sphere Sn+1. In particular, they established a sharp integral inequal-
ity for the behavior of the norm of the traceless second fundamental form, with the
equality characterizing the totally umbilical hypersurfaces and certain Clifford tori.

Motivated by these works, here we deal with complete linear Weingarten hypersur-
faces immersed into a locally symmetric Riemannian manifold, which is supposed to
obey standard curvature constraints already considered in [1,12,14,15]. Assuming that
such a hypersurface satisfies the Okumura type inequality introduced in [17], we apply
a version of the Omori–Yau maximum principle to prove that it must be either totally
umbilical or isometric to an isoparametric hypersurface having two distinct principal
curvatures (see Theorem 4.1). When the ambient space is Einstein, we use the ideas
and techniques recently developed by Alías and Meléndez in [6] to establish a sharp
integral inequality for compact linear Weingarten hypersurfaces (see Theorem 5.1).

2 Preliminaries

Let us denote by�n an orientable and connected hypersurface isometrically immersed
into an arbitrary (n + 1)-dimensional Riemannian manifold Mn+1. Let {e1, . . . , en+1}
be a local orthonormal frame on Mn+1 with dual coframe {ω1, . . . , ωn+1} such that
at each point of �n, e1, . . . , en are tangent to �n and en+1 is normal to �n. We will
use the following convention for the indices:

1 � A, B,C, . . . � n + 1 and 1 � i, j, k, . . . � n.

Restricting all the tensors to �n, we see that ωn+1 = 0 on �n. Hence, 0 = dωn+1 =
−∑

i ωn+1i ∧ ωi and as it is well known we get

ωn+1i =
∑

j

hi jωj , hi j = hji .

This gives the second fundamental form of �n, A = ∑
i, j hi jωi ⊗ωj en+1, and its

squared norm, |A|2 = ∑
i, j h

2
i j . Furthermore, the mean curvature H of �n is defined

by H = 1
n tr(A) = 1

n

∑
i hii .

Denoting by RABCD, RAC and R, respectively, the Riemannian curvature tensor,
the Ricci tensor and the scalar curvature function of the Riemannian manifold Mn+1,
we have

RAC =
∑

B

RABCB and R =
∑

A

RAA.

It follows from the Gauss equation that the normalized scalar curvature R of �n is
given by

n(n − 1)R =
∑

i, j

Ri ji j + n2H2 − |A|2. (2.1)
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The traceless second fundamental form is given (in local coordinates) by �i j =
hi j − Hδi j , which corresponds to the symmetric tensor

� =
∑

i, j

�i jωi ⊗ωj .

Thus, we have |�|2 = ∑
i, j �

2
i j is the squared norm of �. Moreover, from (2.1) we

obtain

n(n − 1)R =
∑

i, j

Ri ji j + n(n − 1)H2 − |�|2. (2.2)

The Cheng–Yau operator [10], here denoted by L , is defined as being the second order
linear differential operator L : C∞(�) → C∞(�) given by

Lu = tr(P◦hess u), (2.3)

where P : X(�) → X(�) is the first Newton transformation of �n, which is defined
as the operator P = nH I − A, where I is the identity in the algebra of smooth vector
fields on �n, and hess u : X(�) → X(�) denotes the self-adjoint linear operator
metrically equivalent to the Hessian of u, Hess u, which are given by

hess u(X) = ∇X∇u and Hess(X ,Y ) = 〈hess u(X),Y 〉,

respectively, for all X ,Y ∈ X(�). It is not difficult to see that P is a self-adjoint
operator which commutes with the second fundamental form A and satisfies tr(P) =
n(n − 1)H .

3 Setup and key lemmas

In what follows, we assume Mn+1 to be a locally symmetric Riemannian manifold,
whichmeans that all covariant derivative components RABCD;E of its curvature tensor
vanish identically.

Let�n be a hypersurface immersed into Mn+1 and let K be the sectional curvature
of Mn+1. Following the ideas of Nishikawa [18], Choi et al. [11,21], Gomes et al. [15],
and Alías et al. [1], among others, we will assume in our main result that there exist
constants c1 and c2 such that the following relations hold:

K (en+1, ei ) = c1
n

, (3.1)

and

K (ei , ej ) � c2 (3.2)

for all i, j = 1, . . . , n.
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392 E.L. de Lima et al.

Moreover, we say that a hypersurface �n is linear Weingarten when its normalized
scalar curvature and mean curvature are linearly related. That said, we are going to
consider �n, a linear Weingarten hypersurface immersed into Mn+1.

It is worth to point out that the Riemannian space forms Qn+1
c of constant sec-

tional curvature c ∈ {0, 1,−1} satisfy conditions (3.1) and (3.2) for c1
n = c2 = c.

Just to mention other spaces having these properties, a standard computation proves
that the Riemannian products Rn−k×S

k+1 and R
n−k×H

k+1 are locally symmetric
Riemannian manifolds which also satisfy the above conditions for a wide class of
hypersurfaces (for more details, see [1, Remark 3.1]).

We also observe that, in the case where Mn+1 satisfies condition (3.1), its scalar
curvature R is such that

R =
∑

RAA =
∑

Ri ji j + 2
∑

R(n+1)i(n+1)i =
∑

Ri ji j + 2c1. (3.3)

Since the scalar curvature of a locally symmetric Riemannian manifold is constant,
from (3.3) we see that

∑
i, j Ri ji j is a constant naturally attached to Mn+1. In this

context, for the sake of simplicity,wewill consider the constantR ..= 1
n(n−1)

∑
i, j Ri ji j

and, assume that Mn+1 also satisfies condition (3.2), we denote c0 ..= 2c2 − c1
n

for

convenience.
Our first key lemma is an Okumura type result due to Meléndez [17] which is

closely related to the total umbilicity tensor (for more details, see [17, Lemma 2.2];
see also [19]).

Lemma 3.1 Let κ1, . . . , κn, n � 3, be real numbers such that
∑

i κi = 0 and
∑

i κ
2
i =

β2, where β � 0. Then, the equation

∑

i

κ3
i = (n − 2p)√

np(n − p)
β3

(∑

i

κ3
i = − (n − 2p)√

np(n − p)
β3

)

, 1 � p � n − 1,

holds if and only if p of the numbers κi are nonnegative (resp. nonpositive) and equal,
and the rest n − p of the numbers κi are nonpositive (resp. nonnegative) and equal.

Next, we recall our second auxiliary result, which corresponds to [1, Lemma 3.2].

Lemma 3.2 Let�n be a linear Weingarten hypersurface immersed into a locally sym-
metric Riemannian manifold Mn+1 satisfying curvature conditions (3.1) and (3.2),
with R = aH + b. Suppose that

(n − 1)2a2 + 4n(n − 1)(b − R) � 0, (3.4)

then

|∇A|2 − n2|∇H |2 � 0. (3.5)

Moreover, if inequality (3.4) is strict and equality in (3.5) holds on �n, then H is
constant on �n.
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For our purposes, it will be crucial to consider the following Cheng–Yau modified
operator

L = L − n − 1

2
a�.

So, for any u ∈ C2(�n), from (2.3) we have that

L(u) = tr(P◦hess u) (3.6)

with

P =
(

nH − n − 1

2
a

)

I − A. (3.7)

Besides that, since R = aH + b, equation (2.2) becomes

|�|2 = |A|2 − nH2 = n(n − 1)H2 − n(n − 1)aH − n(n − 1)(b − R). (3.8)

In our last key lemma, we collect some analytic properties of Cheng–Yau’s modified
operator, namely: sufficient conditions for the ellipticity property ofL and the validity
of a generalized version of the Omori–Yau maximum principle on �n, i.e., for any
function u ∈ C2(�n) with u∗ = sup u < +∞, there exists a sequence of points
{pj } ⊂ �n satisfying

u(pj ) > u∗ − 1

j
, |∇u(pj )| <

1

j
and Lu(pj ) <

1

j
,

for every j ∈ N. For the proof of these properties see Lemma 3.4, the beginning of
the proof of Lemma 3.6, and Proposition 4.2 in [1].

Lemma 3.3 Let �n be a complete linear Weingarten hypersurface immersed into a
locally symmetric Riemannian manifold Mn+1 satisfying curvature conditions (3.1)
and (3.2), with R = aH + b satisfying b > R (resp. b � R). In the case where b = R,
assume in addition that the mean curvature function H does not change sign on �n.
Then:

(i) If we choose a local orthonormal frame {e1, . . . , en} on�n such that hi j = λiδi j ,
the formula

L(nH) = |∇A|2 − n2|∇H |2 + nH tr(A3) − |A|4
+

∑

i

R(n+1)i(n+1)i (nHλi − |A|2) +
∑

i, j

(λi − λj )
2Ri ji j

(3.9)

holds on �n, where λ1, . . . , λn denote the principal curvatures of �n.
(ii) The operator L is an elliptic (resp. semi-elliptic) operator or, equivalently, P is

positive definite (resp. semi-definite), for an appropriate choice of the orientation
of �n.
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394 E.L. de Lima et al.

(iii) If sup� |�| < +∞, then the Omori–Yau maximum principle holds on �n for the
operator L.

4 Rigidity of complete linear Weingarten hypersurfaces

In the setup of the previous section, we have the following rigidity result:

Theorem 4.1 Let �n be a complete linear Weingarten hypersurface immersed into a
locally symmetric Riemannian manifold Mn+1 satisfying curvature conditions (3.1)
and (3.2), with R = aH + b such that a � 0 and b > max {R − c0,R}. If its total
umbilicity tensor � satisfies

tr(�3) � − (n − 2p)√
np(n − p)

|�|3, (4.1)

for some 1 � p � n−√
n

2 , then

(i) either sup |�| = 0 and �n is a totally umbilical hypersurface, or
(ii)

sup
�

|�| � α(a, b, n, p,R, c0) > 0,

where α(a, b, n, p,R, c0) is a positive constant depending only on a, b, n, p,
R and c0. Moreover, if the equality sup� |�| = α(a, b, p, n,R, c0) holds and
this supremum is attained at some point of �n, then �n is an isoparametric
hypersurface with two distinct principal curvatures of multiplicities p and n− p.

Proof Initially we must obtain a suitable lower bound for the operator L acting on the
squared norm of the total umbilicity tensor � of �n. Since R is constant, we get from
(3.8) that

1

2(n − 1)
L(|�|2) = 1

2
L(nH2) − a

2
L(nH)

= HL(nH) + n〈P∇H ,∇H〉 − a

2
L(nH).

(4.2)

By Lemma 3.3 (ii), we have that the operator P is positive definite. In particular, from
(4.2) we obtain

1

2(n − 1)
L(|�|2) �

(

H − a

2

)

L(nH). (4.3)

Without loss of generalitywe can choose the orientation of�n so that H > 0, occurring
the strict inequality because of b > R. From this, we claim that H −a/2 > 0. Indeed,
it is enough to see that we can rewrite equation (3.8) as

nH(nH − (n − 1)a) = |A|2 + n(n − 1)(b − R) > 0.
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So, formula (3.9) and inequality (4.3) jointly with Lemma 3.2 give

1

2(n − 1)
L(|�|2)

�
(

H − a

2

)
(|∇A|2 − n2|∇H |2 + nH tr(A3) − |A|4)

+
(

H − a

2

)(∑

i

R(n+1)i(n+1)i (nHλi − |A|2) +
∑

i, j

(λi − λj )
2Ri ji j

)

�
(

H − a

2

)
(
nH tr(A3) − |A|4)

+
(

H − a

2

)(∑

i

R(n+1)i(n+1)i (nHλi − |A|2) +
∑

i, j

(λi − λj )
2Ri ji j

)

.

(4.4)

The curvature constraints (3.1) and (3.2) yield

∑

i

R(n+1)i(n+1)i (nHλi − |A|2) = − c1|�|2 (4.5)

and

∑

i, j

(λi − λj )
2Ri ji j � 2nc2|�|2. (4.6)

Thus, plugging (4.5) and (4.6) into (4.4), we obtain

1

2(n − 1)
L(|�|2) �

(

H − a

2

)
(
nH tr(A3) − |A|4 + nc0|�|2). (4.7)

On the other hand, it is not difficult to see that

tr(A3) = tr(�3) + 3H |�|2 + nH3. (4.8)

Putting (4.8) into (4.7) we find

1

2(n − 1)
L(|�|2) �

(

H − a

2

)
(− |�|4 + nH tr(�3) + n(H2 + c0)|�|2). (4.9)

Now, taking into account the Okumura type inequality (4.1), from (4.9) we get

1

2(n − 1)
L(|�|2) �

(

H − a

2

)

|�|2
(

− |�|2 − n(n − 2p)√
np(n − p)

H |�| + n(H2 + c0)

)

. (4.10)
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Since H − a/2 > 0, we observe that equation (3.8) implies that the mean curvature
can be written as

H − a

2
= 1√

n(n − 1)

√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

. (4.11)

Thus, substituting (4.11) into (4.10) we get

1

2
L(|�|2) � (n − 1)√

n(n − 1)
|�|2

·
{

− |�|2 − n(n − 2p)√
np(n − p)

(
1√

n(n − 1)

√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

+ a

2

)

|�|

+ n

[(
1√

n(n − 1)

√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

+ a

2

)2
+ c0

]}

·
√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

.

(4.12)

After some straightforward computations, inequality (4.12) gives us the next one

1

2
L(|�|2) � 1√

n(n − 1)
|�|2

·
{

− (n − 1)|�|2 − n(n − 1)(n − 2p)a

2
√
np(n − p)

|�| − (n − 1)(n − 2p)√
(n − 1)p(n − p)

|�|

·
√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

+ n(n − 1)

(
a2

4
+ b − R

)

+ |�|2

+ a
√
n(n − 1)

√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

+ n(n − 1)
a2

4
+ n(n − 1)c0

}

.

(4.13)

So, inequality (4.13) lead us to the following estimate:

1

2
L(|�|2) �

1√
n(n − 1)

|�|2Qa,b,n,p,R,c0
(|�|)

√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

, (4.14)

where the function Qa,b,n,p,R,c0
is given by

Qa,b,n,p,R,c0
(x)

= − (n − 2)x2 − n(n − 1)(n − 2p)a

2
√
np(n − p)

x

−
(

(n − 2p)

√
n − 1√

p(n − p)
x − a

√
n(n − 1)

)
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√

x2 + n(n − 1)

(
a2

4
+ b − R

)

+ n(n − 1)

(
a2

2
+ b − R + c0

)

. (4.15)

Now, we are going to finish the proof by applying the Omori–Yau maximum principle
to the operator L acting on the function |�|2. We note that if sup� |�| = +∞, then
claim (ii) of Theorem 4.1 trivially holds and there is nothing to prove. Otherwise, if
sup� |�| < +∞, item (iii) of Lemma 3.3 says that there exists a sequence of points
{pj } in �n such that

lim |�|(pj ) = sup |�| and L(|�|2)(pj ) <
1

j
.

Hence, estimate (4.14) implies that

1

j
> L(|�|2)(pj ) �

2√
n(n − 1)

|�|2(pj )Qa,b,n,p,R,c0
(|�|(pj ))

·
√

|�|2(pj ) + n(n − 1)

(
a2

4
+ b − R

)

,

and, taking the limit as j → +∞, we infer

(
sup
�

|�|)2Qa,b,n,p,R,c0

(
sup
�

|�|)
√

(
sup
�

|�|)2 + n(n − 1)

(
a2

4
+ b − R

)

� 0.

It follows that either sup� |�| = 0, which means that |�| ≡ 0 and the hypersurface is
totally umbilical, or sup� |�| > 0 and then Qa,b,n,p,R,c0

(sup� |�|) � 0. In the latter

case, since b > max {R − c0,R}, we have that

Qa,b,n,p,R,c0
(0) = n(n − 1)a

√
a2

4
+ b − R + n(n − 1)

(
a2

2
+ b − R + c0

)

> 0.

Moreover, since 1 � p � n−√
n

2 , we can reason as in [13, Remark 3.3] to conclude that
the function Qa,b,n,p,R,c0

(x) is strictly decreasing for x � 0.

Hence,weguarantee existenceof a uniquepositive real number pgα(a, b, n, p,R, c0) > 0,
depending only on a, b, n, p,R and c0, such that Qa,b,n,p,R,c0

(α(a, b, n, p,R, c0)) =
0. Therefore, we must have

sup
�

|�| � α(a, b, n, p,R, c0) > 0,

concluding the proof of the first part of Theorem 4.1.
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Finally, let us assume that equality sup� |�| = α(a, b, n, p,R, c0) holds. In par-
ticular, we get

Qa,b,n,p,R,c0
(|�|) � 0

on �n and then (4.14) assures that |�|2 is a L-subharmonic function on �n, that is,

L(|�|2) � 0 on �n . (4.16)

Furthermore, since b > R, item (ii) of Lemma 3.3 asserts that the operatorL is elliptic.
Thus, since�n is complete and taking into account that we are assuming the existence
of a point p ∈ �n such that |�(p)| = α(a, b, n, p,R, c0) = sup� |�|, from (4.16) we
can apply Hopf’s strong maximum principle for the elliptic operator L acting on the
function |�|2 to conclude that it must be constant, that is, |�| = α(a, b, n, p,R, c0).
Hence, the equality in (4.14) holds, namely,

1

2
L(|�|2) = 0 = 1√

n(n − 1)
|�|2Qa,b,n,p,R,c0

(|�|)

·
√

|�|2 + n(n − 1)

(
a2

4
+ b − R

)

.

Consequently, all the inequalities along the proof of (4.14) must be, in fact, equalities.
In particular, we obtain that equation (4.3) must be an equality, which jointly with the
positiveness of the operator P imply that the mean curvature H is constant. Moreover,
also equality in (4.4) holds, that is,

|∇A|2 = n2|∇H |2 = 0.

Therefore, the principal curvatures of�n must be constant and�n is an isoparametric
hypersurface. Besides, Eq. (4.10) is equality too, which implies by Lemma 3.1 that
�n has exactly two distinct constant principal curvatures, with multiplicities p and
n − p. ��
Remark 4.2 When Mn+1 = Q

n+1
c is a Riemannian space form of constant sectional

curvature c, the constants R and c0 in Theorem 4.1 just agree with c. For this reason,
Theorem 4.1 can be regarded as a natural generalization of [13, Theorem 1].

5 A sharp integral inequality

In this last section, we will establish a sharp integral inequality concerning compact
(without boundary) linearWeingarten hypersurface immersed into a locally symmetric
Einstein manifold. This will be done by applying the ideas and techniques introduced
by Alías and Meléndez in reference [6] for the case of hypersurfaces with constant
scalar curvature in the Euclidean sphere.
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We observe that the operator L defined in (3.6) is a divergence-type operator when
the ambient space is an Einstein manifold. Indeed, choosing a local orthonormal frame
{e1, . . . , en} on �n and using the standard notation 〈 · , · 〉 for the (induced) metric of
�n, from (2.3) we get

L(u) =
n∑

i=1

〈P(∇ei ∇u), ei 〉. (5.1)

Thus, from (5.1) with a straightforward computation we have

div(P(∇u)) = 〈div P,∇u〉 + L(u), (5.2)

where

div P = tr(∇P) =
n∑

i=1

(∇ei P)ei .

Hence, from [5, Lemma 25] (see also [2, Lemma 3.1]) we have

〈div P,∇u〉 = − Ric(N ,∇u), (5.3)

where Ric stands for the Ricci tensor of Mn+1 and N denotes the orientation of �n.
Assuming that the ambient space Mn+1 is an Einstein manifold, from (5.3) we get

〈div P,∇u〉 = 0.

Consequently, from (5.2) we conclude that

L(u) = div(P(∇u)).

So, returning to the operator L, we get

L(u) = div(P(∇u)), (5.4)

where P is defined in (3.7).
Finally, we are able to establish the following sharp integral inequality.

Theorem 5.1 Let �n be a compact linear Weingarten hypersurface immersed into a
locally symmetric Riemannian manifold Mn+1 satisfying curvature conditions (3.1)
and (3.2), with R = aH + b such that b � R. In the case where b = R, suppose that

a > 0. If its totally umbilical tensor � satisfies (4.1), for some 1 � p � n−√
n

2 , then

∫

�

|�|q+2Qa,b,n,p,R,c0
(|�|) d� � 0, (5.5)
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for every q � 2, where the real function Qa,b,n,p,R,c0
is defined in (4.15). Moreover,

assuming b > R, the equality in (5.5) holds if and only if

(i) either �n is a totally umbilical hypersurface, or
(ii)

|�|2 = α(a, b, n, p,R, c0) > 0,

where α(a, b, n, p,R, c0) is a positive constant depending only on a, b, n, p,R
and c0, and �n is an isoparametric hypersurface with two distinct principal
curvatures of multiplicities p and n − p.

Proof Taking u = |�|2, we can rewrite inequality (4.14) as follows:

L(u) �
1√

n(n − 1)
uQa,b,n,p,R,c0

(
√
u)

√

4u + n(n − 1)(4(b − R) + a2).

Since u � 0 and a > 0 when b = R, we obtain

u(q+2)/2Qa,b,n,p,R,c0
(
√
u) �

√
n(n − 1)

uq/2
√

4u + n(n − 1)(4(b − R) + a2)
L(u),

for every real number q. Besides that, the compactness of �n guarantees that we can
integrate both sides of the previous equation getting

∫

�

u(q+2)/2Qa,b,n,p,R,c0
(
√
u)d�

�
√
n(n − 1)

∫

�

uq/2
√

4u + n(n − 1)(4(b − R) + a2)
L(u) d�.

(5.6)

But, from (5.4) we deduce that

f (u)L(u) = div( f (u)P(∇u)) − f ′(u)〈P(∇u),∇u〉,

for every smooth function f ∈ C1(R). So, integrating both sides and using Stoke’s
Theorem, we arrive at

∫

�

f (u)L(u) d� = −
∫

�

f ′(u)〈P(∇u),∇u〉 d�,

for every smooth function f . In our case, we choose

f (t) = tq/2
√

4t + n(n − 1)(4(b − R) + a2)
, for t � 0. (5.7)
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With this choice, we get

f ′(t) = (q − 1)4tq/2 + n(n − 1)(4(b − R) + a2)qt (q−2)/2

2(4t + n(n − 1)(4(b − R) + a2))3/2
� 0, (5.8)

for all real numbers q � 2 and t � 0. Putting (5.7) and (5.8) into (5.6), we obtain

∫

�

u(q+2)/2Qa,b,n,p,R,c0
(
√
u) d� �

−√
n(n − 1)

∫

�

f ′(u)〈P(∇u),∇u〉 d� � 0, (5.9)

since P is positive semi-defined by item (ii) of Lemma 3.3. Therefore,

∫

�

u(q+2)/2Qa,b,n,p,R,c0
(
√
u) d� � 0, (5.10)

proving inequality (5.5).
For the second part of Theorem 5.1, assuming that the equality in (5.10) holds,

from (5.9) we obtain

∫

�

f ′(u)〈P(∇u),∇u〉 d� = 0. (5.11)

Consequently, we get from (5.8) that

f ′(u) = (q − 1)4uq/2 + n(n − 1)(4(b − R) + a2)qu(q−2)/2

2(4u + n(n − 1)(4(b − R) + a2))3/2
� 0,

with equality if and only if u = 0 and q � 2. Moreover, since b > R, we know from
item (ii) of Lemma 3.3 that

〈P(∇u),∇u〉 � 0,

with equality if and only if ∇u = 0. Thus, from (5.11) we have

f ′(u)〈P(∇u),∇u〉 = 0.

Hence, the function u = |�|2 must be constant, either u = 0 or ∇u = 0. In the case
that |�|2 = 0, �n must be totally umbilical. Otherwise, |�|2 is a positive constant
and the equality in (5.5) implies Qa,b,n,p,R,c0

(|�|) = 0. Therefore, we can reason as
in the last part of the proof of Theorem 4.1 to conclude that �n is an isoparametric
hypersurface with two distinct principal curvatures of multiplicities p and n − p. ��
Remark 5.2 With the same argumentation made in Remark 4.2, we conclude that
Theorem 5.1 corresponds to an extension of [6, Theorem 4.1].
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