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1 Introduction

The AGT conjecture [1] leads to conjectural geometric constructions of W -algebra
actions on the equivariant Borel–Moore homology of moduli spaces of sheaves on sur-
faces. Independent proofs of this conjecture for moduli spaces of rank r � 1 framed
sheaves on the complex projective plane were given by Schiffmann, Vasserot [33] and
Maulik, Okounkov [18]. In both cases one first constructs an action of the affine Yan-
gian of gl1 on the equivariant Borel–Moore homology of the corresponding moduli
space, while the W -algebra action is obtained through a free field realization. A gen-
eralization to moduli spaces of framed G-instantons on C

2 for more general reductive
group G using Donaldson–Uhlenbeck compactifications was proven by Braverman,
Finkelberg and Nakajima in [5].

An alternative geometric construction of the W -algebra action was carried out by
Negut [23] using the shuffle algebra realization of the affine Yangian. Using the Ext
operators of [7,8], this yields a proof of the AGT conjecture for rank two quiver gauge
theories on C

2 as well as a proof [25] of the five-dimensional analog of the AGT
conjecture for any quiver gauge theory with gauge group SU(r), r � 1. The latter
involves aq-deformedW -algebra action on the equivariant K -theory ofmoduli spaces.
This construction has been further generalized to moduli spaces of stable sheaves on
smooth projective surfaces in [24].

Finally, motivated by work of Gaiotto and Rapcak [13], Nekrasov [26], and
Nekrasov and Prabhakar [27], an action of a more general class of vertex algebras
on the dual of the compactly supported equivariant vanishing cycle cohomology of
certain quiver moduli spaces was constructed by Rapcak, Soibelman, Yang and Zhao
in [30].

A central element in the constructions of [30,33] is the action of certain cohomolog-
ical Hall algebras on the cohomology of moduli spaces. Cohomological Hall algebra
(3d COHA for short) was introduced by Kontsevich and Soibelman [16] for categories
of modules associated to Quillen-smooth algebras with potential e.g. path algebras of
quivers with potential. Those are the hearts of t-structures of Calabi–Yau categories of
dimension three. An independent construction of a certain cohomological Hall alge-
bra (2d COHA for short) for categories of modules over preprojective algebras, which
are hearts of t-structures of two-dimensional Calabi–Yau categories, was developed
by Schiffmann and Vasserot [33–35], and also Yang and Zhao [38]. A comparison
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Hilbert schemes of nonreduced divisors… 809

between the two approaches was carried out in [31] where it was shown that the 2d
COHA can be obtained by dimensional reduction of a special case of 3d COHA. Fur-
ther developments on 3d COHAs and their representations include [10,11,36] while
geometric constructions of 2d COHAs for various categories of coherent sheaves on
surfaces have been developed in [15,19,29,32]. It should be also noted that the proof
of the AGT conjecture given in [33] uses the two-dimensional variant, while the gen-
eralization proven in [30] employs three-dimensional cohomological Hall algebras.

From this perspective, the geometric framework of the present paper consists of
torsion sheaves on a Calabi–Yau threefold with set theoretic support on a given divisor.
Such a generalization of the AGT framework was first proposed in [30].

In more detail, let Dr ⊂ A
3:=SpecC[x1, x2, x3] be the divisor xr3 = 0. Let also

Hilb(r , n) be the Hilbert scheme of zero-dimensional coherent quotients ODr � Q
with χ(Q) = n and let

Zr (q) =
∑

n�0

qnχ(Hilb(r , n))

be the generating function of Euler numbers. Then [13, Section 9.3.2] shows that
Zr (q) is equal to the vacuum character of the W -algebra Wκ(glr ) up to a prefactor.
More precisely, for any level k, one has

ch[Wκ(glr )] = q−ck,r /24 Zr (q)

with

ck,r = (r − 1)− r(r2 − 1)

(√
k + r − 1√

k + r

)2
.

Motivated by this observation, the main goal of the present work is to provide an
explicit geometric construction of a W -algebra action on the localized equivariant
Borel–Moore homology of the Hilbert scheme

Hilb(Dr ) =
⊔

n�0

Hilb(r , n)

and prove that the resulting W -module is isomorphic to the vacuum module. The
equivariant structure is induced by the torus action (C×)×2× A

3 → A
3,

(t1, t2)× (x1, x2, x3) �→ (t1x1, t2x2, t
−1
1 t−1

2 x3).

Let T0 = C
×× C

×, let R0 � C[x, y] be the cohomology ring of the classifying space
BT0 and let K0 � C(x, y) be its fraction field. For further reference let

V(r)
K0

=
⊕

n�0

HT0(Hilb(r , n))⊗R0 K0
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810 W.-Y. Chuang et al.

denote the localized equivariant Borel–Moore homology of the Hilbert scheme. As in
[18,33] one first constructs a degenerate DAHA, or, equivalently, Yangian action via
Hecke transformations.

1.1 The degenerate DAHA action

The degenerate DAHA is an infinite dimensional associative algebra SHc constructed
by Schiffmann and Vasserot [33] as a degeneration of Cherednik’s GLn double affine
Hecke algebra. As briefly reviewed in Sect. 6.1, this algebra is generated by the ele-
ments D1,l , D0,l , D−1,l , l � 0, over a polynomial ring C(κ)[c0, c1, . . .] where κ is a
formal parameter and cl , l � 0, are central elements. The defining relations are written
explicitly in equations (6.2)–(6.6). As shown in [4] it is in fact related by specializa-
tion to the Yangian algebra of affine gl1. A specialization C(κ)[c0, c1, . . .] → K of
this algebra has been shown in [33, Theorem 3.2] to act on the localized equivariant
Borel–Moore homology

L(r)
Kr+2

=
⊕

n�0

HTr+2(M(r , n))Kr+2

of the moduli space of rank r framed torsion free sheaves on the projective plane.
Here Tr+2 = (C×)r+2 denotes the natural torus which acts on these moduli spaces
and Kr+2 is the field of fractions of the cohomology ring of the classifying space,
H(BTr+2). More details are provided in Sects. 4.1 and 6.3.

In the Hilbert scheme context the direct construction of Hecke transformations
encounters significant technical problems. The natural Hecke correspondence in this
case is the nested Hilbert schemeHilb(r , n, n+1) parametrizing flags of ideal sheaves
I1 ⊂ I2 on Dr withχ(ODr /I2) = n andχ(ODr /I1) = n+1. By construction there are
natural projections ρ1 : Hilb (r , n, n+ 1) → Hilb (r , n) and ρ2 : Hilb (r , n, n+ 1) →
Hilb (r , n+1), and ρ2 and ρ2 can be shown to be proper. The main technical difficulty
resides in the fact that ρ1 is not a locally complete intersection morphism, hence one
cannot construct a refined Gysin pull-back ρ!

1. This problem has been encountered in a
similar context in [15,24,29,34,39] where it was solved using various techniques. The
construction of [34] uses a factorization of ρ1 into simplermorphismswhich is specific
to moduli spaces of Nakajima quiver varieties. The constructions of [15,24,29,39]
use virtual pull-backs, as constructed in [17] or some derived variant. A common
feature of all these cases is that their constructions take place in an abelian category of
homological dimension two, which is an essential condition. Such an approach does
not apply to the present case since the relative obstruction theory of ρ1 is not perfect
of amplitude [−1, 0]. This reflects the fact that the present construction takes place in
a category of homological dimension three rather than two as in loc. cit.

In order to circumvent this obstacle, the strategyused in this paper employs an equiv-
ariant embedding of the Hilbert scheme Hilb(r , n) in a smooth ambient space which
yields an injection for localized Borel–Moore homology. This is obtained in Proposi-
tions 3.8 and 2.2 which construct a closed embedding f : Hilb (r , n) ↪→ M(r , n), in
the moduli space of rank r framed sheaves on the projective plane with second Chern
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Hilbert schemes of nonreduced divisors… 811

class n. Moreover, as shown in Sect. 4.2, there is an injective group homomorphism
T0 ↪→ Tr+2,

(t1, t2) �→ (t1, t2, t
a−1
1 ta−1

2 ), 1 � a � r ,

such that f is equivariant. Then an important technical result in the current approach
states that any connected component of theT0-fixed locus inM(r , n)which intersects
Hilb(r , n) nontrivially must be:

(a) contained in Hilb(r , n), and
(b) zero-dimensional, i.e., a single closed point.

This is proven in Sect. 4.2, Corollary 4.7 and Lemma 4.8. Then the push-forward map
for localized equivariant Borel–Moore homology is injective and yields an identifica-
tion

HT0(Hilb(r , n))K0 �
⊕

α∈Hilb(r ,n)T0
K0[α] ⊂ HT0(M(r , n))K0 .

For future reference let

L(r)
K0

=
⊕

n�0

HT0(M(r , n))K0 .

Using these results, Hecke transformations for the Hilbert scheme are constructed in
Sect. 5.3 by analogy to [33, Section 3.2]. Let πi : A(r , n)×A(r , n + 1) → A(r , n +
i −1), 1 � i � 2, denote the canonical projections and let τn,n+1 denote the universal
line bundle on the correspondence variety A(r , n, n + 1). Let γ : A(r , n, n + 1) →
A(r , n)×A(r , n + 1) denote the canonical closed embedding. Then Lemmas 5.6 and
5.6 show that the transformations

h+
l (x) = π2∗

(
γ∗(eT0(τn,n+1)

l) ·π∗
1 (x)

)
, h−

l (x) = π1∗
(
γ∗(eT0(τn−1,n)

l) ·π∗
2 (x)

)

are well defined for any l � 0 and factor through V(r)
K0

⊂ L(r)
K0
. Therefore, by a slight

abuse of notation, one obtains linear transformations h±
l ∈ EndK0(V

(r)
K0
). In addi-

tion, one defines the diagonal transformations h0l ∈ EndK0(V
(r)
K0
) using the plethystic

powers of the universal vector bundle Vr ,n on M(r , n). Namely, denoting by Lk ,
1 � k � n, the virtual equivariant Chern roots of Vr ,n , let

h0l =
n∑

k=1

eT0(Lk)
l , l � 0.

Finally, in order to state the first main result of the present paper let SH(r)
K0

be the
specialization of the degenerate DAHA induced by the injective group homomorphism
T0 ⊂ Tr+2. By construction, this is an algebra over K0 = C(x, y). Then one has:
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812 W.-Y. Chuang et al.

Theorem 1.1 The map {D−1,l , D0,l , D1,l | l ∈ Z, l � 0} → EndK0(V
(r)
K0
) given by

D1,l �→ x1−l yh+
l , D0,l �→ x1−l h0l , D−1,l �→ (−1)r−1x−l h−

l , l � 0,

extends uniquely to an algebra homomorphism

SH(r)
K0

→ EndK0

(
V(r)

K0

)
.

Theorem 1.1 is proven in Lemma 6.3 using Lemmas 5.4, 5.6, 5.7 and 6.2. The main
strategy is to derive the above result from [33, Theorem 3.2] by a detailed equivariant
fixed point analysis.

1.2 TheW-algebra action

The next goal is to convert the SH(r)
K0
-action in Theorem 1.1 into a W -algebra action.

Let Wκ(glr ) be the W -algebra for glr at level κ = −x−1y considered as an algebra
over the ground field F = C(κ). A rigorous mathematical theory of W -algebras and
their representations has been developed in [2]. A brief introduction is provided for
completeness in Sect. 7.1. In particular there is a canonical vacuum module π0 which
admits a free field realization.

In the present context the relation between the degenerateDAHAand theW -algebra
is obtained by a careful specialization of [33, Theorem 8.21], including the main steps
in the proof. This is carried out in detail in Appendix A. In particular, Lemma A.3
shows that there is a surjective homomorphism of algebras



(r)
0 : U(

SH(r)
K0

) → U0(Wκ(glr ))

where the domain is the current algebra of the degenerate DAHA and the target is
the image of the current algebra U(Wκ(glr )) in End(π0). Corollary A.4 states that the
restriction



(r)
0 : SH(r)

K0
→ U0(Wκ(glr ))

yields a categorical equivalence of admissible modules.
As in [33, Definition 8.10], admissible modules are Z-graded modules with respect

to a naturalZ-grading on the degenerateDAHAwhose graded summands are trivial for
sufficiently high degree.Moreover, by construction, the underlying K0-vector space of
any admissible SH(r)

K0
-module is canonically identified with the underlying K0-vector

space of the correspondingU0(Wκ(glr ))-module. This is briefly reviewed in Sect. A.3.
In conclusion, one obtains a representation

π
(r)
0 : U0(Wκ(glr )) → EndK0

(
V(r)

K0

)
.

Then the second main result of this paper is:
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Hilbert schemes of nonreduced divisors… 813

Theorem 1.2 For any r � 1 the representation π
(r)
0 is isomorphic to the vacuum

representation of the W-algebra.

The proof of Theorem1.2 is analogous to the proof of [33, Theorem8.21]. The required
structure results are proven in the present context in Lemmas 6.5 and 6.7.

1.3 Further remarks and open directions

In order to conclude this section, it may be helpful to add a few comments on the
relation of the present work to [30], as well as mention a few possible open directions.

One of the main results of [30], is a construction of a certain vertex algebra action
on the dual to equivariant vanishing cycle cohomology of the moduli spaces of spiked
instantons constructed in [26,27]. Spiked instantons admit a presentation in terms of
framed quiver representations of a triply framed generalization of the ADHM quiver
labelled by framing vectors (r1, r2, r3) ∈ (Z�0)

×3. It was shown in [30] that the dual
of the compactly supported equivariant vanishing cycle cohomology of moduli spaces
of stable framed representations with fixed (r1, r2, r3) carries an action of the vertex
algebra Vr1,r2,r3 introduced in [13]. Moreover, the resulting module is identified with
a Verma module with the highest weight depending on the equivariant parameters. In
particular for (r1, r2, r3) = (r , 0, 0) the moduli space reduces to the standard moduli
space of stable ADHM data, and the action reduces to the W -action constructed in
[18,33].

The present paper generalizes the results of [18,33] in a different direction, using
framed quiver representations associated to geometric objects as explained above. In
particular, as shown in Sect. 3, spectral correspondence leads to the new framed quiver
with potential shown in diagram (3.1). The Hilbert scheme Hilbn(Dr ) is then isomor-
phic to a closed subscheme Q0(r , n) of the moduli space Q(r , n) of framed quiver
representations constructed in Proposition 4.1.Moreover, this closed embedding yields
an isomorphism in localized equivariant Borel–Moore homology and Theorem 1.2
identifies the latter with a vacuum W -module.

From the point of view of the underlying Calabi–Yau geometry, the moduli space
Q(r , n) is in fact more natural than the Hilbert scheme, since it admits a global pre-
sentation as the critical locus of a polynomial potential. As such, it is endowed with
an equivariant sheaf of vanishing cycles. Then one is naturally led to the following
conjecture:

Conjecture 1.3 Let Hvan
T0

(Q(r , n)) denote the dual to the compactly supported equi-
variant vanishing cycle cohomology of the framed quiver moduli space Q(r , n). Let
Hvan
T0

(Q(r , n))K0 denote its localization at (0). Then there is an explicit SH(r)
K0

action
on Hvan

T0
(Q(r , n))K0 constructed via Hecke correspondences for vanishing cycle coho-

mology by analogy to [30].

The main difficulty in proving Conjecture 1.3 resides in the technical difficulties
involved in working with sheaves of vanishing cycles.

As was pointed out in [30], a natural question for further study is whether similar
algebraic structures can be associated to more general configurations of divisors in
Calabi–Yau threefolds. It was explicitly conjectured in loc. cit. that this should be
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814 W.-Y. Chuang et al.

possible at least for divisors of the form xr11 xr22 xr33 = 0 in A
3. At the current stage, the

construction of a quiver with potential associated to such configurations is an open
problem. At the same time the results of [24] point to another possible generalization
associated to compact nonreduced divisors in Calabi–Yau threefolds.

2 Hilbert schemes and framed Higgs sheaves

Let S be a smooth complex projective surface, let L be a line bundle on S and let X be
the total space of the line bundle L . Letπ : X → S denote the canonical projection and
ζ ∈ H0(X , π∗L) denote the tautological section. The zero locus of ζ is the image of
the zero section S → L , which will be denoted by S1. More generally, for any positive
integer r � 1 let Sr denote the nonreduced divisor ζ r = 0, and let ιr : Sr ↪→ X denote
the canonical closed embedding into X . Note also that the projectionπ : X → S yields
by restriction a projection map πr : Sr → S. Moreover, the zero section σ : S ↪→ X
factors through a closed embedding σr : S → Sr .

As proven in [37, Proposition 2.2], the abelian category Cohc(X) of coherent OX -
modules with compact support is equivalent to the category of Higgs sheaves on S with
coefficients in L . A Higgs sheaf on S with coefficients in L is defined as a pair (E,�)
where E is a coherentOS-module and� : E → E ⊗ L is a morphism ofOS-modules.
Such pairs form naturally an abelian category Higgs(S, L), where the morphisms are
defined as morphisms f : E → E ′ of OS modules such that �′◦ f = ( f ⊗ 1L) ◦�.
ThenProposition 2.2 of loc. cit. proves that there is an equivalence of abelian categories

Cohc(X)
∼−→ Higgs(S, L) (2.1)

where Cohc(X) denotes the abelian category of coherent OX -modules with compact
support. This equivalence associates to any such sheaf F its direct image E = π∗F ,
while theHiggs field� : E → E ⊗ L is the direct image,� = π∗(ζF ) of the canonical
morphism ζF = 1F ⊗ ζ : F → F ⊗ L .

Now let � ⊂ S be a smooth connected effective divisor on S, and let �r =
π−1
r (�) ⊂ Sr be its inverse image in Sr . For any positive integer r � 1 let Dr be the

complement of�r in Sr and let Hilbn(Dr ) be the Hilbert scheme of zero dimensional
quotients

OSr � Q

with χ(Q) = n such that the support of Q is contained in Dr . For each such quotient
let ISr = Ker (OSr � Q). Clearly the extension of ISr by zero to X is a pure dimension
two torsion sheaf with compact support. Using the equivalence (2.1), the goal of this
section is to prove that the Hilbert scheme Hilbn(Dr ) is isomorphic to a moduli space
of framed Higgs sheaf quotients on S.
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2.1 Framed sheaves

This section summarizes the main results on framed sheaves needed in this paper fol-
lowing [6]. Let F be a fixed locally free O�-module. A framed torsion free sheaf
on S with respect to (�, F) is a pair (E, ξ) where E is a torsion free sheaf on
S, and ξ : E ⊗O� → F is an isomorphism of O�-modules. For any such a pair
(E, ξ), let fξ : E → F denote the morphism of OS-modules obtained by composing
ξ : E ⊗O� → F with the natural projection E → E ⊗O�. An isomorphism of
framed sheaves (E1, ξ1), (E2, ξ2) is an isomorphism of sheaves φ : E1 → E2 such
that

fξ2 ◦φ = fξ1 .

Moreover, given a parameter scheme T over C, let FT denote the pull-back of F
to �× T . Then a flat family of rank r � 1 torsion free sheaves on S is a coherent
OS×T -module ET , flat over T , and an isomorphism ξT : ET ⊗O�×T

∼−−→ FT .
Next suppose the following additional conditions are satisfied:

(1) � is nef and �2 � 0 in the intersection ring of S, and
(2) F is a good framing sheaf as defined in [6, Definition 2.4] satisfying in addition

the vanishing condition Hom�(F, F ⊗O�(−k�)) = 0 for all k ∈ Z, k � 1.

Then [6, Theorem 3.1] proves that there is a smooth quasi-projective finemoduli space
M(r , β, n) of framed torsion free sheaves with topological invariants

rk(E) = r , c1(E) = β, c2(E) = n.

In particular, under the above conditions, any framed sheaf (E, ξ) has trivial automor-
phism group.

2.2 Framed Higgs sheaves

In the above framework, a framed Higgs sheaf will be a triple (E, ξ,�) where (E, ξ)
is a framed torsion free sheaf and � : E → E ⊗ L a Higgs field satisfying a cer-
tain framing condition along �. The framing condition is naturally inferred from the
following special case.

Lemma 2.1 Let (Or ,�r ) be the Higgs sheaf associated to the torsionOX -moduleOSr
via correspondence (2.1). Then there is a direct sum decomposition

Or �
r−1⊕

a=0

L−a (2.2)

identifying the off-diagonal components of the Higgs field to the canonical isomor-
phisms

�a+1,a : L−a ∼−→ L−(a+1) ⊗ L. (2.3)

Moreover, all other components of �r are identically zero.
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816 W.-Y. Chuang et al.

Proof By construction, Or = π∗OSr . Equation (2.2)will be proven belowby induction
on r � 1. The case r = 1 is obvious. Suppose equation (2.2) holds for (Or ,�r ) and
note the canonical exact sequence

0 → Or S1(−S1) → O(r+1)S1
f−→ OS1 → 0. (2.4)

Note also the canonical isomorphism OX (S1) � π∗L determined by the tautological
section ζ : OX → π∗L . Then applying π∗ to the exact sequence (2.4), one obtains the
exact sequences of OS-modules

0 → Or ⊗ L−1 → Or+1
π∗ f−−−→ OS → 0. (2.5)

Let X be the total space of the projective bundle PS(OS ⊕ L), which contains X as
an open subscheme. Let π : X → S denote the canonical projection. Then there is a
commutative diagram of morphisms of OX -modules

OX
pq

O(r+1)S1
f

OS1

where all arrows are canonical projections. Applyingπ∗ yields a commutative diagram
of morphisms of OS-modules

OS

π∗ pπ∗q

Or+1
π∗ f

OS,

where π∗ p = 1OS . Therefore π∗q determines a splitting of the exact sequence (2.5).
This proves the inductive step.

The Higgs field �r is the direct image of the canonical map

ζ ⊗ 1OSr
: OSr → OSr (S1).

As observed above, the the tautological section ζ : OX → π∗L determines a canonical
isomorphism OX (S1) � π∗L . Therefore, equation (2.3) follows immediately. ��

The framing data for Higgs sheaves on S will be specified by the Higgs sheaf (Fr , �r )

obtained by restricting (Or ,�r ) to � ⊂ S. Therefore, a framed Higgs sheaf of rank
r on S will be a framed rank r torsion sheaf (E, ξ) and a Higgs field� : E → E ⊗ L
such that the following diagram is commutative:
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Hilbert schemes of nonreduced divisors… 817

E
�

fξ

E ⊗ L

fξ⊗q

Fr
�r

Fr ⊗ L ⊗O�.

(2.6)

For completeness, recall that the morphism fξ in the above diagram is the compo-
sition of ξ : E ⊗O� → Fr with the natural projection E � E ⊗O�. Similarly
q : L � L ⊗O� is the natural projection. Naturally, an isomorphism of framed
Higgs sheaves (E, ξ,�) ∼−−→ (E ′, ξ ′,�′) is an isomorphism f : (E, ξ) ∼−−→ (E ′, ξ ′)
of framed sheaves which is at the same time an isomorphism f : (E,�) ∼−−→ (E ′,�′)
of Higgs sheaves. The definition of flat families is also natural, hence the details will
be omitted.

The next result will show that the Hilbert scheme Hilbn(Dr ) is isomorphic to a
moduli space of Higgs sheaf quotients. Let

0 → ISr → OSr → Q → 0 (2.7)

be an exact sequence of OSr modules, where Q is zero-dimensional, supported in
the complement Sr \�r . By extension by zero, this yields an exact sequence of OX -
modules. Let (E,�) be the associated Higgs sheaf via correspondence (2.1). Taking
the direct image of the exact sequence (2.7) via π : X → S yields an exact sequence

0 → (E,�) → (Or ,�r ) → (G, ϒ) → 0 (2.8)

in the abelian category Higgs (S, L). Here (G, ϒ) is a zero-dimensional Higgs sheaf
on S supported in the complement S \� such that χ(G) = χ(Q) = n.

For any r , n ∈ Z, r � 1 let Quotn(Or ,�r ) be the Quot-scheme parametrizing
quotients

(Or ,�r ) � (G, ϒ) (2.9)

in the abelian categoryH(S, L), where (G, ϒ) is a zero-dimensional Higgs sheaf on
S supported in S \� such that χ(G) = χ(Q) = n. Then the equivalence (2.1) yields

Proposition 2.2 There is an isomorphismHilbn(Dr )
∼−−→ Quotn(r , n)mapping a quo-

tient OSr � Q to the corresponding quotient (Or ,�r ) � (G, ϒ).

Proof This follows by a routine verification for flat families. ��
Remark 2.3 Note that the kernel of the epimorphism (2.9) is naturally a framed Higgs
sheaf (E,�) on S with topological invariants

rk(E) = r , c1(E) = 0, 〈c2(E), [S]〉 = n.

Let H(r , n) denote the moduli stack of all such framed Higgs sheaves. Then Propo-
sition 2.2 yields a stack morphism

h : Hilbn(Dr ) → H(r , n).
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In the next section it will be shown that this is in fact a closed embedding of schemes
in the case where S is the complex projective space, L = OS and� ⊂ S is a projective
line.

3 Framed Higgs sheaves on the projective plane

In this section S = P
2 with homogeneous coordinates [z0, z1, z2], the line bundle L

is trivial, L = OS , and � ⊂ S is the projective line z0 = 0. Then the Higgs bundle
(Or ,�r ) obtained in Lemma 2.1 has underlying vector bundle Or = C

r ⊗OS . The
Higgs field �r : Or → Or is given by

�r = Ar ⊗ 1OS

where Ar ∈ Mr (C) is the lower triangular r × r regular nilpotent Jordan block. As
in the previous section, H(r , n) denotes the resulting moduli stack of framed Higgs
sheaves on S with rank r � 1 and second Chern number n. The framing condition
implies that the first Chern class must vanish. LetM(r , n) denote the moduli space of
framed sheaves on S, which is smooth and quasi-projective. Then note that there is a
natural forgetful morphism j : H(r , n) → M(r , n) forgetting the Higgs field. In this
section we will prove that the moduli stack H(r , n) in fact is isomorphic to a moduli
scheme of framed quiver representations and the morphism j is a closed embedding.

3.1 ADHM data for framed Higgs sheaves

Consider the following quiver Q:

�

α

η

•
β1

β2

β3

σ (3.1)

with potential

W = β3◦ (β1◦β2 − β2◦β1)+ β3◦ η ◦ σ − η ◦α ◦ σ.
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As usual, a representation of the above quiver with potential is defined as a pair of
vector spaces (V , V∞) and linear maps

A : V∞ → V∞, Bi : V → V , 1 � i � 3, I : V∞ → V , J : V → V∞

satisfying the relations derived from the potential function

W = TrV (B3[B1, B2] + B3 I J − I AJ ).

The dimension vector of such a representation is the pair of integers (r , n), where

n = dim(V ), r = dim(V∞).

An isomorphism between two such representations �, �′ is a pair of vector space
isomorphisms φ : V ∼−−→ V ′, ψ : V∞ ∼−−→ V ′∞ intertwining between the linear maps
belonging to the two representations.

Definition 3.1 A representation of dimension vector (r , n)will be called framed if the
following conditions are satisfied:

(Fr.1) The vector space V∞ is a fixed vector space of dimension r , equipped with a
fixed basis ea , 1 � a � r .

(Fr.2) The map A : V∞ → V∞ is fixed and given by the regular nilpotent endo-
morhism

Ar (ea) = ea+1, 1 � a � r ,

where er+1 = 0. In particular if 0 � r � 1, the map A is identically zero.
(Fr.3) The representation satisfies the relations derived from the potential function

W fr = TrV (B3[B1, B2] + B3 I J − I Ar J ),

where the map Ar is fixed as in (Fr.1), (Fr.2) above. The resulting relations are:

[B1, B2] + I J = 0, J B3 − Ar J = 0, B3 I − I Ar = 0,

[B3, B1] = 0, [B3, B2] = 0.
(3.2)

Furthermore, a framed representation as defined abovewill be called cyclic if it satisfies
the following additional condition:

(Fr.4) There is no proper nonzero linear subspace 0 ⊂ V ′ ⊂ V preserved by
B1, B2, B3 and at the same time containing the image of I : V∞ → V .

Finally, in the formulation of the moduli problem, two framed representations �, �′
will be said to be isomorphic if and only if they are related by an isomorphism of the
form (φ, 1V∞). It is clear that such isomorphisms preserve the fixed framing data.
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At this point it is helpful to note the relation between the quiver (3.1) and the
standard ADHM quiver. The latter is defined by the following diagram:

�

η

•β1 β2

σ

subject to the quadratic relation

β1◦β2 − β2◦β1 + η ◦ σ.

By analogy with (Fr.1)–(Fr.4) above, a fixed isomorphism V∞ � C
r will be fixed by

choosing a basis, where V∞ is the vector space assigned to the node �. Then framed
representations of the ADHM quiver are defined by data α = (V , V∞, B1, B2, I , J )
where Bi ∈ End (V ), 1 � i � 2, I ∈ Hom (V∞, V ) and J ∈ Hom (V , V∞) are linear
maps corresponding to βi , η, σ respectively. Hence they satisfy the quadratic relation
[B1, B2] + I J = 0. Isomorphisms of framed representations are required to preserve
the identification V∞ � C

r. Moreover, recall that α is cyclic, or stable, if and only
if there is no proper nontrivial linear subspace V ′ ⊂ V preserved by B1, B2 and at
the same time containing the image of I . As shown for example in [20, Section 3.1],
there is a smooth quasi-projective fine moduli space A(r , n) of stable framed ADHM
representations of fixed dimension vector (n, r).

Now note that for each framed representation � = (V , V∞, B1, B2, B3, I , J )
defined in (Fr.1)–(Fr.4) above, the data α = (V , V∞, B1, B2, I , J ) is a framed repre-
sentation of the ADHM quiver. A priori α need not be cyclic even if � is. The next
result will show that in fact the two cyclicity conditions are compatible.

Lemma 3.2 Let � be a framed representation of (Q,W) satisfying conditions (Fr.1)–
(Fr.3). Let α be the underlying ADHM representation. Then � is cyclic as defined in
(Fr.4) if and only if α is cyclic as an ADHM representation.

Proof The inverse implication is clear. In order to prove the direct implication, suppose
� is cyclic, and suppose V ′ ⊂ V is a proper nonzero linear subspace preserved by
B1, B2 and at the same time containing the image of I . Let va = I (ea), 1 � a � r .
Since � is cyclic, V is generated by elements of the form

m(B1, B2, B3) va

where m(B1, B2, B3) are monomials in End (V ). Hence V ′ will be generated by cer-
tain linear combinations of such elements. Then relations (3.2) imply that V ′ is also
preserved by B3. ��
The construction of the moduli space of framed cyclic representations (V , B1, B2, B3,

I , J )with fixed dimension vector is very similar to the GIT construction of the moduli
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space of ADHM quiver representations presented in [20, Section 3.1]. In particular,
proceeding by analogy with loc. cit., the cyclicity condition (Fr.4) is equivalent to a
GIT stability condition, and the following holds.

Proposition 3.3 For any n, r ∈ Z, n, r � 1, there is a quasi-projective fine mod-
uli space Q(r , n) of framed cyclic representations (V , B1, B2, B3, I , J ) of dimension
vector (r , n). In particular any such representation has trivial automorphism group.
Furthermore there is a natural forgetful morphism ı : Q(r , n) → A(r , n) to the
moduli space of stable framed ADHM representations obtained by omitting the map
B3 : V → V .

The connection to framed Higgs sheaves is provided by:

Proposition 3.4 There is a commutative diagram of morphisms of moduli stacks

H(r , n)
j

�

M(r , n)

�

Q(r , n)
ı

A(r , n)

(3.3)

where the vertical arrows are isomorphisms.

Proof This follows from the construction of the left vertical isomorphism in diagram
(3.3) given in [20, Theorem 2.1], which is based on the Beilinson spectral sequence.
Then note that the latter is functorial with respect to morphisms of sheaves, and all the
steps carried out in Section 2.1 of loc. cit. are naturally compatible with morphisms
of framed sheaves. ��

3.2 Embedding in the ADHMmoduli space

The main technical result of this section states that the forgetful morphism
ı : Q(r , n) → A(r , n) is a closed embedding. This will be shown in several steps
using the criterion proved in [28, Lemma 4]. In order to formulate the required condi-
tions, note that the map ı naturally preserves residual fields. That is, if �K is a point
of N(r , n) with residual field K , then the residual field of the point αK = ı(�K ) is
canonically isomorphic to K . This implies that there exists an induced map on Zariski
tangent spaces

ι∗ : T�KQ(r , n) → Tι(�K )A(r , n). (3.4)

Then, as shown in [28, Lemma 4], it suffices to prove that:

(1) ı is universally injective, i.e., for any point αK of A(r , n) with residual field K
there is at most one point �K of N(r , n), also with residual field K , such that
ı(�K ) = αK .

(2) ı is proper.
(3) For any point �K of Q(r , n) the induced map on Zariski tangent spaces (3.4) is

injective.
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This will be carried out in three separate lemmas. Since ı is the identity map for r = 1,
it will be assumed r � 2 below.

Lemma 3.5 ı is universally injective.

Proof This follows easily from the cyclicity condition (Fr.4). Let �K be an arbitrary
framed cyclic representation defined over a C-field K of characteristic zero. Then its
underlying vector space VK is the K -linear span of

m(B1,K , B2,K )IK

wherem(B1,K , B2,K ) is an arbitrary monomial in the endomorphism ring EndK (VK ).
This uniquely determines B3,K via the relations

[B3,K , Bi,K ] = 0, 1 � i � 2, B3,K IK = IK (Ar ⊗ 1K ). (3.5)

This completes the proof. ��
Lemma 3.6 ı is proper.

Proof This will be proven using the valuative criterion for properness. Let R be a
discrete valuation ring over C, let m ⊂ R denote the unique maximal ideal, and
K its field of fractions. Using the categorical equivalence between R-modules and
sheaves on Spec (R), flat families of stable representations of the ADHM quiver
parametrized by Spec (R) are in one-to-one correspondence to representations αR =
(VR, B1,R, B2,R, IR, JR) the ADHM quiver over R satisfying the following condi-
tions:

• VR is a free R-module, and B1,R, B2,R ∈ EndR(VR), IR ∈ HomR(R⊕r, VR),
JR ∈ HomR(VR, R⊕r ) are morphisms of R modules such that

[B1,R, B2,R] + IR JR = 0.

• For any prime ideal p ⊂ R the inducedADHM representation αk(p) = αR ⊗R R/p
over the residual field k(p) is stable.

For simplicity let α = (V , B1, B2, I , J ) denote αk(m), which is a complex ADHM
representation. Let also IR,a : R → VR , 1 � a � r , denote the components of IR .
Analogous notation will be used for the induced representations αK , α.

Since V is a finite dimensional complex vector space, it admits a finite set of
generators

mi,a(B1, B2)Ia, 1 � i � Na, 1 � a � r ,

for some positive integers Na � 1. Therefore there is an exact sequence of C-vector
spaces

0 → Y
f−→

r⊕

a=1

Na⊕

i=1

C〈u i,a〉 p−→ V → 0
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where p is the canonical projection. By Nakayama’s lemma the elements

mi,a(B1,R, B2,R)IR, 1 � i � Na, 1 � a � r ,

generate VR as an R-module. In particular, the elements

mi,a(B1,K , B2,K )IK , 1 � i � Na, 1 � a � r ,

generate VK as a K -vector space. Moreover there is an exact sequence of finitely
generated R-modules

0 → YR
fR−→

r⊕

a=1

Na⊕

i=1

R〈u i,a〉 pR−→ VR → 0

as well as an exact sequence of K -vector spaces

0 → YK
fK−→

r⊕

a=1

Na⊕

i=1

K 〈u i,a〉 pK−→ VK → 0

where pR, pK are again the canonical projections. Since VR is free, it follows that YR

is isomorphic to a free module as well.
Suppose B3,K : VK → VK is a K -linear map satisfying relations (3.5). In detail,

this is equivalent to

B3,K (mi,a(B1,K , B2,K )IK ,a) = mi,a(B1,K , B2,K )IK ,a+1

for all 1 � a � r − 1, 1 � i � Na and

B3,K (mi,r (B1,K , B2,K )IK ,r ) = 0

for all 1 � i � Nr . Let

B3,K :
r⊕

a=1

Na⊕

i=1

K 〈u i,a〉 →
r⊕

a=1

Na⊕

i=1

K 〈u i,a〉

be the linear map determined on basis elements by

B3,K (u i,a) = u i,a+1

for all 1 � a � r − 1, 1 � i � Na and

B3,K (u i,r ) = 0
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for all 1 � i � Nr . By construction there is a commutative diagram

⊕r
a=1

⊕Na
i=1 K 〈u i,a〉 B3,K

pK

⊕r
a=1

⊕Na
i=1 K 〈u i,a〉

pK

VK
B3,K

VK .

In particular,
pK ◦ B3,K ◦ fK = 0. (3.6)

Clearly, B3,K extends to an R-module morphism

B3,R :
r⊕

a=1

Na⊕

i=1

R〈u i,a〉 →
r⊕

a=1

Na⊕

i=1

R〈u i,a〉

such that

B3,R(mi,a(B1,R, B2,R)IK ,a) = mi,a(B1,R, B2,R)IR,a+1

for all 1 � a � r − 1, 1 � i � Na and

B3,R(mi,r (Br ,R, Br ,R)IR,r ) = 0

for all 1 � i � Nr . Furthermore, relation (3.6) implies

pR ◦ B3,R ◦ fR = 0.

Hence pR ◦ B3,R yields a morphism of R-modules B3,R : VR → VR . By construction,
this also satisfies the relations

B3,R(mi,a(B1,R, B2,R)IR,a) = mi,a(B1,R, B2,R)IR,a+1

for all 1 � a � r − 1, 1 � i � Na and

B3,R(mi,r (B1,R, B2,R)IR,r ) = 0

for all 1 � i � Nr . Therefore this is the required extension. It is also unique by
Lemma 3.5. ��
Finally, the third part of the proof consists of:

Lemma 3.7 For any point �K of Q(r , n) the induced map on Zariski tangent spaces
ı∗ : T�KQ(r , n) → Tı(�K )A(r , n) is injective.
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Proof The Zariski tangent spaces for moduli of quiver representations are canonically
determined by linearizing the specified relations. In the present case, T�KQ(r , n) is
isomorphic to the middle cohomology of the following complex of amplitude [0, 2):

0

End(V )

g0

End(V )⊕3⊕Hom(V∞, V )⊕HomK (V , V∞)

g1

End(V )⊕3⊕Hom(V∞, V )⊕Hom(V , V∞)

where

g0(ψ) = ([ψ, Bi ], ψ I , Jψ),

g1(εi , η, δ) = ([B1, ε3], [B2, ε3], [ε1, B2] + [B1, ε2] + I δ + ηJ ,

B3ε + ε3 I − εAr , δB3 + Jε3 − Arδ
)

for 1 � i � 3. For simplicity, the subscript K in the notation used for the data of the
representation �K has been suppressed. This convention will be employed only in the
proof of the current lemma.

At the same time Tı(�)A(r , n) is isomorphic to the middle cohomology of the
following complex of amplitude [0, 2):

0

End(V )

f0

End(V )⊕2⊕Hom(V∞, V )⊕Hom(V , V∞)

f1

End(V )

where

f0(ψ) = ([ψ, Bi ], ψ I , Jψ),

f1(εi , η, δ) = [ε1, B2] + [B1, ε2] + I δ + ηJ
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for 1 � i � 2. Note that there is a natural degree zero map of complexes determined
by the obvious term-by-term canonical injections. Moreover, the cyclicity condition
implies that f0, g0 are injective by a straightforward argument.

Next note that the induced map on degree 1 cochains is also injective. Suppose a
degree 1 cochain (εi , ε, δ) of the first complex maps to 0 in the second complex. This
implies ε = 0 and η = 0. Therefore the condition g1(εi , ε, δ) = 0 yields

[Bi , ε3] = 0, 1 � i � 2, ε3 I = 0, Jε3 = 0.

Then the cyclicity condition implies that ε3 must be identically zero. Since f0, g0 are
injective, this implies that the induced map in degree 1 cohomology is also injective. ��

In conclusion, using [28, Lemma 4], Lemmas 3.5, 3.6, 3.7 prove:

Proposition 3.8 The morphism ı : Q(r , n) → A(r , n) is a closed embedding.

3.3 The Hilbert scheme as a quiver moduli space

In order to simplify the notation, let Hilb (r , n) = Hilbn(Dr ) since Dr will always be
a nonreduced plane in the following. The main goal of this section is to show that the
natural forgetfulmorphism h : Hilb (r , n) → H(r , n) obtained fromProposition 2.2 is
also a closed embedding. More precisely using the isomorphismH(r , n) ∼−−→ Q(r , n)
constructed in Proposition 3.4, it will be shown that h yields an isomorphism onto the
closed subscheme of Q0(r , n) ⊂ Q(r , n) parametrizing representations � with J = 0.
The main idea of the proof is to show that the framed Higgs sheaf corresponding to a
framed cyclic representation � = (V , B1, B2, B3, I , J ) is a Higgs sheaf quotient as in
Proposition 2.2 if and only if J = 0. This will require some intermediate steps. In the
next two lemmas the ground field will be an arbitrary C-field K , although the index
K will be suppressed in order to simplify the notation.

Let α = (V , B1, B2, I , J ) be the underlying ADHM representation of �. As shown
in [20, Section 2.1], the framed sheaf corresponding to α is the middle cohomology
sheaf of the monad complex

0 → V ⊗OS(−�) f−1−−→

V ⊗OS

⊕
V ⊗OS

⊕
V∞ ⊗OS

f0−−→ V ⊗OS(�) → 0

where the terms have degrees −1, 0, 1 and the differentials are given by

f−1 =
⎛

⎝
z0B1 − z1
z0B2 − z2

z0 J

⎞

⎠ , f0 = (−z0B2 + z2, z0B1 − z1, z0 I ) .
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This complex will be denoted by Cα in the following. As proven in [20, Lemma 2.7],
it has trivial cohomology in degrees −1, 1. These statements are proven in loc. cit for
ground fieldC, but the generalization to an arbitrary ground field K is straightforward.

Now let Bα denote the complex

0 → V ⊗OS(−�) g−1−−→
V ⊗OS

⊕
V ⊗OS

g0−−→ V ⊗OS(�) → 0

where, again, the terms have degrees −1, 0, 1 and the differentials are given by

g−1 =
(
z0B1 − z1
z0B2 − z2

)
, g0 = (−z0B2 + z2, z0B1 − z1) .

If J = 0 there is an exact sequence of complexes

0 → Bα → Cα → V∞⊗OS → 0

where the mapBα → Cα is the natural injection in each degree. It will be shown next
that Bα has trivial cohomology in degrees −1, 0.

Lemma 3.9 Suppose α = (V , B1, B2, I , J ) is a stable ADHM representation. Then
the complexBα has trivial cohomology in degrees−1, 0while its degree 1 cohomology
sheaf has zero-dimensional support contained in S \�.

Proof First note that the restriction of Bα to � is exact since z1|�, z2|� do not have
any common zeroes. This implies that

H1(Bα)|� � H1(Bα|�
)

is zero, hence H1(Bα)must be a torsion sheaf on S supported in the complement S \�.
Since S \� � A

2
K , this implies that H1(Bα)must be a zero-dimensional sheaf, which

further implies that
rk H−1(Bα) = rk H0(Bα). (3.7)

Next note that g−1 is injective by the same argument as in [20, Lemma2.7 (1)]. Namely,
suppose g−1 is not injective. Then its kernel must be a nonzero torsion free sheaf and
there is an exact sequence of OS-modules

0 → Ker(g−1) → V ⊗OS → Im(g−1) → 0.

Moreover, Im (g−1) ⊂ V ⊗O⊕2
S is a nonzero subsheaf since g−1 is not identically

zero. Therefore Im(g−1) is a also a nonzero torsion free sheaf, hence locally free on
the complement of a zero-dimensional subscheme Y ⊂ S. This implies that Ker(g−1)

is locally free at any K -point p ∈ S \ Y and the fiber Ker(g−1)|p is the kernel of the
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restriction g−1|p. As in [20, Lemma 2.7 (1)], this further implies that Ker(g−1)|p is a
simultaneous eigenspace of B1, B2 with eigenvalues λ1, λ2 determined by

z0|p λi = zi |p, 1 � i � 2.

Since B1, B2 are fixed, this condition can only hold for finitely many K -points p,
leading to a contradiction. In conclusion g−1 is injective.

In order to prove exactness in the degree zero, suppose the middle cohomology
sheaf H0(Bα) is not zero. Then the snake lemma yields an exact sequence

0 → H0(Bα) → Coker(g−1) → Im(g0) → 0.

At the same time, since g−1 is injective, Coker(g−1) has a two term locally free reso-
lution, which implies that it is torsion free. Hence H0(Bα) must be a nonzero torsion
free sheaf. However, since H−1(Bα) = 0, equation (3.7) implies that rk H0(Bα) = 0,
leading to a contradiction. In conclusion, H0(Bα) is also zero. ��
Lemma 3.10 Let � = (V , B1, B2, B3, I , J ) be a cyclic framed representation of
(Q,W). Then the framed Higgs sheaf corresponding to � via Proposition 3.8 is a
Higgs sheaf quotient as in Proposition 2.2 if and only if J = 0.

Proof (⇒). Suppose J = 0. As above, the framed sheaf Eα corresponding to the
ADHM representation α = (V , B1, B2, I , J ) is the middle cohomology sheaf of the
monad complex Cα . Since J = 0, there is an exact sequence of complexes

0 → Bα → Cα → V∞⊗OS → 0

where the last term from the left is regarded as a complex supported in degree 0. Using
Lemma 3.9, this yields an exact sequence

0 → Eα → V∞⊗OS → Gα → 0

where Gα = H1(Bα) is a zero-dimensional OS-module. Using the monad con-
struction, the map B3 : V → V yields morphisms � : Eα → Eα , respectively
ϒ : Gα → Gα which are naturally compatible with the differentials of the above
complex. Moreover, by construction, � also satisfies the framing condition (2.6).
Therefore one obtains indeed an exact sequence of framed Higgs sheaves

0 → (Eα,�) → (Or ,�r ) → (Gα,ϒ) → 0.

(⇐). The above steps are reversible using the functoriality of the Beilinson spectral
sequence. ��
To conclude, let Q0(r , n) denote the closed subscheme of the moduli scheme Q(r , n)
parameterizing cyclic framed representations � with J = 0. Let H0(r , n) denote the
corresponding closed subscheme of the framed Higgs moduli spaceH(r , n) under the
isomorphism Q(r , n) � H(r , n). Proposition 2.2 and Lemma 3.10 show that h yields
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a bijection between the set of K -points of the Hilbert scheme and the set of K -points
of H0(r , n) for any field K over C. In fact, a stronger statement holds:

Proposition 3.11 The morphism h : Hilb(r , n) → H(r , n) constructed below Propo-
sition 2.2 factors through an isomorphism h0 : Hilb(r , n) ∼−−→ H0(r , n). In particular,
h is a closed embedding.

Proof It suffices to generalize Lemma 3.10 to flat families. This is straightforward
since the monad construction works in the relative setting. The details are very similar
to those in [12, Sections 7.1 and 7.2], hence will be omitted. ��

4 Torus actions and fixed loci

Summarizing the previous results, there is a commutative diagram of scheme mor-
phisms

Hilb(r , n)
h

�

H(r , n)
j

�

M(r , n)

�

Q0(r , n)
q

Q(r , n)
ı

A(r , n)

where all horizontal arrows are closed embeddings. The top row consists of geometric
moduli spaces, while the bottom row consists of the framed quiver moduli spaces
obtained from the Beilinson spectral sequence. The goal of this section is to construct
certain torus actions on all moduli spaces in the above diagram such that all arrows
are equivariant, and prove certain properties of the fixed loci.

4.1 Generic torus action

First recall the natural action on the moduli space of framed sheaves of the
(r + 2)-dimensional torus, namely, Tr+2×M(r , n) → M(r , n) with Tr+2 =
C

×× C
×× (C×)×r . Namely, for any (t1, t2, u1, . . . , ur ) ∈ Tr+2 let η(t1, t2) : P

2 →
P
2 be the morphism induced by

(t1, t2)× [z0, z1, z2] �→ [z0, t1z1, t2z2]
and let u denote the diagonal r × r matrix with diagonal elements u1, . . . , ur . Then
the Tr+2-action on M(r , n) is given by

(t1, t2, u)× (E, ξ) �→ (η(t1, t2)
−1)∗(E, uξ).

This action does not preserve the moduli space of framed Higgs sheaves.
Let T := T3 denote the torus C

×× C
×× C

× with coordinates (t1, t2, t3). The
threefold X in Sect. 2 is canonically isomorphic to P

2× A
1. Hence there is a three-

dimensional torus action on the Hilbert scheme determined by the geometric action
T× X → X ,
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(t1, t2, t3)× ([z0, z1, z2], y) �→ ([z0, t1z1, t2z2], t3y).

There is also a natural T-action on framed sheaf moduli, as well as framed Higgs
sheaf moduli, making all the morphisms in the above diagram equivariant. This is
obtained by restricting the Tr+2-action on M(r , n) to a T-action via the injective
group morphism T ↪→ Tr+2,

(t1, t2, t3) �→ (t1, t2, t
1−a
3 ), 1 � a � r .

It is straightforward to check that the resulting T-action on M(r , n) preserves the
closed subscheme H(r , n).

The corresponding T-actions on the framed quiver moduli spaces N(r , n) and
A(r , n) are then easily obtained from the monad construction. As in the previous
section, the components of I , J with respect to the fixed basis of V∞ will be denoted
by Ia : C → V , Ja : V → C, 1 � a � r . Then the potential function is rewritten as

W fr = TrV (B3[B1, B2])+
r∑

a=1

(Ja B3 Ia − Ja−1 Ia),

where by convention J0 = 0. The T-action on N(r , n) will be given by

(ti )× (Bi , Ia, Ja) �→ (ti Bi , t
a−1
3 Ia, t1t2t

1−a
3 Ja), 1 � i � 3, 1 � a � r ,

while the T-action on A(r , n) will be given by the same expression with B3 omitted.
The next goal is to determine the T-fixed points in the framed quiver moduli space

Q(r , n) up to GL(n,C) gauge transformations. The fixed locus A(r , n)Tr+2 is finite
and in one-to-one correspondence to r -partitionsμ = (μ1, . . . , μr ) of n, as shown for
example in [22, Proposition 2.9]. Geometrically, the fixed points in the moduli space
of framed sheaves M(r , n) parametrize framed sheaves of the form

Eμ �
r⊕

a=1

IZμa

where IZa is the ideal sheaf of the Tr+2-invariant zero-dimensional subscheme Zμa

parameterized by the partition μa . The framing ξμ is the natural framing determined
by the injections IZμa ⊂ OS , 1 � a � r .

Partitionswill be identified toYoung diagrams using the conventions in [33, Section
0.1]. A partition ν = (ν1 � · · · � νl) will be identified with the set of integral points

{
(i, j) ∈ Z × Z | 1 � i � l, 1 � j � νi

}

consisting of l columns of heights νi, 1 � i � l. As usual, such a set is also canonically
identified with a collection of boxes. Then note:

Proposition 4.1 (i) The T-fixed locus A(r , n)T coincides with A(r , n)Tr+2 .
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(ii) A T-fixed point αμ ∈ A(r , n)T belongs to Q(r , n)T if and only if the r-partition μ
is nested, i.e.,

μr ⊆ μr−1 ⊆ · · · ⊆ μ1 (4.1)

as Young diagrams. Hence the T-fixed locus Q(r , n)T is finite and in one-to-one
correspondence to nested r-partitions.

(iii) The natural closed embedding η : Q0(r , n) ↪→ Q(r , n) yields an isomorphism of
T-fixed loci. Hence the T-fixed locus Q0(r , n)T is also finite and in one-to-one
correspondence to nested r-partitions.

Proof Statement (i) follows from the observation thatT ⊂ Tr+2 is sufficiently generic.
In particular, since (t1, t2, t3) are independent parameters, any T-fixed framed sheaf
still has to split as a direct sum of equivariant ideal sheaves.

(ii) Suppose (E, ξ,�) is aT-fixed framedHiggs sheaf. Then (E, ξ) is aT-fixed framed
Higgs sheaf, hence it is isomorphic to a framed sheaf of the form (Eμ, ξμ). Moreover,
the T-fixed condition implies that the only nonzero components of the Higgs field are
injections IZa ↪→ IZa+1 , 1 � a � r , where Zr+1 is the empty subscheme. Using the
snake lemma, each such injection is equivalent to an equivariant surjective morphism
OZa � OZa+1 , which yields the nesting condition (4.1). Clearly, the converse, also
holds, since the equivariant projections OZa � OZa+1 are uniquely determined by the
inclusions μa+1 ⊆ μa .

Using Proposition 3.11, it suffices to note that all T-fixed ADHM data have J = 0. ��
Note that nested ideal sheaves on surfaces occur through localization in a similar
context [14,37].

4.2 Calabi–Yau specialization

The Calabi–Yau torus is by definition the two-dimensional subtorus T0 ↪→ T defined
by

(t1, t2) �→ (t1, t2, t
−1
1 t−1

2 ).

Geometrically this is the subtorus ofTwhich preserves the natural holomorphic three-
form onA

2× A
1 ⊂ P

2× A
1, whereA

2 ⊂ P
2 is the complement of� = {z0 = 0}. The

goal of this section is to analyze the behavior of the fixed loci under this specialization.
First note the following:

Remark 4.2 (i) For rank r = 1 the T0-action on the moduli space A(1, n), n � 1,
coincides with the standard two-dimensional torus action induced by the scaling
action on A

2. In particular the T0-fixed locus in A(1, n) is a finite set of closed
points in one-to-one correspondence with partitions μ of n.

(ii) For r � 2 there is a natural action of the quotient torus S = T/T0 � C
× on the

fixed locus A(r , n)T given by

z × (V , B1, B2, Ia, Ja) �→ (V , B1, B2, z
a−1 Ia, z

1−a Ja), 1 � a � r . (4.2)
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Clearly, the fixed locus of the S-action onA(r , n)T0 coincides with the fixed locus
A(r , n)T. The S-action on the T0-fixed locus will be called residual torus action.

The main goal of this section is a detailed analysis of T0-fixed locus in A(r , n). In
order to fix ideas, note the following basic facts on flat families of T0-fixed loci.

Let Z be an arbitrary parameter scheme over C. A flat family of stable framed
ADHM quiver representations parametrized by Z is defined by a pair (α, ζ ) where

• α = (V , V�, B1, B2, I , J ) is a locally free ADHM quiver sheaf on Z with
rk(V ) = n,

• ζ : V� ∼−−→ O⊕r
Z is an isomorphism of OZ -modules, and

• the restriction of the pair (α, ζ ) to any point in Z is a stable framed representation
of the ADHM quiver over the corresponding residual field.

For each 1 � a � r let Ia, Ja denote the components of the morphisms
I ◦ ζ−1 : O⊕r

Z → V and ζ ◦ J : V → O⊕r
Z respectively. Let also GL(V ) denote the

principal GL(n,C)-bundle associated to V on Z .
A flat family of T0-fixed framed stable ADHM quiver representations is defined by

the data (α, ζ, η) where (α, ζ ) are as above, and η : T0× Z → GL(V ) is a morphism
of groups over Z such that

ti Bi = η(t1, t2)Biη(t1, t2)
−1,

t1−a
1 t1−a

2 Ia = η(t1, t2)
−1 Ia,

ta1 t
a
2 Ja = Jaη(t1, t2).

(4.3)

for any morphisms t1, t2 : Z → T0. In particular, η determines a T0-equivariant struc-
ture on the underlying locally free OZ -module V . Let

V =
⊕

(i, j)∈Z2

V (i, j)

denote the resulting character decomposition. Then conditions (4.3) imply that

Im(Ia) ⊆ V (a − 1, a − 1), Ja
∣∣
V (i, j) = 0 for all (i, j) �= (a, a), (4.4)

for all 1 � a � r . Moreover, only the following components:

B1(i, j) : V (i, j) → V (i − 1, j), B2(i, j) : V (i, j) → V (i, j − 1) (4.5)

of B1, B2 are allowed to be nonzero. All other components must vanish identically.
Hence the ADHM relation reduces to

B1(a, a − 1)B2(a, a)− B2(a − 1, a)B1(a, a)+ Ia Ja = 0

for all 1 � a � r .
The first structure result is the following.

123



Hilbert schemes of nonreduced divisors… 833

Lemma 4.3 Let Y be a connected component of the fixed locus A(r , n)T0 . Let y ∈ Y
be an arbitrary closed point and let fy : A

1\ {0} → Y be the S-orbit through y. Then
fy extends uniquely to a morphism f y : A

1 → Y . In particular the S-fixed locus Y S

contains at least one point.

Proof If the S-action on Y is trivial, Y is a connected component of the fixed locus
A(r , n)T, which is finite. Hence the claim is obvious.

Suppose the S-action on Y is not trivial. If y ∈ Y S, which is again finite, the claim
follows. Therefore it suffices to consider the case where y is not S-fixed. Then the
given orbit is nontrivial and the claim is proven by analogy to [21, Theorem 3.7]. The
moduli space A(r , n) is a GIT quotient R(r , n)//GL(n,C) where

R(r , n) ⊂ End(Cn)⊕2⊕Hom(Cn,Cr )⊕ Hom(Cr,Cn)

is the zero locus [B1, B2] + I J = 0. By construction, there is a projective morphism
π : A(r , n) → A0(r , n) to the affine algebro-geometric quotient, which is the spec-
trum of the ring of GL(n,C)-invariant polynomials onR(r , n). As in the proof of [21,
Theorem 3.7], the latter is generated by the following types of functions:

TrCn (m(B1, B2)), Jb m(B1, B2)Ia, 1 � a, b � r ,

where m(B1, B2) denotes an arbitrary monomial in End(Cn). The functions of the
first type have weights

(degB1m(B1, B2), degB2m(B1, B2), 0)

under the action of T = (C×)×3. The functions of the second type have weights

(
degB1m(B1, B2)+ 1, degB2m(B1, B2)+ 1, a − b

)
.

If all the above invariant functions have trivial restriction to Y , it follows that Y is a
closed subscheme of π−1(0), hence it is projective. Then the claim follows.

Suppose this is not the case. Then note that the fixed locus conditions (4.4) and
(4.5) imply that f ∗

y π
∗TrCn (m(B1, B2)) = 0. Therefore the exists a pair (a, b), 1 �

a, b � r , such that f ∗
y π

∗(Jb m(B1, B2)Ia) is nonzero. Then the fixed locus conditions
imply that

degB1m(B1, B2) = degB2m(B1, B2) = a − b − 1.

and the S-weight of f ∗
y π

∗(Jb m(B1, B2)Ia) = 0 is a − b � 1. This further implies
that the morphism π ◦ fy : A

1\ {0} → A0(r , n) extends uniquely to A
1. Since π is

projective, fy can be also extended to a morphism A
1 → A(r , n). Since Y is a closed

subscheme of A(r , n), the claim follows. ��
In order to formulate the next result note that, omitting the rigidifying isomorphism
ζ : V� → O⊕r

Z , coherent ADHM quiver sheaves on Z form an abelian category AZ .
Let also ea , 1 � a � r , be the standard basis vectors in C

r and let
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0 ⊂ W1 ⊂ · · · ⊂ W2 ⊂ · · · ⊂ Wr (4.6)

be the filtration defined by

Wa = C〈e1, . . . , ea〉, 1 � a � r ,

all inclusions being canonical. Then one has:

Lemma 4.4 Let α be a flat family of T0-fixed stable framed ADHM quiver represen-
tations with dimension vector (r , n) parametrized by a connected scheme Z. Suppose
furthermore that J is identically zero. Let

V (a)
� = ζ−1(Wa ⊗OZ ), 1 � a � r , (4.7)

be the filtration induced by (4.6). Then there exist an unique r-partition μ of n and a
filtration α•

0 ⊂ αr ⊂ · · · ⊂ α1 = α (4.8)

in the abelian category AZ such that

(i) the restriction of α• to the node � coincides with the filtration (4.7), and
(ii) each successive quotient αa, 1 � a � r , is isomorphic to the stable framed ADHM

representation corresponding to T0-fixed point αμa ∈ A(1, |μa |)T0 .

Proof As observed above, V has a T0-character decomposition

V =
⊕

(i, j)

V (i, j)

such that theADHMdata satisfy conditions (4.4) and (4.5).Moreover, stability implies
that V (i, j) is identically zero if i � r or j � r . Let

0 ⊂ V (1) ⊂ · · · ⊂ V (r) = V

be the filtration defined by

V (a) =
⊕

i�a−1
j�a−1

V (i, j)

where all the inclusions are canonical. Then conditions (4.4), (4.5) imply that

Bi (V
(a)) ⊆ V (a), 1 � a � r , 1 � i � 2,

I (V (a)
� ) ⊆ V (a), 1 � a � r .

(4.9)

In addition, since J is assumed identically zero, the ADHM relation restricts to

B1(a, a − 1)B2(a, a) − B2(a − 1, a)B1(a, a) = 0.
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Let V a = V (a)/V (a−1), respectively V�,a = V (a)
� /V (a−1)

� � C〈ea〉, 1 � a � r ,

where V (0) = 0 and V (0)
� = 0. Equations (4.9) imply that there are naturally induced

maps

Bi,a : V a → V a, I a : V�,a → V a, 1 � a � r , 1 � i � 2,

such that [B1,a, B2,a] = 0. At the same time, the ADHM stability condition on
α implies that the data αa = (V a, Bi,a, I a) is a framed stable rank one ADHM
representation over Z for each 1 � a � r . Finally, by construction, each αa is a
T0-fixed point in the moduli space of rank one ADHM representations A(1, na)T0

where na = dim(V a). Since Z is connected and A(1, na)T0 is a finite set of closed
points indexed by partitions of na , the claim follows. ��
In order to formulate a useful consequence of Lemmas 4.3 and 4.4 recall the projective
morphism to the affine geometric quotient, π : A(r , n) → A0(r , n), used in the proof
of Lemma 4.3. Then one has:

Corollary 4.5 Let Y ⊂ A(r , n)T0 be a connected component of theT0-fixed locus such
that S-action on Y is nontrivial. Then Y is not projective over C.

Proof A priori Y is smooth quasi-projective. Suppose Y is projective. Then the fixed
locus Y S is nonempty and consists of finitely many points in A(r , n)T. Moreover, all
T-fixed points are mapped to 0 by π . Since A0(r , n) is affine and Y is connected, it
follows that Y must be contained as a closed subscheme in the fiber π−1(0).

Let αY denote the restriction of the universal family of stable framedADHMdata to
Y . Since π(Y ) = {0} all the generators of polynomial ring Γ (A0(r , n)), in particular

Jb m(B1, B2)Ia, 1 � a, b � r ,

have trivial pull-back to Y . Then the ADHM stability condition implies that the family
αY has J = 0. Therefore, as shown in Lemma 4.4, there is a filtration of the form
(4.8). However, given the action (4.2) of S, a point y ∈ Y is fixed by S if and only
if the induced filtration on αY |y is split. Therefore Y S consists of the unique closed
point αμ ∈ A(r , n)T, where μ is the r -partition determined by αY as in Lemma 4.4.
This contradicts the assumption that Y is smooth projective and the S-action on Y is
nontrivial. ��
Next, a T-fixed point αμ ∈ A(r , n)T will be called T0-isolated if and only if {αμ}
is a zero-dimensional connected component of the fixed locus A(r , n)T0 . Then it
will be shown below that αμ is T0-isolated for all nested partitions μ. The proof
will use the Tr+2-character decomposition of the tangent space to the fixed point
αμ ∈ A(r , n)Tr+2 . As in [33, Section 3.2], let q, t, χa : Tr+2 → C be the characters
defined by

q(t1, t2, u) = t−1
1 , t(t1, t2, u) = t−1

2 , χa(t1, t2, u) = u−1
a , 1 � a � r . (4.10)

Given a partition ν ⊂ Z
2, for any box s = (i(s), j(s)) ∈ Z

2 one defines
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• �ν(s) = νi(s) − j(s)− 1,
• aν(s) = νtj(s) − i(s)− 1

where νi denotes the number of boxes on the i-th column of ν and νtj denotes the
number of boxes on the j-th column of νt, which is the same as the number of boxes
on the j-th row of ν. Note that the above numbers are negative if s /∈ ν.

Then, as shown in [22, Theorem 2.11], the explicit formula for the character decom-
position of Tμ is

chTr+2 Tμ

=
r∑

b,c=1

∑

s∈μb

χbχ
−1
c t�μc (s)q−aμb (s)−1+

r∑

b,c=1

∑

s∈μc

χbχ
−1
c t−�μb (s)−1qaμc (s).

(4.11)

Abusing notation, below let q, t denote the restrictions of the characters q, t to T. Let
also σ : T → C denote the character σ(t1, t2, t3) = t1t2t3. For any r -partition μ of n,
let

chT(Tμ) =
∑

i, j,k∈Z

ci, j,k(μ) q
i t jσ k (4.12)

be the T-character decomposition of Tμ. Moreover, let S1(μ) denote the set of triples
(b, c, s) defined by the following conditions:

1 � c < b � r , s ∈ μb \μc, b− c+ �μc (s) = 0, b− c−aμb(s) −1 = 0. (4.13)

Let also S2(μ) denote the set of triples (b, c, s) defined by:

1 � b < c � r , s ∈ μc \μb, b − c − �μb (s)− 1 = 0, b − c + aμc(s) = 0.

Then the following holds:

Lemma 4.6 Let μ be an r-partition of n. Then, using the notation in (4.12), there is
an identity ∑

k∈Z

c0,0,k(μ) σ
k =

∑

(b,c,s)∈S1(μ)
σ b−c +

∑

(b,c,s)∈S2(μ)
σ b−c

(4.14)

in the character ring of T.

Proof Specializing (4.11) to T ⊂ Tr+2, one obtains

chT Tμ =
r∑

b,c=1

∑

s∈μb

σ b−ctb−c+�μc (s)qb−c−aμb (s)−1

+
r∑

b,c=1

∑

s∈μc

σ b−ctb−c−�μb (s)−1qb−c+aμc (s).

(4.15)
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Therefore such eigenvectors are in one-to-one correspondence to triples (b, c, s), 1 �
b, c � r , satisfying one of the following two conditions:

s ∈ μb, b − c + �μc (s) = 0, b − c − aμb (s)− 1 = 0, (4.16)

s ∈ μc, b − c − �μb (s)− 1 = 0, b − c + aμc (s) = 0. (4.17)

For any triple (b, c, s) as in (4.16) one has aμb (s) � 0 since s ∈ μb. Hence b− c � 1
from the second equation in (4.16), and �μc (s) = c − b � −1 from the first equation
in (4.16). In particular, s ∈ μb\μc, which must be necessarily nonempty. This yields
conditions (4.13).

For any triple (b, c, s) as in (4.17), one has aμc (s) � 0 since s ∈ μc. Hence
b − c � 0 from the second equation in (4.17). If b − c = 0, then μb = μc and
�μb (s) � 0. This contradicts the first equation in (4.17). Therefore b − c � −1, and
the first equation in (4.17) implies �μb (s) = b − c − 1 � −2. Hence μc\μb must be
nonempty and s ∈ μc \μb.

In conclusion, equation (4.14) follows from (4.15). ��
In order to formulate the next result, note that an r -partition μ of n will be said to be
contained, μ ⊂ λ, into an r -partition of n + 1 if there exists 1 � a � r such that
μb = λb for all 1 � b � r , b �= a, while μa ⊂ λa as Young diagrams. In particular,
λa \μa consists of a single box. Then one has the following consequence of Lemma
4.6.

Corollary 4.7 (i) Let μ be a nested r-partition of n, i.e.,

μr ⊆ μr−1 ⊆ · · · ⊆ μ1.

Then identity (4.14) reduces to

∑

k∈Z

c0,0,k(μ) σ
k = 0.

(ii) Let λ be a nested r-partition of n and let μ ⊃ λ be an r-partition of n + 1 such
that μ is not nested. Then identity (4.14) reduces to

∑

k∈Z

c0,0,k(μ) σ
k = σ.

(iii) Let λ be a nested r-partition of n + 1 and let μ ⊂ λ be an r-partition of n such
that μ is not nested. Then identity (4.14) reduces to

∑

k∈Z

c0,0,k(μ) σ
k = σ.

Furthermore, in each case suppose Y is the unique connected component of the T0-
fixed locus containing the T-fixed point αμ. Then Y = {αμ} in case (i), while in cases
(ii) and (iii) one has an isomorphism Y � A

1 mapping αμ to 0 ∈ A
1.
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Proof (i) Since μ is nested, one has S1(μ) = S2(μ) = ∅.

(ii) Under the stated assumptions, there exists exactly one index 2 � b � r such that
λc = μc for all 1 � c � r , c �= b, while λb \μb consists of a single box s. Since μ
is nested one has S1(λ) = {(b, b − 1, s)}. At the same time note that for all triples in
S2(μ) one has �μb � −2. Since μ is nested, this implies S2(μ) = ∅.

The proof of (iii) is analogous to that of (ii).

The last statement then follows from Corollary 4.5. ��
Finally, note the following.

Lemma 4.8 The T0-fixed locus Hilb(r , n)T0 coincides with the T-fixed locus
Hilb(r , n)T. Moreover, any T0-connected component Y intersecting Hilb(r , n) non-
trivially must be a single T0-isolated point belonging to Hilb(r , n).

Proof Clearly, there is a closed embedding Hilb(r , n)T ⊂ Hilb(r , n)T0 . Let Z be a
nonempty connected component of Hilb(r , n)T0 . Since Hilb(r , n) is a closed sub-
scheme of A(r , n), there exists a unique connected component Y of A(r , n)T0 such
that Z is the scheme theoretic intersection Y ×A(r ,n)Hilb(r , n). In particular Z is
a closed subscheme of Y . Moreover, Z is also naturally preserved by the residual
S-action.

If the S-action on Z is trivial, then Z is a finite set of T-fixed closed points in
A(r , n) which also belong to Hilb(r , n). Then Corollary 4.7 shows that each such
point is T0-isolated. Hence Z coincides with Y , which is assumed connected. Hence
Y must reduce to a single T-fixed point belonging to Hilb(r , n).

Suppose the S-action on Z in not trivial. Since Z is closed in Y , Lemma 4.3 implies
that Z contains at least one S-fixed point. Then the same argument as in the previous
paragraph shows that Y must be a single T-fixed point belonging to Hilb(r , n). ��

5 Hecke transformations

The goal of this section is to review the construction of Hecke transformations used in
[33], at the same time proving certain properties of fixed points in the correspondence
variety.

5.1 The ADHM correspondence variety

As in [33, Section 3.3], let A(r , n, n + 1) ⊂ A(r , n)×A(r , n + 1) denote the Hecke
correspondence parameterizing elementary modifications of framed torsion sheaves
on P

2 supported at a single closed point p ∈ A
2. LetAc(r , n, n+1) ⊂ A(r , n, n+1)

denote the closed subvariety where p = 0. According to [33, Proposition 3.1], the
following holds.

Proposition 5.1 (1) The correspondence variety A(r , n, n + 1) is a smooth quasi-
projective variety of dimension 2rn + r + 1.

(2) The natural morphismA(r , n, n+1) → A(r , n)×A(r , n+1) is a closed embed-
ding, and the restriction of the projectionπ2 : A(r , n)×A(r , n+1) → A(r , n+1)
to A(r , n, n + 1) is proper.
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(3) The restriction of the projection π1 : A(r , n)×A(r , n + 1) → A(r , n) to
Ac(r , n, n + 1) is also proper.

(4) The correspondence variety is preserved by the Tr+2-action on the product and
the fixed locus A(r , n, n + 1)Tr+2 is a finite set of closed points in one-to-one
correspondence with pairs of r-partitions (μ, λ) such that

|μ| = n, |λ| = n + 1, μ ⊂ λ. (5.1)

Written more explicitly, the last condition in (5.1) states that there exists 1 � b � r
such that μa = λa for all 1 � a � r , a �= b, while μb ⊂ λb and λb \μb consists
of a single box s.

Remark 5.2 Note that Proposition 4.1 (i) implies that the fixed locus A(r , n, n + 1)T

coincides with the Tr+2 fixed locus. Therefore T-equivariant Hecke transformations
are defined in complete analogy to [33]. This is briefly reviewed below.

Let γ : A(r , n, n+1) ↪→ A(r , n)×A(r , n+1) denote the natural closed embedding,
which is clearly T-equivariant. As in [33, Section 2.2], any equivariant Borel–Moore
homology class z ∈ HT(A(r , n, n + 1)) determines a Hecke transformation,

u+
z,n : HT(A(r , n))K → HT(A(r , n + 1))K , u+

z,n(x) = π2∗((γ∗z) ·π∗
1 x). (5.2)

The pull-back and push-forward maps in equivariant Borel–Moore homology are well
defined since γ is a closed embedding and the restriction of π2 to A(r , n, n + 1) is
proper. Although π1 is not proper, its restriction to the T-fixed locus is. Therefore,
using the localization theorem one can define downward Hecke transformations on
equivariant Borel–Moore homology

u−
z,n : HT(A(r , n + 1)) → HT(A(r , n))K , u−

z,n(x) = π1∗((γ∗z) ·π∗
2 x). (5.3)

Moreover, the following explicit formulas hold by a straightforward application of the
localization theorem for the correspondence variety. These formulas have been used
for example in [33, Appendix C], hence the proof will be omitted.

Lemma 5.3 (i) For any r-partition μ,

u+
z,n([αμ]) =

∑

λ∈Pr ,n+1
λ⊃μ

eT(Tμ) eT(Tμ,λ)
−1zμ,λ[αλ], (5.4)

where zν,λ denotes the restriction of z to the fixed point (αν, αλ).
(ii) In the opposite direction,

u−
z,n+1([αλ]) =

∑

μ∈Pr ,n
μ⊂λ

eT(Tλ) eT(Tμ,λ)
−1zμ,λ[αμ]. (5.5)
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In order to construct analogous transformations for the Hilbert scheme Hilb(r , n) ⊂
A(r , n) one needs first some structure results for the fixed locusA(r , n)T0 , which are
proven in the next section.

5.2 The fixed locus of the Calabi–Yau torus action

For any fixed point αμ ∈ A(r , n)Tr+2 let Vμ denote the underlying vector space, which
carries a linear Tr+2-action such that

chTr+2 Vμ =
r∑

b=1

χ−1
b

∑

s∈μb

qi(s)−1t j(s)−1.

As in (4.10), the characters q, t, χa , 1 � a � r , are defined by

q(t1, t2, u) = t−1
1 , t(t1, t2, u) = t−1

2 , χa(t1, t2, u) = u−1
a .

Using the notation in [33, Section 3.4], set τμ = chTr+2 Vμ and w = ∑r
b=1 χ

−1
b and

let Tμ denote the tangent space to A(r , n) at the fixed point αμ. As shown in [22,
Theorem 2.11], the character of the equivariant tangent space Tμ is given by

chTr+2 Tμ = − (1 − q−1)(1 − t−1) τμτ
∨
μ + τμw

∨+ q−1t−1τ∨
μw. (5.6)

For any pair (μ, λ) with |μ| = n, |λ| = n + 1 and μ ⊂ λ let Nμ,λ denote the fiber of
the equivariant normal bundle to A(r , n, n + 1) in the product A(r , n)×A(r , n + 1)
at the fixed point (αμ, αλ). Then the character of the Tr+2-action on Nμ,λ is given by
[33, Equation (3.11)], which reads

chTr+2 Nμ,λ = − (1− q−1)(1− t−1) τμτ
∨
λ + τμw

∨+ q−1t−1τ∨
λ w− q−1t−1. (5.7)

As observed in Remark 5.2, the fixed locus in the correspondence variety remains
unchanged under specialization to T ⊂ Tr+2. Moreover, the character decomposition
of the tangent space to a fixed point (αμ, αλ) is obtained by straightforward special-
ization. As in Lemma 4.6, let σ : T → C

× denote the character σ(t1, t2, t3) = t1t2t3.
Then

χb|T = (qtσ)b−1, 1 � b � r .

Let Tμ,λ denote the T-equivariant tangent space to the fixed point (αμ, αλ) ∈ A(r , n,
n + 1)T. Let

chT(Tμ,λ) =
∑

i, j,k∈Z

ci, j,k q
i t jσ k
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be the T-character decomposition of Tμ,λ. As in Sect. 4.2, a fixed point (αμ, αλ) ∈
A(r , n, n + 1)T will be called T0-isolated if and only if it is a connected component
of the T0-fixed locus. Then one has:

Lemma 5.4 (i) Suppose at least one r-partition of the pair (μ, λ) is nested. Then
c0,0,k = 0 for all k � 0. In particular the fixed point (αμ, αν) is T0-isolated.

(ii) Suppose μ and λ are not nested, n � 1, and there is a nested r-partition ν of n−1
such that ν ⊂ μ. Then c0,0,1 = 1 and c0,0,k = 0 for all k ∈ Z, k �= 1.

Proof Note that

chTr+2 Tμ,λ = chTr+2 Tμ + chTr+2 Tλ − chTr+2 Nμ,λ.

Using equations (5.6) and (5.7) one has

chTr+2 Tμ + chTr+2 Tλ − chTr+2 Nμ,λ

= − (1 − q−1)(1 − t−1) τμτ
∨
μ + τμw

∨+ q−1t−1τ∨
μw

− (1 − q−1)(1 − t−1) τλτ
∨
λ + τλw

∨+ q−1t−1τ∨
λ w

+ (1 − q−1)(1 − t−1) τμτ
∨
λ − τμw

∨− q−1t−1τ∨
λ w + q−1t−1

= − (1 − q−1)(1 − t−1)(τλ − τμ)(τλ − τμ)
∨− (1 − q−1)(1 − t−1) τλτ

∨
μ

+ τλw
∨ + q−1t−1τ∨

μw + q−1t−1.

(5.8)

By assumption τλ − τμ is a one dimensional representation of Tr+2 since μ ⊂ λ, and
λ \μ consists of a single box. Hence the right-hand side of (5.8) reduces to

chTr+2 Tμ + chTr+2 Tλ − chTr+2 Nμ,λ

= − 1 + q−1 + t−1− (1 − q−1)(1 − t−1) τλτ
∨
μ + τλw

∨+ q−1t−1τ∨
μw.

Let

Eμ,λ = − (1 − q−1)(1 − t−1) τλτ
∨
μ + τλw

∨+ q−1t−1τ∨
μw.

By analogy with [22, Theorem 2.11] this expression is given by

Eμ,λ =
r∑

b,c=1

∑

s∈λb
χbχ

−1
c t�λc (s)q−aμb (s)−1 +

r∑

b,c=1

∑

s∈μc

χbχ
−1
c t−�μb (s)−1qaλc (s).

The T-specialization of Eμ,λ is

Eμ,λ|T =
r∑

b,c=1

∑

s∈λb
σ b−ctb−c+�λc (s)qb−c−aμb (s)−1

+
r∑

b,c=1

∑

s∈μc

σ b−ctb−c−�μb (s)−1qb−c+aλc (s).

(5.9)
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Let 1 � d � r be such that λd \μd = {u} while λb = μb for b �= d. The terms with
b = d and s = u in the right-hand side of the above equation are

r∑

c=1

σ d−ctd−c+�λc (u)qd−c−aμd (s)−1

where aμd (u) = −1. Therefore the only term that specializes to 1 when σ = 1
corresponds to c = d. This implies that all terms in (5.9) specializing to 1 as σ = 1
are obtained as follows.

Let S1(μ, λ) denote the set of triples (b, c, s) with 1 � b, c � r and s ∈ λb, s �= u
if b = d, such that

b − c + �λc (s) = 0, b − c − aμb (s)− 1 = 0.

Let S2(μ, λ) denote the set of triples (b, c, s) with 1 � b, c � r and s ∈ μc such that

b − c − �μb (s)− 1 = 0, b − c + aλc (s) = 0.

Then the terms in (5.9) which specialize to 1 as σ = 1 are given by

1 +
∑

(b,c,s)∈S1(μ,λ)
σ b−ctb−c+�λc (s)qb−c−aμb (s)−1

+
∑

(b,c,s)∈S2(μ,λ)
σ b−ctb−c−�μb (s)−1qb−c+aλc (s).

Now consider a triple (b, c, s) ∈ S1(μ, λ). Since s �= u for b = d, it follows that
s ∈ μb. This implies aμb (s) � 0, hence b � c + 1. At the same time, �λc (s) =
c − b � −1, hence s /∈ λc. In conclusion, b � c + 1 and s ∈ μb\ λc for any triple
(b, c, s) ∈ S1(μ, λ) \ {(d, d, u)}. Since μb ⊆ λb and μc ⊆ λc, if μ or λ is nested, this
leads to a contradiction. Hence in that case S1(μ, λ) = ∅.

Suppose μ, λ are not nested, and the conditions of Lemma 5.4 (ii) are satisfied.
Since ν is nested and ν ⊂ μ there is a unique index 1 � e � r − 1 and a unique box
v ∈ μe+1\ νe+1 such that v /∈ μe. For all other indices 1 � b � r − 1, b �= e one has
μb+1 ⊆ μb. Then the argument in the previous paragraph implies that

S1(μ, λ) = {(e + 1, e, v)}.
A similar analysis applies to the set S2(μ, λ). Let (b, c, s) ∈ S2(μ, λ). Since μc ⊆ λc
and s ∈ μc, it follows that aλc (s) � 0, hence c � b. If c = b, in order for s ∈ S2(μ, λ)
one must have

�μb (s) = −1, aλb (s) = 0.

This leads to a contradiction since μb ⊆ λb by assumption. Therefore one must have
c � b+1.This implies thataλc (s) � 1 and �μb (s) � −2.The second condition implies
that s /∈ μb. If μ or λ is nested this leads to a contradiction. Hence S2(μ, λ) = ∅.
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In order to finish the proof, suppose μ, λ are not nested and the conditions of
Lemma 5.4 (ii) are satisfied. Hence μ = ν ∪ {v} with ν nested. Since s ∈ μc\μb with
b � c− 1 one must have (b, c, s) = (e, e+ 1, v). However in that case �μb (v) = −1,
which leads again to a contradiction. In conclusion S2(μ, λ) = ∅. ��

To conclude, note the following consequence of Lemma 5.4.

Corollary 5.5 (i) Let μ be a nested r-partition of n. Suppose a connected component
Z of A(r , n, n + 1)T0 has nontrivial set theoretic intersection with the closed
subvariety

{αμ} ×A(r , n + 1) ⊂ A(r , n)×A(r , n + 1).

Then Z must be a closed point (αμ, αλ) for some r-partition λ of n + 1 such that
λ ⊃ μ.

(ii) Let λ be a nested r-partition of n + 1. Suppose a connected component Z of
A(r , n, n+1)T0 has nontrivial set theoretic intersectionwith the closed subvariety

A(r , n)× {αλ} ⊂ A(r , n)×A(r , n + 1).

Then Z must be a closed point (αμ, αλ) for some r-partition μ of n such that
μ ⊂ λ.

Proof (i) Corollary 4.7 (i) shows that αμ is an isolated point of the fixed locus
A(r , n)T0 . Therefore, Z must be contained as a closed subvariety in the fiber
π−1
1 (αμ). Moreover, since the fixed locus (A1)T0 = {0}, any connected component of

A(r , n, n + 1)T0 is a closed subvariety of Ac(r , n, n + 1). Since Ac(r , n, n + 1) is
proper overA(r , n) by Proposition 5.1 (3), this implies that Z is proper over C, hence
projective. Therefore the induced residual S-action on Z has at least one fixed point
(αμ, αλ) with μ ⊂ λ. Since μ is nested by assumption, Lemma 5.4 (i) shows that this
fixed point is T0-isolated. Then the claim follows since Z is assumed connected.

The proof of (ii) is analogous. Z must be again projective since A(r , n, n + 1) is
proper over A(r , n, n + 1). ��

5.3 Hecke transformations for the Hilbert scheme

The goal of this section is to construct analogues of theHecke transformations (5.2) and
(5.3) for theT0-equivariant Borel–Moore homology of the moduli space Hilb(r , n) of
framed cyclic representations of the quiver (3.1). As shown in Proposition 3.8, for each
pair (r , n) there is a closed embedding Hilb(r , n) ⊂ A(r , n). Let Hilb(r , n, n + 1)
denote the scheme theoretic intersection ofHilb(r , n)×Hilb(r , n+1) andA(r , n, n+
1) in A(r , n)×A(r , n + 1). Hence one has a Cartesian square
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Hilb(r , n, n + 1)
κ

A(r , n, n + 1)

γ

Hilb(r , n)×Hilb(r , n + 1) A(r , n)×A(r , n + 1).

Let ρ1 : Hilb(r , n, n + 1) → Hilb(r , n) and ρ2 : Hilb(r , n, n + 1) → Hilb(r , n+ 1).
The second is proper by base change since the projection π2 ◦ γ : A(r , n, n + 1) →
A(r , n + 1) is proper. However 1.1, one cannot define a refined Gysin pull-back ρ!

1
because ρ1 is not l.c.i. Furthermore, the construction of a virtual pull-back as in [17]
also fails because the relative obstruction theory of ρ1 is not perfect of amplitude
[−1, 0]. This precludes a straightfoward generalization of the Hecke transformations
(5.2) and (5.3).

One can use instead the embedding into the smooth ambient space A(r , n).
Lemma 4.8 proves that the fixed locus Hilb(r , n)T0 is finite and in one-to-one corre-
spondence to nested r -partitions μ of n. Moreover, each fixed T0-fixed point αμ is
isolated as a T0-fixed point in A(r , n). Therefore the push-forward map for localized
homology is injective and yields an identification

HT0(Hilb(r , n))K0 �
⊕

μ∈P(r ,n)
μ nested

K0[αμ] ⊂ HT0(A(r , n))K0 .

Here K0 denotes the fraction field of the cohomology ring H(BT0) and [αμ] = iμ∗(1)
for any nested r -partition μ. Let also γ : A(r , n, n + 1) ↪→ A(r , n)×A(r , n + 1)
denote the natural closed embedding, which is clearly T0-equivariant. As in [33,
Section 2.2], any equivariant Borel–Moore homology class z ∈ HT0(A(r , n, n + 1))
determines a Hecke transformation,

h+
z,n : HT0(A(r , n))K0 → HT0(A(r , n + 1))K0 , h+

z,n(x) = π2∗((γ∗z) ·π∗
1 x).

The pull-back and push-forward maps in equivariant Borel–Moore homology are well
defined since γ is a closed embedding and the restriction of π2 to A(r , n, n + 1) is
proper.

As shown in Lemma 5.4 (i), for any pair of r -partitions (ν, λ) with ν nested, the
closed point (αν, αλ) ∈ A(r , n, n + 1) is an isolated T0-fixed point. Let Tν,λ denote
the tangent space to A(r , n, n + 1) at (αν, αλ). For any pair (r , n) let P(r , n) denote
the set of r -partitions of n.

Lemma 5.6 For any nested r-partition ν,

h+
z,n([αν]) =

∑

λ∈Pr ,n+1
λ nested
λ⊃ν

eT0(Tν) eT0(Tν,λ)
−1 zν,λ[αλ], (5.10)

where zν,λ denotes the restriction of z to the fixed point (αν, αλ). In particular, the
Hecke transformation (5.10) maps HT0(Hilb(r , n))K0 to HT0(Hilb(r , n + 1))K0 .
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Proof Note the Cartesian diagram

{αν}×A(r , n + 1)
kν

π1,ν

A(r , n)×A(r , n + 1)

π1

{αν} iν
A(r , n)

where the horizontal maps are closed embeddings. As observed below equation (2.8)
in [33, Section 2.1], this yields the base-change identity

π∗
1 [αν] = kν∗(π∗

1,ν1) = kν∗[A(r , n + 1)].

Since kν is a closed embedding of smooth varieties, there is an identity

(γ∗z) · kν∗[A(r , n + 1)] = kν∗k∗
νγ∗(z)

in the intersection ring of A(r , n)×A(r , n + 1). See for example [9, Section 2.6.21].
For each connected component Z of the fixed locus A(r , n, n + 1)T0 let qZ : Z ↪→
A(r , n, n+1) denote the natural closed embedding. Since the correspondence variety
is smooth, the localization theorem yields

z =
∑

Z

qZ∗
(
eT0(VZ )

−1q∗
Z z

)

where VZ is the normal bundle to Z in A(r , n, n + 1). Then

k∗
νγ∗z =

∑

Z

k∗
νγ∗qZ∗

(
eT0(VZ )

−1q∗
Z z

)
. (5.11)

Clearly, if the set theoretic intersection of Z with αν×A(r , n + 1) in A(r , n) ×
A(r , n+1) is empty, the corresponding term in the right-hand side of (5.11) vanishes.
On the other hand, Corollary 5.5 shows that the connected components intersecting
αν×A(r , n+1)nontrivially coincidewith thefinite set of isolatedfixedpoints (αν, αλ)
where λ ⊃ ν. For each such fixed point, let qν,λ : (αν, αλ) ↪→ A(r , n + 1, n) denote
the natural closed embedding and let

jν,λ = γ ◦ qν,λ : {(αν, αλ)} ↪→ A(r , n)×A(r , n + 1).

Then
k∗
νγ∗z =

∑

λ∈Pr ,n+1
λ⊃ν

eT0(Tν,λ)
−1k∗

ν ( jν,λ)∗ zν,λ, (5.12)

where Tν,λ is the tangent space toA(r , n, n+ 1) at (αν, αλ), and zν,λ = q∗
ν,λz denotes

the restriction of z to (αν, αλ).
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Now let iY : Y ↪→ A(r , n + 1) denote a connected component of the fixed locus
A(r , n + 1)T0 and let kν,Y = kν ◦ iY : αν× Y ↪→ A(r , n)×A(r , n + 1) denote
the corresponding closed embedding. Let also NY denote the normal bundle to Y
in A(r , n + 1). The localization theorem yields

k∗
νγ∗z =

∑

Y

iY∗
(
eT0(NY )

−1i∗Y k∗
νγ∗z

)
(5.13)

where k∗
νγ∗z is given by the right-hand side of equation (5.12). Clearly, one has

i∗Y k∗
ν ( jν,λ)∗ zν,λ = k∗

ν,Y ( jν,λ)∗ zν,λ = 0

unless the component Y contains the point αλ. If this is the case, Corollary 4.7 shows
that

Y �
{

{αλ}, for λ nested,

A
1, for λ not nested.

Moreover, in each case αλ is the unique S-fixed point in Y . For ease of exposition,
such a component will be denoted below by Yλ while their equivariant normal bundles
in A(r , n + 1) will be denoted by Nλ.

In conclusion, using equations (5.12) and (5.13) reduces to

k∗
νγ∗z =

∑

λ∈Pr ,n+1
λ⊃ν

iλ∗
(
eT0(Nλ)

−1eT0(Tν,λ)
−1i∗λk∗

ν ( jν,λ)∗ zν,λ
)
. (5.14)

Now let fλ : {αλ} ↪→ Yλ denote the natural closed embedding. Note that αν× Yλ is a
connected component of the T0 action on A(r , n)×A(r , n + 1) and its equivariant
normal bundle in the product is naturally isomorphic to

Nλ⊕ Tν⊗OYλ .

Moreover,

jν,λ = kν,λ ◦ fλ,

hence

i∗λk∗
ν ( jν,λ)∗ zν,λ = k∗

ν,λ(kν,λ)∗ fλ∗ zν,λ = eT0(Tν) eT0(Nλ) fλ∗ zν,λ.

Here fλ∗ is the push-forward map

fλ∗ : H0({αλ})⊗C KT0 → H0(Yλ)⊗C KT0 .
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If λ ⊃ ν is not nested, Yλ � A
1, hence the degree zero Borel–Moore homology

vanishes, H0(Yλ) = 0. Therefore if this is the case,

fλ∗ zν,λ = 0.

If λ ⊃ ν is nested, Yλ coincides with αλ, hence

fλ∗ zν,λ = zν,λ.

Therefore equation (5.14) reduces to

k∗
νγ∗z =

∑

λ∈Pr ,n+1
λ nested
λ⊃ν

iλ∗
(
eT0(Tν) eT0(Tν,λ)

−1 zν,λ
)
.

This yields equation (5.10). ��

In the opposite direction, let [αλ] ∈ HT0(Hilb(r , n + 1))K be a basis element, where
λ is a nested r -partition of n + 1. Let kλ : A(r , n)×αλ ↪→ A(r , n)×A(r , n1) be the
natural closed embedding. Then

π∗
2 [αλ] = kλ∗[A(r , n)×αλ]

and

(γ∗z) ·π∗
2 [αλ] = kλ∗k∗

λγ∗z.

The composition π1 ◦ kλ : A(r , n)×αλ → A(r , n) is the identity, hence clearly,
π1∗((γ∗z) ·π∗

2 [αλ]) is well defined. This defines a Hecke transformation in the oppo-
site direction,

h−
z,n+1 : HT0(Hilb(r , n + 1))K → HT0(A(r , n))K .

Lemma 5.7 For any nested r-partition λ,

h−
z,n+1([αλ]) =

∑

ν∈Pr ,n
ν nested
ν⊂λ

eT0(Tλ) eT0(Tν,λ)
−1 zν,λ[αν]. (5.15)

In particular, the Hecke transformation (5.15) maps HT0(Hilb(r , n + 1))K0 to
HT0(Hilb(r , n))K0 .

Proof Completely analogous to the proof of Lemma 5.6. ��
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In conclusion, Lemmas5.6 and5.7 yield upward anddownwardHecke transformations
on the equivariant homology space

V(r)
K0

=
⊕

n�0

HT0(Hilb(r , n))K0 �
⊕

n�0

⊕

μ⊂Pn,r
μ nested

K0[αμ].

Abusing notation, they will be denoted by the same symbols, h+
z,n , h

−
z,n+1, the distinc-

tion being clear from the context.

6 Degenerate DAHA action

The goal of this section is to prove that the transformations (5.10) and (5.15) yield a
degenerate DAHA action on V(r)

K0
.

6.1 The degenerate DAHA of Schiffmann andVasserot

This section is a brief review the construction of the family algebras SHc introduced in
[33, Section 1], and further studied in [4]. The construction employs a formal parameter
κ as well as an infinite set of formal parameters c = (cl)l�0. Using the notation of
[33, Section 1.5], for any l � 0 one defines

ξ = 1 − κ,

G0(s) = − ln(s),

Gl(s) = (s−1− 1)/l, l �= 0,

ϕl(s) =
∑

q=1,−ξ,−κ
sl(Gl(1 − qs)− Gl(1 + qs)),

φl(s) = slGl(1 + ξs),

(6.1)

where s is yet another formal parameter. The right-hand sides of the last two equations
should be regarded as formal Laurent power series of s by formally expanding the log
functions. Then SHc is generated by D−1,l , D0,l , D1,l , l ∈ Z, l � 0, satisfying the
relations:

[D0,l , D0,k] = 0, l, k � 1,

[D0,l , D1,k] = D1,l+k−1, l � 1, k � 0, (6.2)

[D0,l , D−1,k] = −D−1,l+k−1, l � 1, k � 0,

3[D1,2, D1,1] − [D1,3, D1,0] + [D1,1, D1,0] + κ(κ − 1)(D2
1,0 + [D1,1, D1,0]) = 0,

3[D−1,2, D−1,1] − [D−1,3, D−1,0]
+ [D−1,1, D−1,0] + κ(κ − 1)(−D2

1,0 + [D−1,1, D−1,0]) = 0, (6.3)

[D−1,k, D1,l ] = Ek+l , l, k � 0, (6.4)
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[D1,0, [D1,0, D1,1]] = 0, [D−1,0, [D−1,0, D−1,1]] = 0. (6.5)

The elements El are expressed in terms of the generators via the power series identity

1 + ξ
∑

l�0

Els
l+1 = exp

(∑

l�0

clφl(s)
)
exp

(∑

l�0

D0,l+1ϕl(s)

)
. (6.6)

The parameters cl , l � 0, are central. Note that relations (6.3) and (6.4) were derived in
[4]. Moreover, the following structure results were proven in [33, Propositions (1.34)
and (1.36)] respectively.

Lemma 6.1 (i) The algebra SHc is generated by the elements cl , D1,0, D−1,0, D0,2.
(ii) Any element of SHc can be written as a linear combination of monomials in the

generators Dk,l such that D1,l , D0,l , D−1,l , l � 0, appear exactly in this order
from left to right.

6.2 Calabi–Yau DAHA

In order to simplify the formulas let Kr+2 = KTr+2 denote the fraction field of the
cohomology ring H(BTr+2). Then note that [33, Theorem 3.2] proves that a certain
specialization of SHc acts on the localized equivariant Borel–Moore homology

L(r)
Kr+2

=
⊕

n�0

HTr+2(A(r , n))Kr+2

via Hecke correspondences. The specialization relates the formal parameters κ, c to
the canonical generators (x, y, e1, . . . , er ) of the cohomology ring of the classifying
space BTr+2 as shown below. Let C(κ)[c] = C(κ)[c0, c1, . . .] and let

C(κ)[c] → Kr+2 (6.7)

be the algebra homomorphism mapping

κ �→ −x−1y, cl �→ pl(ε1, . . . , εr ),

where εa = x−1ea , 1 � a � r , and pl , l � 0, are the symmetric power functions in r
variables. Using the C(κ)[c]-module structure on KTr+2 obtained from (6.7), let

SH(r)
Kr+2

= SHc⊗C(κ)[c] Kr+2.

Let (x, y, z) be the canonical generators of the cohomology ring of BT. Then T-
specialization is defined by setting

εa = (1 − a) x−1z, 1 � a � r .
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Finally, the specialization to T0 ⊂ T is obtained by further setting z = −(x + y),
which yields

εa = (a − 1) ξ, 1 � a � r ,

where ξ = 1 − κ as in (6.1).
Note that both specializations are well defined since the right-hand side of equation

(6.3) is a formal power series of cl , l � 0. In particular the T0-specialization of SHc

will be denoted by SH(r)
K0
.

6.3 SH(r)
K0
-module structure

This section will prove that the specialization SH(r)
K0

acts on V(r)
K0

using the Hecke

transformations (5.10) and (5.15). First recall the subalgebraU(r)
Kr+2

of the convolution
algebra constructed in [33, Section 3.5]. As in Section 3.4 of loc. cit., let τn+1,n denote
the universal line bundle on the correspondence variety A(r , n, n + 1). Using the
notation of Sect. 5.1, the algebra U(r)

Kr+2
is generated by the Hecke transformations

f1,l =
∏

n�0

f1,l,n, f1,l,n(w) = π2∗(γ∗c1(τn+1,n)
l ·π∗

1 (w)), l � 0,

f−1,l =
∏

n�0

f−1,l,n, f1,l,n(w) = π1∗(γ∗c1(τn+1,n)
l ·π∗

2 (w)), l � 0,

e0,l =
∏

n�0

e0,l,n, e0,l,n(w) = cl(En) ·w, l � 0,

where En is the universal rank n vector bundle over A(r , n). The Chern classes cl ,
l � 0, in the above formulas areTr+2-equivariant. In addition one defines the diagonal
operators

f0,l([αμ]) =
r∑

a=1

∑

s∈μa

ca(s)
l [αμ], ca(s) = i(s)x + j(s)y − ea,

which can be written as polynomial functions of the e0,l , l ∈ Z.
Then [33, Theorem 3.2] proves that there is a unique isomorphism of algebras

SH(r)
Kr+2

∼−→ U(r)
Kr+2

mapping

D1,l �→ x1−l y f1,l , D0,l �→ x1−l f0,l−1, D−1,l �→ (−1)r−1x−l f−1,l . (6.8)
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As observed in Remark 5.2 the above construction admits a straightforward special-
ization to T ⊂ Tr+2. This results in an isomorphism

SH(r)
K

∼−→ U(r)
K . (6.9)

Abusing notation, the T-equivariant counterparts of the above Hecke transformations
will be denoted by the same symbols. The distinction will be clear from the context.
Note also that explicit formulas for the matrix elements of the generators in the above
representation follow immediately from Lemma 5.3.

Next note the direct sum decomposition

L(r)
T � VK ⊕V⊥

K , (6.10)

where

VK =
⊕

μ nested

K [αμ], V⊥
K =

⊕

μ not nested

K [αμ].

Suppose A is one of the K -linear transformations f1,l,n , f−1,l,n , f0,l,n which generate
the convolution algebra. Let

A =
[
A11 A12
A21 A22

]

be the block form decomposition of A with respect to the direct sum (6.10). Then
define the K -linear transformations

gi,l,n ∈ EndK (VK ), i ∈ {−1, 0, 1}, l ∈ Z, n ∈ Z�0,

as

gi,l,n = ( fi,l,n)11.

Recall that K is the field of rational functions C(x, y, z), where (x, y, z) are the
canonical generators of the cohomology ring of BT. Let s = c1(σ )where σ(t1, t2, t3)
= t1t2t3 is the character used in Lemma 5.4, and note that s = −(x + y + z). At the
same time, K0 = C(x, y) and there is a canonical isomorphism of K -vector spaces

VK � VK0 ⊗K0 K (6.11)

mapping

[αμ] �→ [αμ] ⊗ 1
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for any nested r -partition μ. Let

gi,l =
∏

n�0

gi,l,n .

Finally, recall that each T-fixed point αμ ∈ A(r , n)T, with μ nested, is T0-isolated
and the equivariant Euler class

eT0(Tμ) = eT(αμ)|s=0

is nonzero. Similarly, as shown in Lemma 5.4 (i), for any nested partitions μ ⊂ λ the
fixed point (αμ, αλ) ∈ A(r , n, n + 1)T is T0-isolated and

eT0(Tμ,λ) = eT(Tμ,λ)|s=0

is nonzero. Moreover, for any box s ∈ μ set

c0a(s) = (i(s)− a) x + ( j(s)− a) y

where 1 � a � r indicates that s ∈ μa , and for any pair μ ⊂ λ with |λ \μ| = 1 set

τ 0μ,λ = (i(s)− a)x + ( j(s)− a)y

where {s} = λ \μ. Then the following holds

Lemma 6.2 The matrix elements of the K -linear transformations gi,l ∈ EndK (VK ),
i ∈ {−1, 0, 1}, l ∈ Z, with respect to the fixed point basis {[αμ]}, with μ a nested
r-partition, have well defined specializations gi,l |s=0 at s = 0. In particular there exist
unique K0-linear transformations g0i,l ∈ EndK0(VK0) such that gi,l |s=0 = g0i,l ⊗ 1.
Moreover, the explicit expressions of g0i,l in the fixed point basis are given by

g00,l+1([αμ]) =
r∑

a=1

∑

s∈μ
c0a(s)

l [αμ],

g01,l([αμ]) =
∑

λ nested
λ⊃μ

|λ|=|μ|+1

(τ 0μ,λ)
l eT0(Tμ) eT0(Tμ,λ)

−1[αλ],

g0−1,l([αλ]) =
∑

μ nested
μ⊂λ

|λ|=|μ|+1

(τ 0μ,λ)
l eT0(Tλ) eT0(Tμ,λ)

−1[αλ].

(6.12)

Proof Let A be an element of { f0,l,n, f1,l,n, f−1,l,n}. Consider the following cases:

(1) Suppose A is one of the f0,l,n . Then the above block decomposition is diagonal
and the claim is obvious.
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(2) Suppose A is one of the f1,l,n . Then Lemma 4.6 (i) shows that for any nested
r -partition μ of n the equivariant Euler class eT(αμ) ∈ C(x, y, z) has well defined
specialization at s = 0,which is furthermore equal to eT0([αμ]).Moreover, for any pair
of nested r -partitions μ, λ of n, n + 1 respectively, with μ ⊂ λ, Lemma 5.4 (i) shows
that the equivariant Euler class eT(Tμ,λ) ∈ C(x, y, z) haswell defined specialization at
s = 0, which is furthermore equal to eT0(Tμ,λ). Then the claim follows from equations
(5.10).

(3) Suppose A is one of the f−1,l,n . This case is completely analogous to (2).

Equations (6.12) follow immediately by specialization from (5.4) and (5.5). ��

Lemma 6.3 The map

D1,l �→ x1−l yg01,l , D0,l �→ x1−l g00,l−1, D−1,l �→ (−1)r−1x−l g0−1,l

extends uniquely to a homomorphism of K0-algebras

ρ
(r)
0 : SH(r)

K0
→ End(V(r)

K0
). (6.13)

Proof The proof will proceed by truncating the relations satisfied by the generators
(6.9) to their (1, 1) blocks and specializing to s = 0. Again, suppose A is one of the
transformations fi,l,n , i ∈ {−1, 0, 1}, l ∈ Z, n ∈ Z�0, and consider the following
cases.

(1) Suppose A is one of the f0,l,n . Then, clearly, A12 = 0 and A21 = 0.

(2) Suppose A is one of the f1,l,n . Then note that the matrix elements of

A12 : V⊥
K → VK , A21 : VK → V⊥

K

are given by

(A12)λ,μ = eT(αλ) eT(αμ, αλ)
−1, (A21)ν,ρ = eT(αν) eT(αν, αρ)

−1

where μ, ν are nested r -partitions,

|λ| = |μ| + 1, μ ⊂ λ,

and

|ρ| = |ν| + 1, ν ⊂ ρ.

Moreover, μ, ν are nested while λ, ρ are not. Then Lemma 4.6 (ii) shows that

eT(Tλ) = sẽ(Tλ)
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where ẽ(Tλ) has well defined specialization at s = 0. At the same time Lemma 5.4 (i)
shows that eT(Tμ,λ)−1 has well defined specialization at s = 0. In conclusion,

A12 = s Ã12

where Ã12 has well defined specialization at s = 0. Similarly, Lemmas 4.6 (i) and
5.4 (i) imply that A21 has well defined specialization at s = 0.

(3) Suppose A is one of the f−1,l,n . In complete analogy to (2), Lemmas 4.6 and 5.4
imply that, again,

A12 = s Ã12

where Ã12 has well defined specialization at s = 0. At the same time A21 has well
defined specialization at s = 0.

The above observations imply that the claim holds for the quadratic relations (6.2)–
(6.4). Suppose A, B are two linear transformations among the fi,l,n , i ∈ {−1, 0, 1},
l ∈ Z, n ∈ Z�0, such that the target of B coincides with the domain of A. Using the
block form decomposition (6.11), the product AB is written as

AB =
[
A11B11 + s Ã12B21 s A11 B̃12 + s Ã12B22

A21B11 + A22B21 s A21 B̃12 + A22B22

]
.

Note that the product A11B11 has well defined specialization at s = 0 by Lemma 6.2.
Then, using (1), (2) and (3) above it follows that the same holds for the component
(AB)11, and

(AB)11|s=0 = (
A11|s=0

)(
B11|s=0

)
.

This proves that the transformations g0i,l satisfy the quadratic relations (6.2)–(6.4).
In order to prove the cubic relations (6.5), suppose A, B,C are transformations of

the form f1,l,n+1, f1,l,n , f1,l,n−1 respectively, where n � 1. The (1, 1) block of the
triple product ABC reads

A11B11C11 + s Ã12B21C11 + s A11 B̃12C21 + s Ã12B22C21.

Again, remarks (1), (2), (3) above imply that

A11B11C11, Ã12B21C11, A11 B̃12C21

have well defined specializations at s = 0, and

(A11B11C11)|s=0 = (
A11|s=0

)(
B11|s=0

)(
C11|s=0

)
. (6.14)

Using Lemma 5.4 (ii), it will be shown below that the product Ã12B22C21 also has well
defined specialization at s = 0. The matrix elements of the triple product A12B22C21
are given by
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∑

ν⊂μ⊂λ⊂ρ

eT(Tν)

eT(Tν,μ)

eT(Tμ)

eT(Tμ,λ)

eT(Tλ)

eT(Tλ,ρ)

where ν, ρ are nested r -partitions of n − 1, n + 2 respectively and the sum is over all
sequences of r -partitions ν ⊂ μ ⊂ λ ⊂ ρ with |μ| = n, |λ| = n + 1, and μ, λ not
nested. Lemmas 4.6 (i) and 5.4 (i) imply that

eT(Tν)

eT(Tν,μ)

has well defined specialization at s = 0. Moreover, Lemmas 4.6 (ii) and 5.4 (ii) imply
that

eT(Tμ) = sẽ(Tμ) and eT(Tμ,λ)
−1= s−1ẽ(Tμ,λ)

−1

where ẽ(Tμ), ẽ(Tμ,λ)−1 have well defined specializations at s = 0. Therefore the same
holds for

eT(Tμ)

eT(Tμ,λ)
.

Similarly, Lemmas 4.6 (ii) and 5.4 (i) imply that

eT(Tλ)

eT(Tλ,ρ)
= sẽ(Tλ) eT(Tλ,ρ)

−1

where ẽ(Tλ), eT(Tλ,ρ)−1 also have well defined specialization at s = 0. Since
A12B22C21 = s Ã12B22C21, it follows that, indeed, Ã12B22C21 has well defined spe-
cialization at s = 0 as claimed above. Then, using relation (6.14) this implies that the
transformations g01,l also satisfy the cubic relations (6.5). ��
Proof of Theorem 1.1 For any l � 0 set z = eT0(τn,n+1)

l in Lemmas 5.6 and 5.7.
Let h+

l , h
−
l denote the resulting linear transformations in End(V(r)

K0
). Then equations

(5.10), (5.15) and (6.12) show that

h+
l = g01,l , h−

l = g0−1,l

for all l � 0. Moreover h0l = g00,l holds by construction for all l � 0. Therefore
Theorem 1.1 follows from Lemma 6.3. ��

6.4 Some structure results

The next goal is to prove some structure results for the action (6.13) which are needed
in the proof of Theorem 1.2.

Lemma 6.4 For r = 1 the representation (6.13) is faithful.
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Proof This follows from [33, Proposition 6.7] since for r = 1 the representations ρ(r)0
and ρ(r) are isomorphic. ��

Next, one has to prove the analogues of [33, Lemmas8.33 and8.34.a]. Let [α∅r ] ∈ V(r)
K0

denote the element corresponding to the empty r -partition.

Lemma 6.5 [α∅r ] is annihilated by all endomorphisms of the form ρ
(r)
0 (D0,l),

ρ
(r)
0 (D−l,0), l � 1.

Proof This is analogous to [33, Lemma 8.34.a]. The claim follows from equations
(5.15). ��
Lemma 8.33 in [33] shows that

L(r)
Kr+2

= ρ(r)(SH(r)
Kr+2)([α∅r ]).

The proof of loc. cit. is based on the following observation. Recall that Pr ,n denotes
the set of r -partitions of n. Let φ : Pr ,n → (Z2× Z

r )n/Sn be the map defined by

φ(μ) = [(i(s), j(s), ea)]

where in the right-hand side s ∈ μa and ea are the canonical generators of Z
r for

1 � a � r . Then φ is injective.
In order to prove the analogue of Lemma 8.33 under Calabi–Yau specialization,

one has to first prove the following analogous result.

Lemma 6.6 Let P⊂
r ,n ⊂ Pr ,n be the subset of nested r-partitions of n. Let

φ0 : P⊂
r ,n → (Z2)×n/Sn

be the map defined by

φ0(μ) = [(i(s)− a, j(s)− a)]

where in the right-hand side 1 � a � r and s ∈ μa. Then φ0 is injective.

Proof Suppose μ = (μa) and λ = (λa), 1 � a � r , are two nested r -partitions of n
such that φ0(μ) = φ0(λ). For each 1 � a � r the partition μa ⊂ Z

2 can be written
as a union of L-shaped sets in the plane

μa =
⋃

k∈Z

μa,k,

μa,k = {(i, j) ∈ Z
2 | (i, j) ∈ μa, i = k, j � k} ∪

{(i, j) ∈ Z
2 | (i, j) ∈ μa, i � k, j = k}.

123



Hilbert schemes of nonreduced divisors… 857

Clearly, μa,k = ∅ for k � 0 and μa,k ∩ μa,l = ∅ for k �= l. The translation of each
set μa,k by (−a,−a) will be denoted by μa,k − (a, a). Then note that

μa,k+l − (l, l) ⊆ μa,k (6.15)

for any l � 0 since μa is a Young diagram. Moreover, for any 1 � a, b � r , and
any k, l ∈ Z the subsets μa,k − (a, a) and μb,l − (b, b) of Z

2 are disjoint unless
k − a = l − b. For any n ∈ Z let Sn(μ) be the disjoint union

Sn(μ) =
∐

1�a�r , k∈Z

k−a=n

(μa,k − (a, a))

and let

|Sn(μ)| =
⋃

1�a�r , k∈Z

k−a=n

(μa,k − (a, a))

denote the set theoretic union as subsets ofZ2. As observed above, |Sn(μ)|∩|Sm(μ)| =
∅ for n �= m. Hence

r∐

a=1

(μa − (a, a)) =
⋃

n∈Z

Sn(μ).

Since μ is nested, inclusion (6.15) implies that there are inclusions

μa+1,k+a−r+1 ⊆ μa+1,k+a−r ⊆ μa,k+a−r , 1 � a � r , k � 1,

where by conventionμr+1,k+1 = ∅. Therefore the following statement holds for each
set Sk−a(μ):

(i) Each point

(i, j) ∈ μa,k+a−r \μa+1,k+a−r+1

occurs with multiplicity exactly a in Sk−a(μ).

In complete analogy, one also has

r∐

a=1

(λa − (a, a)) =
⋃

m∈Z

Sm(λ)

where the subsets Sm(λ) satisfy analogous properties. In particular, one has:

(ii) Each point

(i, j) ∈ λa,k+a−r \ λa+1,k+a−r+1
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occurs with multiplicity a in Sk−a(λ).

In order to finish the proof note that |Sn(μ)| ∩ |Sm(λ)| = ∅ for n �= m. Therefore
φ0(μ) = φ0(λ) if and only if Sn(μ) = Sn(λ) for all n ∈ Z. If that is the case, properties
(i) and (ii) above imply that

μa,k+a−r \μa+1,k+a−r+1 = λa,k+a−r \ λa+1,k+a−r+1

for all 1 � a � r and all k ∈ Z. This implies that μ = λ. ��
Now one has:

Lemma 6.7 V(r)
K0

= ρ
(r)
0 (SH(r)

K0
)([α∅r ]).

Proof This is analogous to [33, Lemma 8.33]. The proof proceeds by induction on n,
i.e., suppose [α]μ ∈ ρ

(r)
0 (SH(r)

K0
)(|0〉) for all r -partitionsμ of n−1. Recall the formula

for g01,l in equation (5.15):

g01,l([αμ]) =
∑

λ∈Pr ,n
λ nested
λ⊃μ

(τ 0μ,λ)
l eT0(Tμ) eT0(Tμ,λ)

−1 [αλ].

As in loc. cit., this implies that for any r -partition λwith |λ| = n one can find a nested
partitionμ, |μ| = n−1 such that the coefficient of [αλ] in ρ(r)0 (D1,l)([αμ]) is nonzero
for some l � 0. Next note that

g00,l+1([αλ]) =
r∑

a=1

∑

s∈λa

(
(i(s)− a)x + ( j(s)− a)y

)l [αλ]

from (5.15). By analogy with Lemma 8.33, there is a map

P⊂
r ,n → (K 2

0 )
n/Sn

mapping

λ �→ [(i(a)− a)x + ( j(a)− a)y)], s ∈ λa, 1 � a � r .

Lemma 6.6 shows that this map is injective. Hence, as in loc. cit., the Hilbert null-
stellensatz implies that there there is a polynomial f in the generators D0,l such that
f ([αλ]) = 1 and f ([αρ]) = 0 for any r -partition ρ �= λ of n. ��

7 W-module structure

This section provides a brief overview of W -algebras and concludes the proof of
Theorem 1.2.
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7.1 W-algebras

A succinct definition of the W -algebra Wκ(glr ) and its free field realization via quan-
tum Miura transform is presented in [33, Section 8.4]. The main points will be briefly
summarized below.

In this section the ground field is F = C(κ). Let ba , 1 � a � r , be a basis of the
standard Cartan algebra h ⊂ glr and let b

(a), 1 � a � r , be the dual basis. Let b(a)(z),
1 � a � r , be free boson fields such that the zero modes b(a)0 coincide with b(a) for
all 1 � a � r and their OPEs are given by

∂zb
(a)(z) ∂wb

(c)(w) = − κ−1

(z − w)2
.

For any h ∈ h∨ let

h(z) =
r∑

a=1

〈h, ba〉 b(a)(z)

where the angular brackets denote the canonical pairing h∨× h → C(κ). Let π0 be
the Fock space of b(a)(z), 1 � a � r .

Now let h(a) be the fundamental weights of slr . The W -fields Wd(z) ∈
End(π0)[[z−1, z]], 0 � d � r are defined by

−κ :
r∏

a=1

(Q∂z + h(a)(z)) : =
r∑

d=0

Wd(z)(Q∂z)
r−d

where : : indicates normal ordering and

Q = −κ−1ξ.

This yields W0(z) = 1, W1(z) = 0, and some more complicated expressions for
Wd(z), d � 2. Abusing notation, for d = 1 one sets

W1(z) =
r∑

a=1

b(a)(z)

as opposed to W1(z) = 0. Then the W -algebra Wκ(glr ) is the vertex subalgebra of π0
generated by the Fourier modes of Wd(z), 1 � d � r .

Next note that any β ∈ h determines a Verma module for the Heisenberg algebra
H(r) generated by the highest weight vector |β〉 satisfying

b(a)l |β〉 = δl,0〈b(a), β〉|β〉, l � 0.
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Then there is a representation of Wκ(glr ) on πβ such that

Wd,0|β〉 = wd(β)|β〉, Wd,l |β〉 = 0, l � 1,

where

w1(β) =
r∑

a=1

〈b(a), β〉, wd(β) = − κ
∑

i1<···<id

d∏

t=1

(〈h(it ), β〉 + (d − t) κ−1ξ
)
.

In particular, for β = 0 one obtains the vacuum W -module π0.

7.2 Module structure

Let U(Wκ(glr )) denote the current algebra of the W -algebra, and let U0(Wκ(glr ))
denote its image in End(π0) As shown in Corollary A.3, which is analogous to [33,
Lemmas 8.22 and 8.24], there is an embedding of degreewise topological K0-algebras



(r)
0 : SH(r)

K0
→ U0(Wκ(glr )) (7.1)

which lifts to a surjective morphism of degreewise topological K0-algebras



(r)
0 : U(SH(r)

K0
) → U0(Wκ(glr )). (7.2)

In particular, as observed in Corollary A.4, this yields a representation

π
(r)
0 : U0(Wκ(glr )) → End(V(r)

K0
).

As in [33], themorphism (7.1) is obtained from a comparison the free field realizations
of SH(r)

K0
and respectively the W -algebra. The proof consists of a step-by-step T0-

specialization of the proof given in [33]. This is a straightforward, if somewhat tedious
process, the details being provided in Appendix A.

Nowone can conclude the proof of Theorem1.2which states thatπ(r)
0 is isomorphic

to the vacuum representation of the W -algebra.

Proof of Theorem 1.2 Having proven the T0 variants of [33, Lemmas 8.33 and 8.34.a],
namely Lemmas 6.7 and 6.5, the proof is now completely analogous to the proof of the
first part of Theorem 8.32 in loc. cit. Using Corollary A.4, the above lemmas imply that
V(r)

K0
is Verma module for U0(Wκ(glr )) with highest weight vector [α∅r ]. Using the

epimorhism (7.2), for each element Wd,0 of U(Wκ(glr )) there exists an element W ′
d,0

in U(SH(r)
K0
)mapped toWd,0 in U(Wκ(glr )). Lemma A.2 and Corollary A.5 imply that

W ′
d,0 acts in the same way on the vacua [α∅r ] and [α∅]⊗ r . This concludes the proof.

��
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A Appendix: From degenerate DAHA toW

The main goal of this section is to show that the relation between degenerate DAHA
modules and W -modules proven in [33] also holds for their Calabi–Yau specializa-
tions. This includes the construction of the free field representation of SH(r)

Kr+2
carried

out in [33, Section 8.5], the algebra morphism obtained in Theorem 8.21 of loc. cit. as
well as the resulting categorical equivalence of admissible modules. The proof con-
sists of a straightforward step-by-step verification that all intermediate steps in loc. cit.
admit correct specialization under the inclusion T0 ⊂ Tr+2. The details are included
here for completeness.

A.1 Grading and order filtration

This is brief summary of [33, Section 1.9]. Using the notation of Sect. 6.1, let Dl,0,
l � Z, be the elements of SHc defined recursively by

[D1,1, Dl,0] = lDl+1,0, [D−l,0, D−1,1] = lD−l−1,0, l � 0.

Moreover, for l, k � 1 set

Dk,l = [D0,l+1, Dk,0], D−k,l = [D−k,0, D0,l+1].

As shown in [33, Section 1.9], by construction there is an order filtration

· · · ⊂ SHc[� l] ⊂ SHc[� l + 1] ⊂ · · · ⊂ SHc

where l � 0. Proposition 1.38 in loc. cit shows that this filtration is completely
determined by assigning the elements Dk,l , cl order degrees l and 0 respectively.
Moreover, one has

SHc[� l1] · SHc[� l2] ⊆ SHc[� l1 + l2],

hence the associated graded inherits an algebra structure.
In addition there is also a Z-grading such that Dl,0 has degree l while D0,l has

degree zero. This Z-grading is compatible with the above filtration.

A.2 Coproduct

The topological tensor product SHc⊗̂SHc is defined as

SHc⊗̂SHc =
⊕

s∈Z

lim←−
(⊕

SHc[s − t] ⊗SHc[t]
)
/JN [s],

JN [s] =
⊕

t�N

SHc[s − t] ⊗SHc[t].
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Then [33, Theorem 7.9] proves that there exists a coproduct � : SHc → SHc⊗̂SHc

which is uniquely determined by the formulas

�(cl) = δ(cl), l � 0,

�(Dl,0) = δ(Dl,0), l �= 0,

�(D0,1) = δ(D0,1),

�(D0,2) = δ(D0,2)+ ξ
∑

l�1

lκ l−1D−l,0 ⊗ Dl,0,

�(D1,1) = δ(D1,1)+ ξc0 ⊗ D1,0,

�(D−1,1) = δ(D−1,1)+ ξD−1,0 ⊗ c0.

(A.1)

Here δ is the standard diagonal map.
The main application of the coproduct resides in the construction of the free field

representation
ρ(1

r ) : SH(r)
Kr+2

→ End
(
L(1)
Kr+2

)⊗r (A.2)

in [33, Section 8.5]. As shown in loc. cit., Proposition 8.5, the coproduct determines
naturally an injective algebra homomorphism

�(1r ) : SH(r)
Kr+2

→ (
SH(1)

Kr+2

)⊗̂r
. (A.3)

Moreover the case r = 1 of Theorem 3.2 in loc. cit shows that there is a faithful
representation

SH(1)
Kr+2

→ End
(
L(1)
Kr+2

)
.

As observed in Corollary 8.7 of loc. cit, this yields a faithful representation (A.2).
The important point for the present purposes is the following:

Lemma A.1 There is a faithful representation

ρ
(1r )
0 : SH(r)

K0
→ End

(
V(1)

K0

)⊗r
.

Proof Clearly, using formulas (A.1) the construction of the injective algebra homo-
morphism (A.3) specializes immediately to SH(r)

K0
. Moreover, fact for r = 1, the factor

(C×)×r acts trivially on A(1, n) and the quotient Tr+2/(C
×)×r is isomorphic to T0.

Therefore the specialization of the rank r = 1 case of Theorem 3.2 to SH(r)
K0

is also
immediate. This implies that the analogue of Corollary 8.7 in loc. cit also holds for
the T0-specialization. Therefore Lemma A.1 holds. ��
To conclude this section, by analogy to [33, Lemma 8.34.b], one has:

Lemma A.2 Let [α∅]⊗r ∈ (V(1)
K0
)⊗r denote the vacuum vector. Then [α∅]⊗r is anni-

hilated by all endomorphisms of the form ρ
(1r )
0 (D0,l), ρ

(1r )
0 (D−l,0), l � 1.

Proof This follows from the r = 1 case of Lemma 6.5 using [33, Lemma 7.11]. ��
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A.3 Degreewise completion

As explained for example in [2, Appendix A], any Z-graded algebra as above has a
natural degreewise linear topology defined by the decreasing sequence

JN =
⊕

s∈Z

JN [s], JN [s] =
∑

t�N

SH(r)
Kr+2

[s − t]SH(r)
KTr+2

[t].

This means that for any degree s element v ∈ SH(r)
Kr+2

[s] the subsets {v+ JN [s]} form
a fundamental system of open neighborhoods of v.

The standard degreewise completion of SH(r)
Kr+2

is defined by

USH(r)
Kr+2

=
⊕

s∈Z

USH(r)
Kr+2

[s], USH(r)
Kr+2

[s] = lim←−SH(r)
Kr+2

[s]/JN [s]. (A.4)

Clearly the grading, order filtration and degreewise completion remain well defined
under T0 specialization.

Now, [33, Section 8.6, Definition 8.10] introduces the notion of admissible SH(r)
Kr+2

-
module. This is a Z-graded module M = ⊕

s∈Z
M[s] such that M[s] = 0 for

sufficiently large s. This definition readily extends to modules over the degreewise
completion (A.4). Then Proposition 8.11 in loc. cit. proves that

(1) The faithful representation (A.2) extends to a faithful representation of USH(r)
Kr+2

on (L(1)
K0
)⊗r .

(2)The canonicalmapSH(r)
Kr+2

→ USH(r)
Kr+2

is an embeddingof degreewise topological
algebras.

Both statements are consequences on Corollary 8.7 in loc. cit, hence, in the view of
Lemma A.1, they remain valid under T0-specialization.

A.4 From SHc toW

Now let U(Wκ(glr )) be the current algebra associated to the W -algebra. It was shown
in [2] that this is a graded degreewise complete topological F-algebra as defined in
Sect. A.3. The grading is defined by the conformal degree.

Let U(Wκ(glr )) be the image of U(Wκ(glr )) in End(πβ) where β is determined by
the relations

〈b(a), β〉 = −κ−1εa + (a − 1) κ−1ξ, 1 � a � r . (A.5)

One of the main technical results in [33, Theorem 8.21], states that there is an embed-
ding


(r) : SH(r)
Kr+2

→ U(Wκ(glr ))

of degreewise topological Kr+2-algebraswith a degreewise dense image. Furthermore,
Lemma8.24 in loc. cit. proves that
(r) extends to a surjectivemorphismof degreewise
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topological Kr+2-algebras

U
(
SH(r)

Kr+2

) → U(Wκ(glr )).

Finally,Corollary 8.27 proves that the pull-back via
(r) yields an equivalence from the
category of admissible U(Wκ (glr ))-modules to the category of admissible SH(r)

KTr+2
-

modules. This equivalence intertwines between the free field realizations ρ(1
r ) and

πβ .
The analogous statement for the T0-specialization is proven below. First note that

the Calabi–Yau specialization sets

〈b(a), β〉 = 0, 1 � a � r ,

in equation (A.5). Therefore πβ specializes to the Fock vacuum module π0 of the
Heisenberg algebra H(r). As above, let U0(Wκ(glr )) denote the image of the W -
algebra in End(π0).

Lemma A.3 (i) There is an embedding



(r)
0 : SH(r)

K0
→ U0(Wκ(glr ))

of degreewise topological K0-algebras with a degreewise dense image.
(ii) 


(r)
0 extends to a surjective morphism of degreewise topological K0-algebras

U
(
SH(r)

K0

) → U0(Wκ(glr )). (A.6)

Proof First recall the construction of the map map 
(r), which is based on the free
field realization

ρ(1
r ) : SH(r)

Kr+2
→ End

(
L(1)
Kr+2

)⊗r
.

Using the coproduct structure in Sect. A.2, the morphism 
(r) is determined by 
(1)

and
(2). In order to summarize the explicit formulas for these maps, it will be helpful
to recall that the algebra SH(c) is generated by the elements cl , D1,0, D−1,0, D0,2, as
shown in [33, Proposition 1.34], Moreover, it shown in Section 1.11 of loc. cit that the
elements

bl = (−x)−l D−l,0, b−l = y−l Dl,0, b0 = κ−1E1,

with l � 1, and c0 define a Heisenberg subalgebra of SHc. That is

[bl , bk] = lκ−1δl,kc0.

The analogous statements will hold for the Tr+2 and T0 specializations. Then the
construction of 
(r) proceeds as follows.
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For r = 1 there is a single W -field

W1 = b(z)

and πβ is a Verma module of the Heisenberg algebra H(1) with height weight

β = κ−1ε1.

By [33, Proposition 1.40] there exists a unique isomorphism of Kr+2-vector spaces

L(1)
Kr+2

→ πβ

mapping [α∅] to |β〉 which intertwines naturally between the action of Heisenberg
subalgebra of SH(1)

Kr+2
on L(1)

K and the action ofH(1) on πβ . As shown in Propositions

8.15 and 8.16 of loc. cit. this extends to an embedding 
(1) where


(1)(bl) = bl ,


(1)(D0,1) = κ
∑

l�1

b−lbl ,


(1)(D0,2) = κ� − ε1

(1)(D0,1),

� = ξ
∑

l�1

(l − 1)b−lbl/2 + κ
∑

l,k�1

(b−l−kblbk + b−lb−kbl+k)/2.

The T0 specialization sets ε1 = 0, hence in this case πβ = π0 is the Fock vacuum
module of theHeisenberg algebra. Clearly, the all the above formulas havewell defined
specialization. In particular,



(1)
0 (bl) = bl , 


(1)
0 (D0,1) = κ

∑

l�1

b−lbl

and



(1)
0 (D0,2) = κ�

define again an embedding of degreewise topological algebras.
An analogous computation holds for r = 2. In this case one identifies

π(12)= πβ, 〈b(a), β〉 = − κ−1εa + (a − 1) κ−1ξ, 1 � a � 2.

Note also that the Kr+2-vector space πβ is canonically isomorphic to (L(1)
Kr+2

)⊗2. Then


(2) is determined in this case by the formulas
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(2)(bl) = bl ,


(2)(D0,2)

= κ

2

∑

l∈Z

:W1,−lW2,l : + κ2

24

∑

k,l∈Z

:W1,−k−lWkWl :

+ κξ

4

∑

l∈Z

(|l| − 1) :W1,−lW1,l : + ξW0,2 + c,

where

c = p3(ε1, ε2)+ p2(ε1, ε2) ξ/4κ − p1(ε1, ε2) ξ
2/2κ + ξ3/12κ.

The T0 specialization sets

ε1 = 0, ε2 = ξ

and πβ is again the Fock module π0. Again, the above formulas well defined special-
izations. In fact the only ε-dependence is through the constant c which is polynomial
in ε1, ε2. Therefore


(2)
0 is again well defined and yields an embedding of topological

algebras.
For r � 2, the map
(r) is determined naturally by
(1) and
(2) using the coprod-

uct (A.1) as shown in [33, Theorem 8.21]. Since formulas (A.1) are independent of ε, it
follows that theT0-specialization of
(r) is well defined and determines an embedding
of topological algebras by analogy with [33, Theorem 8.21]. Note here that Theorem
8.23 used in loc. cit. also holds for πβ = π0, as proven in [3, Proposition 5.5].

The T0 specialization of [33, Lemma 8.24] also holds since the formulas proven in
Claims 8.25 and 8.26 of loc. cit. are independent of ε. Therefore the map
(r)

0 extends
to a surjective morphism of degreewise topological algebras (A.6). ��
Finally, note that the T0-specialization of [33, Corollary 8.27] also holds since the
proof given in loc. cit. is completely independent of parameters. In conclusion one
has:

Corollary A.4 The pull-back via 

(r)
0 yields an equivalence from the category of

admissible U0(Wκ(glr ))-modules to the category of admissible SH(r)
K0
-modules. This

equivalence intertwines between the free field realizations ρ(1
r )

0 and π0. In particular,

the vacuum vector |0〉 of π0 is identified with the element [α∅]⊗ r ∈ (V(1)
K0
)⊗r.

A second consequence of the proof of Lemma A.3 is recorded below.

Corollary A.5 For any d � 1 let W ′
d,0 in U(SH(r)

K0
) be the element mapped by 
0 to

Wd,0 in U(Wκ(glr )). Then W ′
d,0 is a linear combination of monomials

Dk1,l1 · · · Dkr ,lr , k1 + · · · + kr = 0,

where D1,l , D0,l , D−1,l , l � 0, appear exactly in this order from left to right.
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Proof This is analogous to [33, Equation (8.123)]. It follows from the construction of
the map 
(r)

0 in Lemma A.3 using [33, Proposition 8.3] and Lemma 6.1 (ii). ��
Acknowledgements Wewould like to thank Davide Gaiotto, Nikita Nekrasov, Andrei Okounkov,Miroslav
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