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Abstract

We investigate the possibilities of global versions of Chang’s Conjecture that involve
singular cardinals. We show some ZFC limitations on such principles and prove relative
to large cardinals that Chang’s Conjecture can consistently hold between all pairs of
limit cardinals below Ro.
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1 Introduction

The Lowenheim—Skolem theorem asserts that for every pair of infinite cardinals k > u
and every structure 2l on « in a countable language, there is a substructure 8 C 2
of size . “Chang’s Conjecture” is a type of principle strengthening this theorem to
assert similar relationships between sequences of cardinals. For example (1, kg) —
(i1, o) says that for every structure 20 on «1 in a countable language, there is a
substructure ‘B of size w1 such that |8 Nkg| = wo. The following basic observation
puts some constraints on this type of principle:

Proposition 1.1 Suppose «, A < 8 and k” > 8. Then there is a structure 2 on 8§ such
that for every B < 2,

B Nk|B™ > BN

B Monroe Eskew
monroe.eskew @univie.ac.at

Yair Hayut

yairhayut@mail.huji.ac.il

Institut fiir Mathematik, Kurt Godel Research Center, Universitdt Wien, Kolingasse 14-16, 1090
Wien, Austria

Department of Mathematics, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40879-021-00459-8&domain=pdf
http://orcid.org/0000-0001-8094-9731
http://orcid.org/0000-0002-3805-7446

436 M. Eskew, Y. Hayut

Corollary 1.2 If («1, ko) — (1, io), v < Ko, and ky > K1, then ,uomin(uo’v) > (L.
From this, we immediately see that under GCH, (kT ) = (uT, w) can only occur
when cf (x) > cf (). (The consistency of contrary cases is unknown.) This inspires
the following bold conjecture:

Definition 1.3 (Global Chang’s Conjecture) We say that the Global Chang’s Conjec-
ture holds if for all infinite cardinals u < « with cf (1) < cf («), (T, k) = (u™, ).

In the paper [6], we showed, assuming the consistency of a huge cardinal, that there
is a model of ZFC 4+ GCH in which («T, «) — (u™, ) holds whenever « is regular
and p < « is infinite. Surprisingly, the full Global Chang’s Conjecture is inconsistent
(even without assuming GCH), as we show in Theorem 2.8. Indeed, there is a tension
between instances of Chang’s Conjecture at successors of singular cardinals and at
double successors of singulars.

Next, we investigate other forms of Global Chang’s Conjecture:

Definition 1.4 (Singular Global Chang’s Conjecture) We say that the Singular Global
Chang’s Conjecture holds if for all infinite &+ < « of the same cofinality, (k™T, k) —

(ut, ).

Obtaining the Singular Global Chang’s Conjecture seems to be hard. We present here
a partial result, showing that there is a model in which the Singular Global Chang’s
Conjecture holds for cardinals below N,0.

The paper is organized as follows. In Sect. 2 we discuss some relationships between
Chang’s Conjecture and PCF-theoretic scales, and derive some ZFC limitations on
the simultaneous occurrence of some instances of Chang’s Conjecture. In Sect. 3,
we introduce the technology for obtaining (Ry41,8y) — (Ngy1, ¥g) for various
choices of « and § of countable cofinality. In Sect. 4 we construct a model in which
(Ra1, Vy) — (Rgp1, Rg) holds for all limit ordinals 0 < 8 < o < w®. In Sect. 5,
we show the consistency of (Rg1, Ry) — (Rg41, 8pg) holding for a fixed B but for o
ranging over a longer interval of limit ordinals. We conclude with some open questions.

2 Limitations on global Chang’s Conjecture

A useful strengthening of Chang’s Conjecture is the following, introduced by
Shelah [21]:

Definition 2.1 We say («1, ko) —», (i1, o) if for all structures 2l on « in a countable
language, there is a substructure B such that |B| = w1, |8 Nko| = ©o, and v < B.

Note that nothing more is asserted by adding the subscript v when v < w;. These
versions of Chang’s Conjecture are robust under mild forcing:

Lemma 2.2 Suppose (k1,ko) —»v (1, o) and P is a v -c.c. partial order. Then
IFp (k15 k0) =0 (115 140)-

@ Springer



Global Chang’s Conjecture and singular cardinals 437

Of particular interest is the case v = pg. The following lemma gives a stepping-up
of the Chang’s Conjecture if the distance between the cardinals considered is not too
great, or enough GCH holds relatively close to the upper end. A proof is contained
in [7, Section 2.2.1].

Lemma 2.3 Suppose (k1, ko) =y (i1, (o).

(1) Ifko = pg"s then (i1, ko) = o (1, R0)-
(2) If A < o and there is k < ko such that kg = k" and k™ < ko, then (k1, ko) —»

(11, mo).

When the hypotheses of the above lemma cannot be applied, some GCH at the lower
end allows a similar conclusion in a special case.

Lemma 2.4 Suppose n=<" =, and (T, k) — (uT, w). Then (k T, k) =, (U™, w).

Proof If k¥ = «, then the conclusion follows from (2) of Lemma 2.3. Otherwise, let
2 be a structure on « T which is isomorphic to a transitive elementary substructure
of (H++, €, <, 1, v), where < is a well-order of H, ++. It is easy to see that the
conclusion of Proposition 1.1 applies to 2 with respect to the cardinals «, v, k™. If
B < 2 witnesses Chang’s Conjecture, then | BNk | PV = BV > Bkt = put
Thus B Nv| = v.

Let § € B N v. Corollary 1.2 implies that k® = k. Let (fy: a0 <k) € B list all
functions from 8 to «. Let B’ = Hull* (B US). If B € k N B/, then there is function
fedknBandy < §suchthat B = f(y). Thus B' Nk = {fu(y):a € BNk
and y < &}, which has size . Now let € = Hull® (B U v). Since B is cofinal in v,
¢=J{Hu*(BUS):8 € BN}, so|CNk|=pu. O

Versions of Chang’s Conjecture involving singular cardinals have a strong influ-
ence on the combinatorics in their neighborhood, even without cardinal arithmetic
assumptions. Recall that if « is singular, a scale for « is a collection of functions
(fa:a <k™) contained in some product ]_[i<cf(K) ki, where (k;:i <cf(x)) is an
increasing and cofinal sequence of regular cardinals below «, such that the functions
f« are increasing and cofinal in the partial order of the product where we put f < g
when [{i: f(i) > g(i)}| < cf(x). It is easy to construct scales under the assumption
2% = kT, but Shelah proved in ZFC that scales exist for all singular cardinals (see [1]).

A scale (fy :a <«T) is good at a when there is a sequence g = (g; :i < cf(@))
and j, < cf (), such that for all j > j,, (g;(j):i <cf(a)) is increasing and g and
(fp: B < a) are interleaved (i.e., cofinal in each other). A scale is bad at o when it is
not good at . A scale is better at « if there is a club C C « such that forall B € C
there is j < cf («) such that f, (i) < fg(i) fori > j and y € C N B. Note that if
cf (o) > cf (k), then being better at  implies being good at «. A scale is simply called
good (or better) if it is good (or better) at every « such that cf (o) > cf (k). The key
connection with Chang’s Conjecture is the following (see [9] or [21]):

Lemma 2.5 Ifk is singular and (k, k) —»ct ) (™, w), then there is no good scale for
k. Moreover, every scale (fy : o0 < k™) for k is bad at stationarily many o of cofinality

ut.

@ Springer



438 M. Eskew, Y. Hayut

We now show that the full Global Chang’s Conjecture is inconsistent with ZFC.

Lemma 2.6 Suppose i is regular, i < k is singular, and (k ¥, k) — (u™, w). Then
carries a better scale. Moreover; if cf (1) = w then DZ holds.

Proof Let us start with a general observation, following [8, Theorem 2.15].

Claim 2.7 Let u < k = cf (k) be cardinals. Let 6 be a regular cardinal above k™.

If H is the transitive collapse of some elementary substructure of Hg of size k™
containing k¥, and M < H is such that (M N«k*| = u* and |M Nk| = p, then
cf (sup(M Nk)) = cf(u).

Proof Fix in such an H a sequence (x4 :a <k™T) of “strongly almost disjoint”
unbounded subsets of «. That is, for every a < « T, there is a sequence (yg B<a) e
H of ordinals below « such that (xg\ yg‘ : B <) is pairwise disjoint. This principle,
due to Shelah, is called ADS, and it holds for « regular (see [4,22]).

Let M < H be as above. Let f: u — M Nk be a bijection. If cf (sup(M N«k)) #
cf (), then for each o < M N k™ there is 8, < w such that f[84] N x, is cofinal in
MNk.Since [MNkt| = puT, thereisasetY € M Nk of size u™ and afixed§ < pu
such that §, = § foralla € Y.Let¢ € M N« ™ be large enough so that |[Y N¢| = u.
Note that (yé :B <¢) € M and thus for every g € M N ¢, yg eMNk.

Forg e YN¢,letyg = f[4] ﬁxﬂ\yé. Then {f‘l[y/g] 1B € Y Na}isacollection
of u-many pairwise disjoint subsets of §, which is impossible. |

Let us return to the proof of the lemma.

By a theorem of Shelah [21], « carries a “partial weak square”, a weak square
sequence that misses only cofinality «. That is, there is a sequence (Cg : o < k™) such
that whenever w < cf («) < «, then Gy is a nonempty collection of size < « such that
each C € @, is a club subset of o of size < «, and if € € C, and 8 € lim C, then
CNpBe (2,3.

Let M < H beas above,_}withé € M apartial weak square at k. Letw: M — N be
the transitive collapse. Let D = 7(C). Since ot (M N kT) = pTand |[M N Cy| < ufor
eacha € M Nk™, Dis asequence (Dy :a < ), such that each Dy, has size < p, if
D € Dy and B € lim D, then DN B € Dg, and Dy, is nonempty whenever « is a limit
ordinal such that cf (7 ~!(«)) # k. If « is such that cf (~Y(«)) = «, then there is
an increasing cofinal map f: k — 7~ (@) in M, which implies that cf (o) = cf (u).
Therefore, D, is nonempty whenever cf («) # cf (). Furthermore, if D € Dy, then
ot(D) < m(k). . .

Next, we modify D to a sequence € with the same properties except that |C| < u
whenever C € €, and o < u™. It is easy to show by induction that for each n < u™¥,
there is a “short square” of length n—a coherent sequence of clubs (E, : @ < 1) such
that | E,| < u foreach @ < 7. Fix such a sequence (E, :a < 7 (k)). Foreacha < u™t,
let &g ={{B € D:ot(DNP) € Ex(p)}: D € Dy}. Clearly each element of each &,
has size < . If C € €, and B € lim C, then there is D € D, such that 8 € lim D and
C={BeD:ot(DNP) € Exp)}. Thus DN B € Dg and ot (D N B) € lim Eq(p),
soCNPeég.

@ Springer



Global Chang’s Conjecture and singular cardinals 439

Note that € is a partial weak square, avoiding only ordinals of cofinality cf (1).
Thus if cf (1) = w, one can easily obtain a weak square sequence by completing the
missing points in &.

Fix a scale for u, (fy:a<u™) C Hi<cf(u) wui. Let us inductively construct a
better scale (gq 1o < ™) as follows. Let go = fo. If & is empty, let g = f, where
y > a and f, eventually dominates gg for each B < «a. If €, is nonempty, first, for

all C € &, define

L { sup{gs(i) +1:8 € C} if w; > |Cl,
gc(i) = .
0 otherwise.
Then let g, = f,, where y > o and f, eventually dominates gg for each 8 < o and
gc foreach C € &,.

Clearly (g : @ < uT) is a scale. To check betterness, if cf () > cf (), let C € &,.
If B €elimC, then CN B € Eg. There is i < cf (u) such that gcng(j) > g, (j) for
i < j <cf(u)andy € C N B. Thus if C’ is the set of limit points of some C € &,
then for all B € C’ there is i < cf (i) such that gs(j) > gy (j) fori < j < cf(p)
and y € C'N B. O

Combining the above with Lemmas 2.4 and 2.5, we have:

Theorem 2.8 Suppose «k is singular, A > k is regular AT A — (kT ), and
cf (k) < u < k. Then (kt, &) Freriey (T ). Thus if w=t®) = p, then (¥, k) 4
(u™, ).

Corollary 2.9 [Ry, R, ] is the maximal initial interval of cardinals on which the Global
Chang’s Conjecture can hold.

The negative direction follows from Theorem 2.8 and the positive direction is proven
in [6, Section 5].

It seems to be unknown whether (¢, k) — (ut, ) is equivalent to (k T, k) —,
(™, w) for regular . However, further analysis of scales allows us to rule out some
instances of Chang’s Conjecture in ZFC, and to show that these two notions are not in
general equivalent for singular 1, even under GCH. The authors are grateful to Chris
Lambie-Hanson for showing us how to prove the following:

Theorem 2.10 Suppose k is a singular cardinal and f = (fy:a<kt) is a scale
for k. There is a club C C «* such that for all regular cardinals v, v such that
cf (k) < pu < pu <v < ut® <k, fisgoodat every a € C of cofinality v.

Proof Suppose cf (k) < < ut3 < v < ut® <« By [1, Theorem 2.21], there is
aclub C,,, C k™ such that for every o € Cy,, of cofinality v, (fg: B <) has an
exact upper bound g such that cf (g(i)) > p for all i. g being an exact upper bound
means that g is an upper bound to (fs: 8 < «), and for every 7 < g, there is B < «
such that 2 < fg.

The arguments for [17, Lemmas 6-8] show that cf (¢(/)) = v on a cobounded set of
i < cf(k), whichimplies f is good at cr. For the reader’s convenience: Let (o : j <v)
be cofinal in «. We cannot have that cf(g(i)) > v for all i in an unbounded set
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X C cf (k). For then there would be an i* < cf(k), an unbounded ¥ C v, and an
h < g such that fo,j (i) < h(i) < g(@i) fori € X\i* and j € Y, contradicting that g
is an exact upper bound. Thus there is some v’ € [u, v] and an unbounded X C cf (k)
such that cf(g(i)) = V' forall i € X. Let (gr:k <V') be a pointwise increasing
sequence such that sup,_,, gx(i) = g(i) for all i € X. Since g is an exact upper
bound, for each k < v/, thereis j < v such that g;[X < Ja; I X. Also, foreach j < v,
there is i* < cf (k) such that fo, (i) < g(i) fori € X\i* and thus some k < V' such
that fo, [ X < gk[X. This implies v'= v.

Finally, we can take the intersection of all the C,, ,, for regular v, u < k™ to get the
desired club C. O

Therefore, if « is singular, (K%, k) e (u', 1) fails whenever cf (k)™ < <
of () T°f®) However, it is possible that the version of Chang’s Conjecture holds
when we drop the subscript “cf («)” on the arrow:

Proposition 2.11 Suppose there is a 3-huge cardinal. Then there are singular cardinals
A < 8 such that cf (8) < A < cf(8)T® and (51, 8) — (AT, A).

Proof Let j: V — M have critical point «, with M7"®) C M. Let § = j2(c)+/®
and let A = j(x)T*. Let 2 be any structure on 8. In M, j[] < j(21), and we have
that |j[A]| = 8T and |j[A] N j ()| = §. Reflecting through j, we have that there is
B < Asuch that |B| = jk) =it and [ BNS| = j(k) T = o

3 Chang'’s Conjecture between successors of various singulars

Recall that a partial order is (k, A)-distributive if forcing with it adds no functions
from « to 1. The following lemma is a mild generalization of a lemma that was proved
in [6].

Lemma3.1 Let y < « be such that k7 is a strong limit cardinal and « is k7 +1-
supercompact, as witnessed by an embedding j: V — M. If U is the ultrafilter on
K derived from j, then there is A € U such that for every o < B in AU {x} and
every iteration PxQ of size < B1Y, such that P is at?*'-Knaster and IFp Q is
(Y +L ot distributive,

Fpye (BT, BT) =gy (@7 Fa7).

Proof We show that for a set A € U, for every « € A and every iteration PxQ
satisfying the hypothesis for g = « forces (k 7+ k) =4y (@7 +! a?7). Then
standard reflection arguments yield the desired conclusion. By Lemma 2.3, it suffices
to prove that for all @ € A, every such PxQ forces (k77 +1, k¥7) =, (@7 T, at7),
since by the assumptions that « 77 is a strong limit and |IP* Ql < k17, it is forced that
forsome A € [k, kT7), A¥ < k7, so we may increase the subscript to a7 If the claim
fails, then on a set B € U, for every o € B, there is an iteration P, *Qa and a name
for a function fy: (kT7T1)<® — k*7 such that it is forced that for every X C x+7+!
of size at7*! with y C X, the closure of X under f, contains «*”*!-many ordinals
below « 7. We may assume that f,, is forced to be closed under compositions.
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Global Chang’s Conjecture and singular cardinals 441

In M, let PxQ = j((Pe*Qq:a <k))(k) and let f = j((fo:a < k))(k). Let
X = j[xT*1]. Note that X is a subset of j(kt¥*1) containing y and of size Kk t7F1,
By hypothesis, “‘ﬁ@ | FIX<?]| =kt *1. Since j(k17) is singular, it is forced that

there is a sequence (by i <k ¥y C X such that (f(by):a <«?*1) is a strictly
increasing sequence of ordinals below j(k*%), for some &€ < y. Let v < y and
(po, 4o) € PxQ be such that [P+Q| < j(« 1) and (po, §o) IF f(be) < j(kT) for
alla < kTr+L,

Since@adds no subsets to X, there is a P-name ¥ and a condition ( Pt q1) < (po, go)
such that (p1, §1) IF (by 1o <k T¥T1) = Y. Next, for each @ < k171!, find ry < p1
and ag € (k771 <® such that ry IFp j(dy) = Y(e). Since P is « T7!-Knaster,
there is Z C « 77! of size k7! such that r, and rg are compatible for o, p € Z.
Therefore, for @ < fin Z, there is r € P such that (r, ¢1) I £ (j(da)) < f(j(dp)) <
JOet).

Reflecting these statements to \_/, we have that fora < S in Z, t‘herG arey <« and
(p,§) € P, *Q, such that [P, *Q, | < «*" and (p, §) ngV*Qy fy(e) < fy(ag) <

« V. This defines a coloring of [k +?*1]? in k"-many colors. Since x 7 is a strong
limit, the Erd6s—Rado Theorem implies that there is a set H C Z of size vl
such that all pairs in [H]?> get the same color. Thus we have a fixed 1 and a fixed
(p,q4) € Py Q, such that (p, §) IF fy(ay) < fylag) < k™ fora < fin H. This
is a contradiction. 0

Corollary 3.2 [f there is a (+w + 1)-supercompact cardinal, then there is a forcing
extension in which (Rgy1,Ry) — (Rgy1, V) holds for all limit ordinals 0 < B <

a<a)2.

Proof Let k be k+®*!_supercompact, and let A C « be given by Lemma 3.1. Let
(o 11 < w) enumerate the first w elements of A. Let

P = Col(w, g ®) x H Col ("% ayy1).

n<w

Clearly, P forces that a,j @ = RK,., for all n. For a fixed n, we can factor P as
Qo x Col(a;” o2 0,11) x Q. ByLemma 3.1, the product of the first two factors forces
(oe;’ff’ ! a:[j’l) g (a;f**1 af®). Since Q) remains a:j’ﬁ 2_distributive after this,
the instance of Chang’s Conjecture is preserved. Since Chang’s Conjecture is transi-
tive, i.e., (k1, ko) — (i1, o) and (u1, o) — (v1, vo) implies (k1, ko) — (v1, vo),
the conclusion follows. O

The limitation of our argument so far is that we only get Chang’s Conjecture between
successors of singulars for which there are tail-end sequences of cardinals below that
are order-isomorphic. We will overcome this with a forcing that collapses singular
cardinals onto others of different types while preserving their successors and the
desired instances of Chang’s Conjecture.

Theorem 3.3 Assume GCH. Suppose a« < B are countable limit ordinals and «
is k PPt supercompact. Then there is a forcing extension in which (Rpy1,Rg) —
(NotJr] s Ra).
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The proof breaks into cases depending on the “tail types” of « and S. For ordinals
o > B, let o — B be the unique y such that « = B + y. For an ordinal «, let t(x)
(the tail of o) be ming .o (o — B). Let t(«) be the least 8 such thatx = B + 7(cr). An
ordinal « is indecomposable iff « = t(«), and all tails are indecomposable.

Case 1: () = t(B) = y, or @ = 0. Note that ¢«(8) > «, and let § = ¢(B) — «. Let
A C k be given by Lemma 3.1 (with respect to y). Let { < n be in A, and force with
Col(¢t7*3%2 ), so that the ordertype of the set of cardinals between ¢ 17 and n*7
becomes § 4+ y. By Lemma 3.1, we have (n 771, n17) ety (¢t ety Ifa = 0,
force with Col(w, ¢77), and if « > 0, force with Col(Ry(@)+1, ¢). In both cases,
Chang’s Conjecture is preserved, and we get [ 77| = R, and n17 = Ry 454, = Rp.

For the other cases, we will use a variation on the Gitik—Sharon forcing [12],
which singularlizes a large cardinal while collapsing a singular cardinal above it. The
following definition is standard (see [11]).

Definition 3.4 A structure (P, <, < *) is a Prikry-type forcing when < and < * are
partial orders of IP (called extension and direct extension respectively), with p < *q =
p < ¢, and such that whenever o is a statement in the forcing language of (P, < ) and
p € P, then there is ¢ < *p deciding o. Such a forcing is called weakly «-closed for
a cardinal « if (P, < ™) is k-closed.

It is easy to see that if P is of Prikry type and weakly x-closed, then it is («, «)-
distributive.

Suppose y < § are limit ordinals of countable cofinality,and y = (y;:1 < i <),
5= (i : 1 < i <w) are sequences such that:
(1) y is strictly increasing with sup; ¥; = y.
2) §is nondecreasing with y < §; and Zi 8 =6.
Suppose k > § is k7-supercompact for each n > 1, and u < « is regular. For
1<n < w,let U, be a k-complete normal measure on P, (x "), and let j,: V —
M, = Ult(V, Uy) be the ultrapower embedding. By the closure of the ultrapowers
and GCH, we may choose an M,,-generic K, < Col (kT2 (k)M Let U =
(Up:n<w)and K = (K, :n < w). o

With these choices made, we may define the forcing P(u, y, 5 , U, K), which will
have the following properties:

e The forcing is of Prikry type, weakly u-closed, and « ™7 -centered (and thus has
the k t7lc.c.).

e « is forced to become p .

e (k7)Y is collapsed to «.

Conditions in P(u, 7, 5 , U , K ) are sequences

(an-x]a fls ey Xy fnan+la Fn+27 "')7

where:

(1) For1 <i<n,x; € Pc(k), and k; := x; N « is inaccessible.
(2) For1 <i <n,x;j € xjy1,and k41 > |xi].
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Global Chang’s Conjecture and singular cardinals 443

(3) fo € Col(u, k), and ran( fy) C « if x; is defined.

4) For1 <i <n, f; € Col(;™ ™ kiy1).

(5) f, € Col(ky 22 k).

(6) Fori > n,dom F; € U;.

(7) Fori > nand x € dom F;, x D x, and k, := x N« is an inaccessible cardinal
greater than |x,| + sup(ran(f;)).

(8) Fori > nand x € dom F;, F;(x) € Col(ky 2 «).

(9) Fori > n, [F;ly, € K;.

Suppose p = (fo, ... Xn, fus Fasts...) and g = (f5, ..., %, fi F,;H,...).We
say g < p when:

(1) m>n

() f/ 2 fifori <n,and x; = x] for I <i <n.

(3) Forn <i <m, x; € dom F; and f/ 2 F;(x)).

(4) Fori > m,dom F/ C dom F;, and F/(x) 2 F;(x) for x € dom F/.

For p as above, let stem(p) = (fo, ..., Xn, fn), and say the length of p is n. (The
stem of a length-0 condition is of the form ( fp).)

Lemma 3.5 Suppose u, y, 5, U K are as above, and p = (fo, x1, ..., Xn, fu)" Fis
a condition of length n > 0. Then P(u, y, 5, U K) [ p is canonically isomorphic to

Col(p, k1) | fox -+ xCol(ie 12 )
| fao1 X POt *’a U, K| (f) " F,

where for each sequence s € {7, 5, Ij, 12, 1?}, s’ is the sequence such that s'(m) =
s(n+m) form > 1

We say ¢ < *p when ¢g < p and they have the same length. If ¢ < p and stem(p) is
an initial segment of stem(q), we say g is an end-extension of p, or g < p. Given
a sequence F = (F;:1<i < w) such that (@)™ F is a condition of length 0, and
another condition p = stem(p) " (H; :n <i < w), define

p A F = stem(p) " ({(x, F;(x) U H;(x)) : x € dom F; N dom H;

and Fj(x) U H;(x) is a function} : n < i < o).

Note that p A F is both < and < *p, but p/\ﬁ is not necessarily < (@)AI?. For a
given stem s and sequence F as above, we define sAF = pAF, where p is the
weakest condition with stems.

It is easy to see that P(u, ¥, 8, U, K) is k7 -centered, and a density argument
shows that it forces all cardinals in [«, «T7] to have countable cofinality. The fact
that not more damage is done than intended is a consequence of the Prikry Property,
which follows from a more basic combinatorial property. If P is a partial order and
c: P — {0, 1,2}, we say c is a decisive coloring if whenever c(p) > 0 and g < p,
then c(g) = c(p).
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Lemma 3.6 Let ¢ be a decisive coloring of P(u, 7, g, 17, 12).

(1) There is a sequence F such that for every condition p, every twor,r' < p A F of
the same length have the same color.

(2) For every condition p, there is q < *p such that every two r,r'< q of the same
length have the same color.

Proof LetP = P(u, y, 8, U, K). For (1), we prove the following claim by inductiorl:
For all n < o and all decisive colorings of the conditions of length n, there is F
such that for all m < n and every condition p of length m, every two r,r’ < pAF
of length n have the same color. Suppose n = 0 and ¢ is such a coloring. For every
s € Col(u, k), choose if possible some F; such that c({s)™ Fy) > 0. Using the closurs*,
of the higher collapses and diagonal intersections, we may select a single sequence F
such that (s) A F < (s)’\l?s for all s. By decisiveness, F witnesses the claim forn = 0.

Suppose the claim is true for n — 1. Let ¢ be any decisive coloring of the conditions
of length n. Using the closure of Col (x T+, ju, (,))Mn  the genericity of K, and the
decisiveness of jy, (¢), we can find a function f* € K, such that for every stem s of
length n — 1, if there are some g and F such that g2 f*and s (ju, k], g)"
has color > 0, then s~ (jiy, [« 7], f* )AF already has this color. If F}, represents f *
then for all stems s of length n — 1, there is A; € Uy, and a color ¢; < 3 such that for
all x € Ay, either there is F** = = (F;" :n+1 <k < w)suchthat s~ (x, F,(x))" Fsx
has color ¢; > 0, or for all x € Aj and all g O F,(x), any p of length n with stem
s (x, g) has color 0. Let A be the diagonal intersection of the sets A. Using the
directed-closure of the filters K and diagonal intersections, we may select a single
sequence F that plays the role of FS* for all s and x. Putting F'= (FulA)™ F,we
have that for any condition p of length n — 1, all ¢ < p A F’ of length n have the
same color. This defines a decisive coloring ¢’ of the conditions of length n — 1 of
the form p A F ", by coloring them whatever color an arbitrary length-n end-extension
receives. By induction, there is F" such that for every m < n — 1, for every condition
p oflengthm, every g < p A F" of length n — 1 receives the same color under ¢’. This
means that every such p A F” receives the same color under ¢ when end-extended to
a condition of length n.

To finish the argument for (1), let ¢ be a decisive coloring of IP. We have for each
n a sequence Ij“,, such that the restriction of ¢ to conditions of length n satisfies the
inductive claim. Using the countable closure of the filters K,,, we can find the desired
F by taking a lower bound to all the conditions of the form (&)™ F,.

For (2), let F be given by (1) and let p € P. If there is s < stem(p) such that
some end-extension of s A F has color > 0, then pick such an s which achieves such
a color c* by end-extending to length n, where n is as small as possible. Then every
r,r'< s~ F have color 0 if their length is < n, and color ¢* otherwise. O

Corollary 3.7 (P(u, y 8, U, K) , < *) is a Prikry-type forcing.

Proof 1f o is a sentence in the forcing language of P(u, 7, 8, U , K ), then we color
a condition O if it does not decide o, 1 if it forces o, and 2 if it forces — o . This is
decisive, so for every p, there is ¢ < *p such that all extensions of g of the same
length have the same color. If ¢ does not decide o, then there are r, r' < g of the same
length forcing opposite decisions about o, contradicting the property of g. O
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Case 2 (of Theorem 3.3): t(«) > t(B8) = y. Again, we have () > «, so let £ =
() —a.Let A C k be given by Lemma 3.1 (with respect to ). Find v < pin A
such that v is vT¥+!_supercompact. Let G € Col (vt? 4§12 1) be generic over V. In
VIG], (ut+ utr)y =4 7L vHY) holds, and v s still v T1-supercompact.
Let y = (y;: 1 <i <) be an increasing sequence converging to y. Since t(«) > ¥,
we may find a nondecreasing sequence @ = (;:1 <i < w) such that y < @] and
Y =a.

Since v is 7T supercompact we can construct U and K as above according
to the sequences y, a. Let H C P(w, y, @, U, K ) be generic over V[G]. Since this
forcing is vT¥*!-c.c., Chang’s Conjecture is preserved. In the extension, v = R,
(v+y+l)V[G] — (v+)V[G][H]’ and v = wttty = Np.

The third case requires a more detailed analysis of the Gitik—Sharon forcing.
Suppose P(u, 7, 5.U, K ) is built as above, around a sufficiently supercompact «.
Associated to a generic filter G are sequences (x,, : | <n < w), and (C, : n < w) deter-
mined by the stems of all conditions in G, where Cj is generic for Col (i, k1), and for

> 1, C, is generic for Col(/cJ”S"+2 kn+1) and x, € Py (K+V”) From this sequence,
we can recover G by taking all conditions { fy, x1, f1, ..., Xn, fn, Fn+t1, - -.) suchthat:
(1) (x;:1<i < n)isaninitial segment of (x;: 1 <i < w).

(2) Fori < n, f; € C;.
(3) Fori > n, x; € dom F;, and F;(x;) € C;.

The collection of such conditions is a filter containing G, so it must equal G by the
maximality of generic filters.

Lemma 3.8 Let V be a model of set theory, and let (IP;, ki, G; :i < n) be such that:

(1) (ki :i < n) is an increasing sequence of regular cardinals in V.
(2) Foreachi, P; is apartial order in 'V that is (k;, k;)-distributive and of size < Kkj1.
(3) Foreachi, G; is P;-generic over V.

Then [],_, Giis [];., Pi-generic over V.

Proof We show this by induction on m < n. Suppose that [[;_,, Gi is [];_,, P

generic over V. Since Py, is (ky,, K, )-distributive, forcing with it adds no antlchalns
to [[;_, Pi- Thus [],_,, Gi is [];_,, Pi-generic over V[Gy,], and so []; ., Gi is
[1; <, Pi-generic over V. o

Lemma3.9 (X, 6‘) generates a generic for P(u, 7, s, 17 12) over V iff the following
hold:

(1) Forevery sequence F = (Fp 11 < n < w) suchthat (@)A}? is a condition of length
0, there is m such that for all n > m, x, € dom F, and F, (x,) € C,,.

(2) Cy is generic for Col(u, k1), and Cy is generic for Col (K,TS”H, Kn+1) for all
n > 0.

Proof The forward dlrectlon is clear. For the reverse direction, let D € V be a dense
open subset of P = P(u, ¥, 5 U K ), and let G be the filter generated by (¥, C) Let
c: P — 2bedefined by c(p) =0if p ¢ D and c(p) = 1 otherwise. This is decisive,
so let F' be given by Lemma 3.6. Let m be given by (1).
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Consider the condition p = (&, x1, J, ..., xu_1, D) (F:m<i < w).Let D'=
{qg € D:q < p}. D’ projects to a dense subset of Col(u, k1) x Col(KJ”Sl+2 K2) X

- x Col (K+8’” 1+2 , km). By (2) and Lemma 3.8, there is a sequence ( f; : i < m) thatis
in the projection of D/ intersected with Cy x - - - x Cp,—1. Thus there is some condition
of the form

(f01 xl? fls e ’xm—19 fm—l» yn’h fms T ynv fnv I‘/l-'rl’ . '>
that is in D’. But by the homogeneity property of F, we also have that

(XOv fO» ey Xm—1, fm—lyxm’ Fon(Xm), ... xn, Fp(xp), Fn—&-l’ . ) e D.
Therefore, D N G # @. O

Case 3 (of Theorem 3.3): 0 < t(e) = ¥y < t(B). Let § = B — t(«). We can find

a nondecreasing sequence § = (6; : 1 <i <w) such that §; > y and Zi §; = 4. Let
y = (y; : 1 <i < w)beanincreasing sequence converging to y. Let j be an embedding
witnessing that « is x 7% +!-supercompact, and let A C « be given by Lemma 3.1 (with
respect to y). For each n > 1, let U, be a k-complete normal measure on P, (x ")
derived from j, so that A is in the prOJectlon of each U, to k. Let = R,(4)41, and
let us force with P = P(u, ¥, 6 U, K ) for where Kisa sequence of filters as in the
construction.

Let po be a condition of length O forcing every Prikry point to be in A. Let p; < po

be a condition of length 1 deciding the statement o := “(kt, k) — (¥ utv).”
We claim p; I+ o.

Let us define an iteration of ultrapowers. Let Ny = V. Given a commut-
ing system of elementary embeddings jy @ N — Ny for 1 <m <m’<n, let

Jnn+1: Np — Ult(Ny, j1.,(Un+1)) = Ny be the ultrapower embeddmg, and let
Jmon+1 = Jant10jmp forl<m < n.Forl<n < w,let j,,: Ny — N, be the
direct limit embedding. N,, is well-founded, and thus can be identified with a transitive
class, because of the following generalization of a well-known theorem of Gaifman
(see [25]).

Fact3.10 If € is a set of countably complete ultrafilters, and jo.g: No — Ng, o <
B <0, is a system of elementary embeddings defined by taking at each o < 6 the
ultrapower map jya+1: No — Ult(Ny, U) = Ny41 for some U € joo(E), and
taking direct limits at limit stages, then each Ny is well-founded.

Let stem (p1) = (fo, x1, f1) and Co x C1 € Col (i, k1) x Col (i 2, i) be a filter
that contains ( fo, f1) and is genericover V. Forn > 1,let y, = ju—1.nlj1,n—1 (7],
and let x, = jn,w(yn), and let C, = jl,n—l(Kn)-

Claim3.11 (x,:1 <n <w) and (C, :n < w) together generate a generic filter for
J1.o(P) over N,

Proof We need to verify the two conditions of Lemma 3.9. For (1), suppose F =
(Fy:1 < n<w)issuchthat ()" F € ji,,(P) is a condition of length 0. Let m < w
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be such that F = jm,w(lj"/) for some F’. For n > m, we have dom Jman(Fyy ) €
jl,n(Un+1)’ and N, = [jm,n(F,;+1)]j1,n(U,,+1) € jl,n(Kn+1)~ Thus forn > m, y,4+1 €
dom jy n1(F, ) and fui1 = jmn+1(F,,)(Ynt1) € Cyy1. Note that f,11 is an
object of rank < jj ,+1(k) = crit(jy+1,0). Thus for n > m, x, € dom F, and
Jn = Fu(x,) € Cy.

To verify (2), note that for each n > 1, Ny—1 | j1.,—1(Kp) is generic for
Col (1 n—1(kT%+2), ji (k) over N,. It is also generic over the submodel N,,. Note
also foreachn > 1, k, '= x, N j1,0 (k) = j1.n—1(K). O

Let G be the generated filter for jj ,(P). Note that j; ,(p1) € G. We claim that
Nyl[G] is closed under k-sequences from V[Co x C1]. Since Co x C is generic for
a forcing of size «, it suffices to show that Ny[(x, :2 < n <w)] is closed under «-
sequences from V, an idea due to Bukovsky [3] and independently to Dehornoy [5].
This follows from the fact that every element of N,, is of the form ji o, (f)(x2, ..., x,)
for some f € V and some n < w. Let (fy :a < k) be a sequence of functions in V,
such that for each «, there is ny such that dom f, = P (kT72) x -+ - x P (kTVe),
Then (j1,0(fa)(x2, ..., Xp,) @ <k) can be computed from ji ,({fy @ <k)) and
(Xp:2<n < w).

For all @ < jj (k), there are n < w and B < ji (k) such that o = j, »(B),
and o = f since crit(j,,») = j1,n(k). By GCH and the nature of the measures, for
2<n < w, k™ < jia(k) < kT, Therefore, ji (k) = k7. Furthermore, an easy
counting argument shows that ji ,,(k 77 1) =k Tr+L

By Lemma 3.1, V[Cox C1] = (k7 k7)) = (ut7+ ut7). Let A € N,[G]
be an algebra on k 7+ = (j , (k) T)NelGl In V[Cy x C1], there is B < 2 of size
wt?+ such that B NkY| = ut”. By the closure of N,[G], B € N,[G]. This
shows that N, [G] satisfies the desired instance of Chang’s Conjecture, and thus by
elementarity that p; forces (k+, k) — (w71 7). This completes the proof of
Theorem 3.3.

Corollary 3.12 Suppose P = P(u, y, 8, U, K) is as above. Then there is a condition
p € P of length O that forces

(MHH, MH) . (M+Z’f Sity+l M+Z’1’ 6,-+y)

(e S ST ) L 7 o)

forl<m <n < w.

+

Proof Note that it is forced that u 7 = Ky Y and for each n > 1, K+8"+y =V =

n - "n4+l1 T
wt Y54y Let p be a condition of length 0 that forces all Prikry points to be in the
set A given by Lemma 3.1. Fix 1 <m < n < w, andletg < p be a condition of length

n. By Lemma 3.5, P [ ¢ is isomorphic to a restriction of
Col(u, k1) X -+ X Col(/c:_a'{’]H, Kn) X P(K:5”+2, v, 8, U K'),

where s’ denotes the shift of a sequence s by n. By Lemma 3.1, this product forces

(K;ry+1 k") —» (K;V+], V) = (w7 TL 7). The last two terms of the product
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) . . Sn142 =y 2y Py o ..
are isomorphic to a restriction of }P’(K;ll 1+ y”. 8", U", K") to a condition of length

1, where s denotes the shift of the original sequence s by n — 1. By the argument for

+Y0 84+ A3 1
Zn i ) Kn Zn ')_»(K.;l"'y"' +V)'

Case 3 of Theorem 3.3, this forces (/cn , Kn O

Our methods are not limited to getting (Rg41,8g) — (Rgy1, Ny) where o and g
are countable. For example, if we opt not to interleave collapses in the Gitik—Sharon
forcing, we obtain:

Porism 3.13 Let o > w be a countable limit ordinal, and let k be a K+°‘+1-super-
compact cardinal. Then there is a generic extension in which (A7, 1) — (Rga1, Re),
and another in which (Wt ATy — (A1, 1), where in both cases cf (L) = w and
N, = A

4 Singular global Chang’s Conjecture below 8 .

In this section we will prove the following theorem:

Theorem 4.1 If there is a model of ZFC with a cardinal § which is §T+!-
supercompact and Woodin for supercompactness, then there is a model in which
Ryq1, Re) = Ry, Rp) holds for all limit B < a < w® (including B = 0).

This theorem is an attempt to strengthen Corollary 3.2, into a global result. Unfortu-
nately, we do not know how to obtain the desired global result, or even the more natural
one in which Chang’s Conjecture holds between (Ry 11, 8y) and (Rg41, Rg) for all
B < «a countable limit ordinals. We believe that this is a limitation of our method and
not an actual ZFC-barrier.

Before diving into the technical details, let us sketch the main ideas behind the
forcing construction: After a suitable preparation, we obtain a model in which many
instances of Chang’s Conjecture occur between pairs of cardinals of the form « ¢ and
its successor and T and its successor. In this model we also have many supercompact
cardinals, and this is the reason that we start with a stronger large cardinal hypothesis.

In order to obtain more instances of Chang’s Conjecture, we need to apply the
“tail changing” forcing, which is a Prikry-type forcing resembling the Gitik—Sharon
forcing [12]. Since we would like to do that simultaneously for more than a single pair
of cardinals, we define a Magidor- or Radin-like variant of the Gitik—Sharon forcing.
Unfortunately, the diagonal nature of the forcing does not allow us to use a Mitchell-
increasing sequence of measures, and we are forced to let the domain of measures
increase (a similar issue was encountered in [2]). This limits the result of the theorem.

Definition 4.2 A cardinal § is called Woodin for supercompactness when for every
A C 4, there is k < § such that for all A € [«, §), there is a normal x-complete
ultrafilter U on P, (1) such that jy(A) NA = ANA.

Like Woodin cardinals, Woodin for supercompactness cardinals need not be even
weakly compact, but they have higher consistency strength than supercompact car-
dinals. Every almost-huge cardinal is Woodin for supercompactness. Woodin for
supercompact cardinals are the same as Vopénka cardinals (see [19]).
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Lemma 4.3 Suppose GCH and § is § 7 -supercompact and Woodin for supercom-
pactness. Then there is a model of ZFC in which GCH holds, there is a supercompact
cardinal, and for all o < B,

(,B+w+l, ﬂ-‘r&)) s (a-‘rw-‘rl’ a+w).

Furthermore, any such instance of Chang’s Conjecture is preserved by forcing over
this model with a (et otV distributive forcing of size < p+.

Proof Let A C § be given by Lemma 3.1. Let («; :i < d) enumerate the closure of A.
Force with the following Easton support iteration (P;, Q; :i < 6, j <§):

(1) Qo = Col(w, af®) * Col (o *? ay).
() Ifi > 0and a; € A, IF; Qi = Col (&, ;i 11).
(3) Ifi > 0and o; ¢ A, I-; Q; = Col(er]", ai1).

It is easy to see that this iteration forces that for all infinite ¢ < §,
(@) = (gt)Y

for some B € A. By standard arguments, § remains inaccessible in V5.
Suppose thatin V%, o < a7 < B < 8, and leti < j be such that

(a+w)vPa _ (a;““’)v and (ﬁ+w)VP5 _ (oz;”“’)v.

Then Ps factors as P; %P /P; % Ps /P;, where |P;| < o, P; /P; is forced to be o, -
closed and of size < aj, and Ps/IP; is forced to be oe;“‘”ﬂ—closed.

w+1 a{U‘H

Suppose Q is an (a;”", o”"")-distributive forcing of size < a;”" in V. Then
Q e VPi. Since P; forces that P;/P; %Q is (ozi'H“H, a;““’“)—distributive, Lemma 3.1
implies that IP; % Q forces (ot;""H, ozjf““) — (ot a;““’). This is preserved by Ps /IP;,

i
which remains (a*‘”“, 00)-distributive after forcing with Q.

Finally, we need to find a supercompact. In V, let ¥ < & be given by Woodin for
supercompactness with respectto A. Let A > « be an inaccessible limit point of A. Let
U be a normal «-complete ultrafilter on P, (1) such that ji;(A) NA = ANA. We have
that jy (P,) = P, %Py /P, % Q, for some Q that is forced to be AT -closed. Let G5 C Ps
be generic, and let Gy, = G| Py. By GCH, jy(x) < AT and jy(A™F) = AT, so
we may build H € Q in V[G,] that is generic over M[G,]. Thus we can extend
the embedding to j: V[G,] — M[G, * H]. Since M[G; x H] is A-closed in V[G},]
and P, /G, is k-directed-closed, there is p € jy(Py)/(Grx H) below j[G,/G,].
Since |P;| = A and jy(AT) < ATT, we can build K € jy(P;)/(Gy* H) below
p in V[G,] that is generic over M[G, x H]. Thus we can extend the embedding
to j: V[G,] — MI[G,*H*K]. This shows that x is A-supercompact in V[G,],
a property that is preserved by Ps/G,. Thus, Vs[Gs] = “There is a supercompact
cardinal.” O
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Let us work in a model satisfying the conclusion of the above lemma. We define
by induction on 1 < n < w the class of “order-n Gitik—Sharon forcings” (abbreviated
by GS,)). Formally, we fix a large enough regular 6 and define these inductively as
subsets of Hpy, but it will be clear that choice of 6 is irrelevant, and for 6 < 6/,
GSHr — GS,? %N Hy. Each order-n forcing will add a club of ordertype " to a
large cardinal «, consisting of former inaccessibles, while preserving « as a cardinal,
collapsing k7@ to «, and preserving larger cardinals. .

GS; is the collection of forcings of the form P(u, @, w? U , K ), as defined in the

previous section, where @ is the identity sequence (1, 2, 3, .. .), and w? is the constant
sequence (w, w, , .. .).

Definition 4.4 A sequence d = (Uy, Ky : @ <w-n) is a GS,-sequence if

(1) Thereisak > w such thateach Uy, is a k-complete ultrafilter. We call « the critical
point of the sequence d.

(2) For 1 <n < w, U, is a normal ultrafilter on P, (x™) and for o <o < w-n
successor, Uy, is a normal ultrafilter on Py (H,+«).

(3) For successor ¢ < w-n, if j,: V — M, is the ultrapower embedding from U,,
then K, is Col (k T2 +2 j, (k))Me-generic over M, .

A partial order P € GS,, will be determined by the choice of a GS,-sequence d
and a regular cardinal ;v < crit(d). Suppose n > 1 and that we have defined GS,, for
m < n,and we have a function defined on pairs (i, d) € Hp that outputs a partial order
P(u, d) € GS,, whenever d is a sequence of length w-m as above and u < crit(d) is
regular.

Letd = (U,, Ky : @ <w-n) be as above and let u < crit(d) be regular. Conditions
in P(u, d) € GS,, take the form

p=(fo.e1, (x1,a1), fi,e2, (x2,42), fo. ..., e1, (51, ap), fi, ﬁ)

The stem of p is the initial segment obtained by removing F.The length of p as above
is /. We require:

(1) For1 <i<!:

(@) |xi| <&, x; < He+om-n+i, ki == x; Nk is inaccessible, the transitive collapse
of x; is Hﬁm,(n_uﬂ, and (Uy, Ky :a<w-(n— 1)) € x;.

(b) Let m: x,-' — H be the transitive collapse map. Put m((Uy, Ky 10t <@
(= 1)) = @,k :a<w-(n — 1)) = d;. We require that d; is a
GS,,—1-sequence, a; is a sequence of functions (b(’;[ a <w-(n— 1)) such that
dom(b},) € uly and [b}],i € k.

(2) fo € Col(u, k), and if I > 0, then (fo) ei a; € P(u, d;), where fy e is the
stem of the condition.

(3) Forl <i <I,xi € xit1,and {fi) ei+1 ai+1 € Pk
is the stem.

@) fi € Col(k;""*2, k).

®)) Fisa sequence of functions (F, : @ < w-n) such that for each «, dom F, € Uy,
and [Fy ]y, € Kq.

+w-n+2 —
; ,di+1), where fiejy)
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Suppose we have two conditions

p={fo.er. x1,a1), f1.....e., (@), fi, F);
q = (fg. €l, 1, @), flo oo € (o @), fs F).

We put g < p when:

(1) m>1,and for 1 <i </, x; = x.

(2) Fori <, f/ 2 fi.

(3) For 1 <i<l, (f/_y) e a, <(fi—1) e a; in the relevant partial order from
GSp_i.

(4) Forl <i <m,x] €dom Fy.(u_1)4; and f/ D Fo.(n—1)4i (x;).

(&) F [w-(n—1) exifx :xlf forl <i<m,orifx e dome(n 1)tk for k > m.

(6) Put fy = Fo.u—ny4k(xp) forl < k <m.Ifl <i<mandm:x; — H is the
transitive collapse map, then (f/_,)"e/"a; < (fl-,l)’\n(l? lw-(n—1)).

(7) Foreacha < w-n,dom F, € dom F, and foreachx € dom F},, F/,(x) D Fy(x).

Finally, we may define the order-w forcings which generically stack the order-n forc-
ings for finite n. Everythlng looks quite similar, except now our sequences of functions
F have length w? and stems of length n > 0 look like stems of length-1 conditions
from forcings in GS,,11.

Remark 4.5 Unlike the standard supercompact Radin forcing (such as in [14]), the
generic Radin point x,, for limit « is strictly larger than | J p<q Xp- This discontinuity
plays an important role in the proof of the Prikry Property.

We define some notions to describe the conditions in our forcings. A type-1 sequence
is a natural number. For n > 1, a type-n sequence is a finite sequence of type-(n — 1)
sequences. We can define inductively a partial order on these sequences. For a type-1
sequence, this is just the usual linear order. If s = (r1,...,#) and s" = (1], ...,1,,)
are of type-n, then we say s'> s whenm > [ and t/ > 1; for 1 <i < m. Itis easy to see
by induction that this ordering is upward-directed.

If p € P € GSy, then by the shape of p we mean its length. If s = (¢, ..., ) isa
type-n sequence, and

p={fo.er. i an, fi,....e.. (@), fi. F) € P e GS,,

then we say, inductively, that the stem of p has shape s if each ( f;_1) " e; " a; has shape
t;. If s = (t1, ..., 17) is such that each ¢; is a type-i sequence, and p € P € GS,, takes
the same form as above, then we say p has shape s if each (f;_1) " e;”a; has shape
t;. Note that if ¢ < p, then the shape of ¢ is greater or equal to the shape of p in the
ordering on sequences. Since the shape of a condition only depends on its stem, we
will also speak of the shapes of stems and their subsequences.

Suppose P € GS,, for n < w. For conditions p,q € P, we say p <*q if p<q
and they have the same shape. If p < g and stem(p) is an initial segment of stem(g),
then we say p < g. We have an operation p A F defined similarly as before, in the
discussion preceding Lemma 3.6.
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Lemma 4.6 Suppose P(u,d) € GS,,, u > w, and c: P — 3 is a decisive coloring.

(1) There is a sequence F such that for every condition p, every twor,r' < pA F of
the same shape have the same color.

(2) For every condition p, there is q < *p such that every two r,r'< q of the same
shape have the same color.

Proof The case n = 1 was proven in Lemma 3.6. Assume n > 1 and the lemma holds
for GS,,;,, m < n. Let P(u, d) € GS,,, with crit(d) = x and w < u < k. Like before,
we prove (1) by showing the following claim by induction: For all [ < w and all
decisive colorings of the conditions of length /, there is fl such that for all m </ and
every condition p of length m, every twor, r’ < p A F of the same shape and of length
[ have the same color. This suffices, since we can find F' that is a lower bound to the
countably many . Suppose / = 0 and ¢ is such a coloring. For every s € Col(u, k),
choose if possible some F such that c¢({(s)™ F ) > 0. Using the directed closure of
the collapses and diagonal intersections, we may select a single sequence F such that
(s)AF < (s)"F, for all s.

Suppose the claim is true for m < [. Let ¢ be a decisive coloring of the conditions
of length /. For each stem s = (f,..., (x]_;,a]_)), f;_,) of length [ — 1, and each
candidate (x, a) for the last node in a one-step extension containing s, we can define
a coloring ¢y, on conditions of the form (f ;)" e"a € P(Ker n+2 ,dy) as follows.
First, as in the proof of Lemma 3.6, we find a sequence F = (Fy a0 <w-n) such
that for each stem s, each x € dom F,.(,—1)4/, and each choice of e and a such that
there are f and H such that s (e, (x,a), f )AITI is a condition below s~ F with color
> 0, then already s~ (e, (x, a), Fo.(n—1)+(x)) " F has this color. We can then define
csx((fi ) ema) =c(s™ (e, (x,a), Fw.(n_l)H(x))“I?").Bytheinduction hypothesis
on the order of Gitik—Sharon forcing, for each such s, x, there is a choice of a; x
such that ¢, (( fls—l Y e as ) depends only on the shape of e, for conditions below
( fl‘i 1) as x. For each x, we can use diagonal intersections to select a sequence a,
such that for all s, (f% ) Aax < (f ) asx.

In the ultrapower by U = U,,. o-(n=1)+> the function x +— a, represents a sequence
of functions G strengthening F [w-(n — 1) = T[(j[j(F [w-(n — 1))), where
is the transitive collapse of jy[H, +o-m-1n+1]. Let F' be F with the intial segment
below w-(n — 1) replaced by G. Thus we have for each stem s of length I — 1,
aset Ay € Ugy.(n—1)41 such that for all x € A, ay = 7 (F'Jw-(n — 1)), and
the color of s~ (e, (x, ay), F’ w-(n— l)Jrl()c)) F’ depends only on the shape of e, if
(i) "eTax < (f) ax. Let A* be the diagonal intersection of the Aj, and let

F" be F' restricted to A* at coordinate - (n — 1) + 1. B

Now for any condition p of shape {1, ..., f;—1), the color under c of any ¢ < pAF”
of shape (#1, ..., t;—1, t) depends only on 7. So for each type-(n — 1) sequence ¢, let ¢;
color the length-(/ — 1) conditions accordingly. Note that each ¢, inherits decisiveness
from c. By the induction hypothesis, for each ¢, there is a sequence Ij} such that for all
m <1 — 1 andall p of length m, every ¢ < pA F; of length [ — 1 has a color under
c: depending only on the shape of g. If F" is a lower bound to the countably many
sequences F}, then F"" satisfies the inductive claim for /. This concludes the argument
for (1).
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To show (2), let us assume 1nduct1vely that it holds for GS,,, m < n. Let P € GS,,,
let ¢c: P — 3 be decisive, and let F be given by (1). Let p € P, with stem(p) =
(fo,---s fi—1, e, (x1,a), f1). For every end-extension g = stem(p)~s ~F ofp/\F
the color of g depends only on the shape of s. Using the closure of Col (/c+‘” 2 k), we
can find f/ 2 f; such that for every strengthening s of the initial segment of stem (p)
before f7, and every type-n sequence f, if there is f 2 f/ such that some s’ of shape
with s~ (f Vs F < <PA F has color > 0, then already s~ (/)™ s~ F has this color.

Now for each type-n sequence ¢, and each strengthening s of stem(p) before
fi—1, we have a coloring cs; of the conditions (f)"e™a < (fi—1)" e/ a; accord-
ing to the color under c of s~ (f, e, (x1, a), f/}As”\I?, where s’ is anything of shape
t, such that the resulting condition is below pAIE Using the inductive hypothe-
sis and the weak closure of IE”(K;“" 2 4, we find ( (fi e ar <*(fim1) el a
such that any two extensions of the former of the same shape have the same
color under every cs ;. As a result, we have that for any s strengthening stem(p)
before f;_1, for any two r, r’ of the same shape below s~ (f/_,, e}, (x1, a)), fl’)’\ﬁ,
for which s is an initial segment of both, c¢(r) = c(r'). We continue this pro-
cess in the same fashion down the stem of p, in a total of / steps, so that
at step k<1, we find (f/_,_ ) e;_,a;_, <*(fi—k—1)"e1— aj—k, such that for
every strengthening s of the initial segment of stem(p) before f;_;_1, any two
conditions r,r’ of the same shape, with s as an initial segment, and below

A(f‘[Lk,] ’ e;,k5 (-xl—ka al/ik.)’ f‘l/fk’ ~.- : I (XI, a[/)a f‘[/v F)v we have C(r) = C(r,)'
Eventually we reach the desired condition g < *p.
The inductive argument for GS,, is entirely similar. O

Corollary 4.7 IfP(u,d) € GS;,, 1 <n<w < u, then (P(un,d), <, <*)is a Prikry-
type forcing. Furthermore, for a condition pq of the form

(f()’ er, (x1,a1), fi, s em, Xms @m)s fm ﬁ‘)a

P(u, d) | po is canonically isomorphic to

P, di) | (fo) "er”arx - x Pk 2 d) | (fne1) e am x Q,

+w-m+2

where Q is a weakly K, -closed Prikry-type forcing.

Proof Let o be a sentence in the forcing language, and color conditions 0 if they do not
decide 0, 1 if they force o, and 2 if they force —o. Let p € P(u, d), andletg < *p be
such that any two extensions of ¢ of the same shape have the same color. If ¢ does not
decide o, then by the fact that the ordering on sequences is upward-directed, we can
find r, r’ < g of the same shape that force opposite decisions about o, a contradiction.

For the second claim, the map is the obvious one, where the elements of QQ are the
tail-ends beyond place m, of conditions below pg. Let us write P(u, d) | po as R x Q.
From any decisive coloring c of the conditions in Q, we can define a decisive coloring
¢’ of R x Q by setting ¢/(r, ¢) = c¢(q). Givenany g € Q, wecanfind p < *(1, ¢) such
that any two p’, p” < p of the same shape have the same color under ¢’. This means
that any two ¢, ¢” < g of the same shape have the same color under c. Then we apply
the argument of the previous paragraph. O
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IfP(u,d) € GS, for 1 < n < w, with crit(d) = «, and G C P(u, d) is generic over
V, then we have a sequence (x;, G; : 1 < i <) such that:

(1) Each x; is a typical point in Py (H+w--1)+i)-

(2) (x;:1<i<w)is e-and C-increasing, with | J; x; = H+on.

(3) Gy is P(u, di)-generic, and fori > 1, G; is P(k;"" 2 d;)-generic, where x; and
d; are as in the definition of GS,,.

From (x;,G;:1 < i <w), we can recover G as the collection of all conditions
(fo.e1, (x1,a1), f1,..., e, (x;,ap), fi, F) such that:

(1) (x1,...,x;) is an initial segment of (x; : 1 < i <w).

2) Fori >, Flw-(n —1) € x; € dom F,.,,4.

(3) For1 <i <!, (fi-1)" e a; € Gi.

(4) Putting f; = Fypti(xj) fori > 1, (fi—1) " Flw-(n—1) € Gj.

We need the following characterization of genericity, proof of which is essentially the
same as for Lemma 3.9:

Lemma 4.8 Suppose d = (Uy, Kq:o<w-n) and P(u,d) € GS,, with o <
uw < crit(d) = k. Suppose in some outer model W 2O 'V, there is a sequence
(xi, Gi:1 < i<w) asabove.

Then this sequence generates a V -generic filter G for P(w, d) iff for every sequence
F = (Fo 1o <w-n) such that (&)~ F is a condition, there is m < w such that for all
k=m, Flw-(n—1) € xx € dom Fy.,—1)+k and

(Fo-n—1)+k (k) 41 (F [@-(n — 1)) € Gpq1,
where Ty is the transitive collapse of Xj41.

To prove the main theorem, we will show by induction that, in a model satisfying the
conclusion of Lemma 4.3, if u = v®*+2 and P(u,d) € GS,, for 1 <k,n < o,
then P(u, d) forces that (vT+L vty — (VFA+L y+B) holds for all limit ordinals
w < B < a < "L Note that we include the case v = 0 so that the lower pair may be
(X1, Ro).

For the base case, suppose @ = pTek+2 for 1 <k < w, and P(u, d) € GS1, with
crit(d) = «. By Lemma 3.5 and the preservation claim of Lemma 4.3, we have that
in VEWD (Feitl yrody o tej+ly+ey holds forall 1 < j < i < w. Using
again the fact that for o < «, (k79T k1) = (at?F] a+®) is indestructible by any
at®+2_closed forcing of size «, the iterated ultrapower construction in the previous
section shows that P(u, d) also forces (k T, k) — (VT i+l ptedy for 1 <i < w.

Assuming that the inductive claim holds for n, let us first argue for the weaker
claim that if u = vt®*+2 for 1 < k < w, and P(u, d) € GS,+1, then P(u, d) forces
(et yrey o (yHB+L ) +By to hold forall limitordinals w < B < o < @12 (where
the last inequality is strict). A generic G C P(u, d) introduces a Prikry sequence of
generics for GS,, forcings, (G;:1 < i <w), where G is generic for P(u, d1), and
for i > 2, G; is generic for P(Klt“f(”l)ﬂ, d)). In V[G1], k1 = v+“’"+l, its succes-
sor is (k;7" ™)V, and we have (vetl vte) — (VFAHL L +B) for all limit ordinals
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< B < a < »"tL. This is preserved by adjoining (Gj:2 < j <w), which adds no
subsets of (K+w "+1)V Fori > 1, we have that in V[G;],

+w-nt+a+1 +wn+a +w-n+p+1  +own+p
(27 ) = (e )

holds for all limit ordinals 0 < 8 < « < @" 1, For each such i, these instances of
Chang’s Conjecture are preserved by adjoining (G; : i < j < w), which adds no subsets
of (ik;7 ")V, the (@"+!+ 1)* cardinal above k;_ in the extension, and also by
adjoining G1 x --- x G;_1, which is generic for a KJ“‘{” -centered forcing. By the
transitivity of Chang’s Conjecture, we can combine finitely many instances to bridge
the different intervals that lie between adjacent Prikry points, and get the weaker
conclusion for n + 1.

The hard part is to improve the final inequality to allow o = " %2 If the critical
point of d as above is «, then by applying transitivity again, it suffices to show that
the extension satisfies (kT, k) — (Kl-+, ki) for infinitely many i. Towards this, we
generalize Claim 3.11 and produce an iterated ultrapower for which we can find a
generic filter for (the image of) a forcing P € GS,,41.

Claim 4.9 Suppose 1 <n < w, W is a model of ZFC, and P(u,d) € GS , With
crit(d) = k. Suppose p € P(u, d) is a condition of length I, p = (fo,..., f1)" F
Ifl > 0, letv = Kl“”'"+2 and let R be such that P(u,d) [ p = RxQ, as in
Corollary 4.7. Otherwise let v = p and let R be trivial.

There is an elementary embedding j: W — W', where W' is transitive, crit(j) =
K, j(k) = kT, and k" is a fixed point of j. If there is a W-generic filter
H C RxCol(v, k), then there is a W'-generic filter G C j(P(u, d)) in W[H] such
that j(p) € G. Moreover, W[H] and W'[G] have the same k-sequences of ordinals.

Proof First, let us introduce a temporary notation in order to describe generic filters
for P(u, d). Every ordinal @ < w®, can be represented using Cantor Normal Form as
a sum

a=a" ky+- -+ w-k+ ko,

where k; < wforalli.Fora # 0,letn,(a) = min{r :k, # 0} andletm,(a) = kj, («)-

A generic G C P(u, d) can be unraveled into a sequence (x4 :1 < ¢ <o) C
Pi(He+on) and filters (Cy:a < "), from which we can recover G. If p, =
Xq Nk, then the p, are increasing, continuous, and cofinal in «. Cy is generic for
Col(u, p1), and for @ > 1, Cy is generic for Col (,o+w me(@)+t2
n.(B) < nu(a), then xg € xq.

Let us note that by unraveling the criteria for being in the filters associated to
the sequences, we can recover G in the following way. Let F= (Fy:a<w-n)bea

, Pa+1)- If B < @ and

sequence of functions. Foreach ¢ < ", define a finite sequence (Fo? R So (@)= 1)
by putting FO? = Fyn,(@)+m, (@) andfor0 < k < n—n,(a), Folf = rr(Folf_l), where
i the transitive collapse of x, ,u—, if that object is in dom 7. Put F), = Fy "+~
Then we have (@)“17" € G iff for all @ < ", F, is defined, x, € dom F}, and
F)(xq) € Cq.
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Given a GS,-sequence d, let us construct an iterated ultrapower and a sequence
(X, Cp:1 < a <", B <) as above. We will assume, by induction on #n (simul-
taneously for all models of ZFC, all GS,;-sequences d and all generics H) that this
process provides a generic filter for the limit ultrapower.

Let u,d, H, W be as hypothesized, and let d = (Uy, Ky:0 <w-n). Let us
define by induction on "'/ < & < ", a model N, and elementary embeddings
Jg.a: Ng — Ng.The choice of the measures which are applied at each step resembles
the iterated ultrapower for obtaining a Radin generic filter (see [18]).

Let g = "~ '-1 + 1, and let Ny, = W. For limit ordinals «, let N, be the direct
limit of the system (Ng, jg,, : B <y <a) and let jg o be the corresponding limit
embeddings. Fora = B + 1, let jg.o: Ng — Ny = Ult(Ng, jug,(Uwn, (8)+m.(8)))>
and let j, o = jg,a0 jy,p for y < B. By Fact 3.10, N, is well-founded. By counting
arguments similar to those in the previous section, we can show that jo, o (k) = k77,
and jgg qn (kKT = eFentl

Letus define a sequence of filters (C; : i < ") andasequenceofsets (x; : 1 <i < ™).
Fori < "1 we extract C; and x; from the W-generic filter H.

Let us define the Prikry points for o > " L1 Let Xy = (@) if n.(a) =0,
and X, = H ton@+me@ otherwise. Let yo = Jju,0ml[Jjag,a (Xo)]. Note that y, =
Ja+1,0" (Jo,a+1jag,« (Xa)1), and in particular it is in N . In other words, we take y,
to be the seed of the measure jyy,o (Uwn, (@)4m, («))> Pushed by the map jy 11,4 to the
limit model N,,». Since the critical point of the elementary map jy41,4 is above the
cardinality of y,, it acts pointwise.

If no(a) = n — 1, let x, = y,. Otherwise, let = be the Mostowski collapse of
Yatans@+1 and let xg = 7(Ye). Let Co = juy,a (Kwn, (@) +m. (@) Let us verify that
the obtained filter satisfies the requirements of Lemma 4.8.

Let m > [. Let G, be the filter for the forcing P(’Oatﬁ?rwzh]y dm)an_l.m,
where dny = jyy -1 (d) [@-(n — 1), which is derived from the sequences
(xg: 0"V (m—1) < o< 'm)and (Cy: 0" '-(m — 1) < <" '-m). Let

us assume, by induction, that G, is an N -1.,-generic filter. Note that

P(ptert? 4 )anfl.,,, =P(prert2 g )an

w1l (m—1)" "M w1l (m—1)" "M ’

and that G, is also N-generic. For m < I, G, is derived from the W-generic filter
H, and thus it is clearly N,»-generic. .

Let z; = x,n-1; for 1 <i < w. Let us check that for every sequence F =
(Fi:i <w-n) € Ny there is some k such that for 5111 m > k, F [w-(n — 1) €
Zm € dom Fo.(n—1)4m» and (Fo.(n—1)+m (Zm)) " T 1 (F [w-(n—1)) € Gpuyi. LCEUS
show that for ap < a < 0", if Fe Ny is a sequence of functions such that (&) F is
a condition in jy, « (P(t, d)), then for every g > «,

ja,w”(ﬁ [ @-n.(B)) € yg € dom jy,w (Fuon,(B)+m.(8))-
and jo o (Forn,(8)+m.(8)) () € Cp.
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The relation ja,wn(lj“ [w-n.(B)) € yg holds simply because F [w-n.(B) €
(Hjao,a(’{)er-m(ﬂ)Jrl)Na. The other claims are true since yg = jﬂ_il,wn (yp) is the
seed of the measure jy, g(Uw.n,()+m,(8)) and the domain of jy g(Fe.n,(8)+m,(8))
is large with respect to this measure. Moreover, this function represents an element of
Jao,8(Kewn, ()+m.(p))- But

Joap+1(Fon,8y+ma) 3p) = Jp.p+1(Je.p (Fon,py+ma())) T p)
- [j""ﬂ(F‘”'"*(ﬁHm*(ﬁ))]jao,,s(Um*(ﬁ)m*(ﬁ))
€ Joo.p(Karn.(p)+m. () = Cp-

Note that for "~ !-1 < o < o", the sequence (Yo, Yy g+, - - -+ Vogian-1) is both
€- and C-increasing. Thus to compute x,, we get the same result by taking the image
of y, under the transitive collapse Y, | ,n.@-+1, as by first collapsing y, -1, then
collapsing the image of y,, , ,»-2, etc., until we take the image of y,, under n —n, (o) —1
successive collapses. The point is that the latter process parallels exactly the sequence
of collapses applied to a sequence of functions F to determine whether (@ )Al? is in
the filter generated from the sequences (xq, Cg:1 < o <o, B < ™).
Hence, if

Ja.o" (}? [w-n,.(p)) € yg € dom jig o (Fw‘n*(ﬁ)-me(ﬂ))’
and  jo,o0n (Fon.8)4m.(8)) (vp) € Cg.

then jol,wn(lj");S € xg € dom ja,wn(lj“):s, and jy on (ﬁ);g(x,g) € Cg. So if F e Ny, the
genericity criteria holds for jg ¢ (17“ ) for the cofinal segment above «. Since N, is a
direct limit, the generated filter G is generic.

We would like to claim now that N,»[G] has the same «-sequences as W[H].
Indeed, since the forcing that introduces H has cardinality «, any sequence of ordinals
in W[H] has a name of cardinality « and thus can be coded using a sequence of
ordinals of length x from W.

Let (& :i <«) be a sequence of ordinals in W. In N, for every ordinal there is a
representing function f;, and a finite sequence s; C (yy : " Nl <a< ™), such that
Jao,on (fi)(si) = &;. By our choices of x; and C;, the sequence (yq : o Nl <a< )
can be computed from the generic filter G. Since jy, o ((f;:i <k)) and
Joo.w ({8i 11 <k)) are in N, and since (y, c0" Nl <o <) € Ny [G] we con-
clude that (¢; :i <k) € N [G]. O

Letus return to the proof of the theorem. Recall that, assuming the inductive claim holds
for GS,,, we must only show that for every P(u, d) € GS,, 41 with crit(d) = «, it is
forced that (k ¥, k) —» (Kl~+, k;) holds for infinitely many i. Let p be a condition of length
l,let H € R x Col(v, k) be asin Claim 4.9, with H generic over V. Note that V[H] &=
|k ™)V | = Kk, and (Kﬁ””“)v = ;. By Lemma 4.3, (i T (" FDFL ooty
(Kl+, k) holdsin V[H].Let j: V — M and G be given by Claim 4.9, with j(p) € G.

Let A € M[G] be any structure on j(k 7@ T D+l = pte- (D — () T)MIG]
By Chang’s Conjecture in V[H], there is a B8 < 2 of size K,Jr“"”ﬂ such that
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BNttt = BN k)| = k" By the closure of M[G], B € M[G],
and thus M[G] = (j ()T, j(k)) — (Kl+, k7). By elementarity, the desired conclusion
follows.

5 Chang’s Conjecture with the same target

In this section we will discuss two restricted versions of the Singular Global Chang’s
Conjecture.

Theorem 5.1 Suppose that k is v -supercompact, where cf (v) = k¥ and v is a limit of
measurable cardinals, and o, is a countable ordinal. Then there is a generic extension
in which

('t w) = (01, 0),

forall p < R,.

Theorem 5.2 Suppose there are two supercompact cardinals and a, > 01is a countable
limit ordinal. Then there is a generic extension in which

(M+s H’) i (Nd*-l—l? Na,)v
Sfor all singular i, Ry, < 1 < Ry,

The proof of both theorems follows closely the ideas from [13], which in turn are
motivated by the forcing arguments from [17].

Proof of Theorem 5.1 Let us assume that « is Laver-indestructible (with respect to «-
directed closed forcing notions of cardinality < v™) and that GCH holds above «. If
this is not the case, we can always force it using Laver forcing [16]. Let (¢g: 8 <« ™)
be a continuous increasing sequence with sup {g = v, {p = &, and g1 measurable
foreach B < «+.

For every a < kT of countable cofinality, let us pick an increasing cofinal w-
sequence sy: @ — «. Let us assume that for each «, 54(0) = 0, and s(n) is a
successor ordinal for n > 0.

Let us consider the forcing

Co = [ | EGutmy» Gsatnrny) x Col(g5F, v,

n<w

where E(u, 6) is the Easton-support product of Col (i, ) over all inaccessible n < §.
The product in the definition of C, is taken with full support. For properties of the
Easton collapse, see [24].

For each o« < k% of countable cofinality, after forcing with C,,

(C;)V — (K-‘ra)-i-l)V‘Ca‘
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By the arguments of [6] related to Lemma 3.1, there is p, < « such that
VG = (et e tey o (O Pa),s

and this remains true after forcing with D, = Col(w, py) *C'ol(p(j‘ , <k). In fact,
(&) ta) = (o, pe) must already hold in V, by the distributivity of C,.

Since the forcing C,, is weakly homogeneous, the value of p, depends only on «
and does not depend on the generic filter for C,. Therefore, the function o +— pgy
belongs to the ground model, V, and has the property that

1 ot v
TR TO) 5 (B Ba).

1 IFp, xc, (K
By the xT-completeness of NS, .+, there is a stationary set § € « and a cardinal
P < k such thatforalla € S, py, = p«. Let D be the common value of D, for € S.
There is ny < w such that for every club C C k™, {s4(no) : @ € C N S} is unbounded.
By Fodor’s Lemma, we may assume that s, [ ng is constant on S.

Let us define a partial order [P that searches for a “thread” of the sequences sy
for @ € S. A condition ¢t € PP is a continuous increasing function from a countable
successor ordinal y into « ™, such that ran(t) € S U Uy <+ ran(sy), and for every
limit ordinal 8 < y, ran(s;(g)) C ran(¢). As in [13], we have:

Claim 5.3 For everyt € P, every y < wy, and every £ < k™, there is a stronger
condition t' 2 t with y C domt’ and sg(no) > & for limit B € dom¢’\ dom1.

In particular, we can find a thread of any countable length. Let 7 be a thread of length
o,. Define a sequence s: a, — v as follows. If § is an infinite limit ordinal, then
s(B) = {f('ﬁ), and otherwise s(8) = ¢ (g). Consider the forcing

C=[]E6®).s@B+1).

B<a,

First let us claim that in the generic extension by D x C, we have (Rg41,Rg) —
(N1, Np) for limit B < a,. As in [13], the projection properties of the Levy collapse,
together with the fact that ran(sg) € ran(¢) for limit 8 < o, imply that for each
limit 8 < «,, there is a projection wg: Cg — C. If A is a structure on ;E’ in VD xC,
then in VP*Cs there is an elementary B < 2 such that |B| = o = ¥y, and
B N&¢gl = |psl = No. Since the quotient forcing adds no sets of ordinals of size
< k = Ry, the instance of Chang’s Conjecture holds in VP *C,

To obtain the result for successors below «,, we consider instead the forcing 1D (C,
where C is the forcing with the same definition as C, but constructed in VD rather
than V. By [23], there is a projection from D x C to D C that is the identity on D.
By the same argument as above, the relevant instances of Chang’s Conjecture at limit
ordinals also hold in VP*C,

Suppose B < a, is zero or a successor ordinal. Let ¢ = s(B) = &;(p), and let n be
the predecessor of ¢ in the extension by D x C, which is regular. Since ¢ is measurable,
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in the extension

D ]‘[ E(s(y), s(y + 1)),

y<p

there is a normal ideal 7 on ¢ such that P(¢)/I contains a countably closed dense set—
in particular the boolean algebra is a proper forcing. By [20], the following version
of Strong Chang’s Conjecture holds in this model: If M is a countable elementary
submodel of H,+ then there is an elementary M’ 2> M such that M Ny = M'N 7 and
MN¢ # M N¢. By [6, Lemma 15], (¢, n) — (Ry, Ro) is preserved by the formerly
¢ -closed quotient I—[ﬂ < y<a, EG (), s(y + 1)). O

Remark 5.4 Note that the assumption that v is a limit of measurable cardinals is used
in order to get Chang’s Conjecture between successors of regulars and w;. If we only
want Chang’s Conjecture to hold between successors of singulars and w;, we can drop
this assumption.

Proof of Theorem 5.2 Let kp < k be supercompact, and let o, > 0 be a fixed count-
able limit ordinal. First force Martin’s Maximum (MM) while turning «p into Rj, as
in [10]. By [15], MM is indestructible under X,-directed-closed forcing. Then, force
with Laver’s forcing, which is Rj-directed-closed, to force that « is indestructibly
supercompact and GCH holds above «.

Next we need, for large enough 1 < «, a forcing D, that turns « into Ry, 3
while preserving w; and satisfying the hypotheses of Lemma 3.1. If 7(ow) = o,
let D, = Col (R (a,)+1, 4) X Col(,u““"“‘2 <«). If T(ax) > o, let ¥ be the identity
sequence converging to w, and let S be a non-decreasing sequence summing to 7 (cy),
with 81 > . Let D, = P(Ryq,) 11, 7 8, U, K) x Col (ut®*2 < ), where U and K
are w-sequences such that U, is a normal p-complete ultrafilter on P, ("), and K,
is sufficiently generic filter, as in Sect. 3.

Working in a model of MM, let us repeat the arguments from the beginning of
the proof of Theorem 5.1. For each @ < « ™ of countable cofinality, choose a cofinal
increasing sequence s, : @ — o with s,(0) = «k and sy(n) is a double successor
ordinal for n > 0. For each @ < ™ of countable cofinality, define

Co = [ ] Col (ke ittt D7) s Col (1 He2 74,

n<w

For each «, there is iy < & such that
1
1 ”_DMQX(CQ (K+w+ s K+w) - (Na{,+lv Na,)'

As above, let S € «™T be a stationary set of countable cofinality ordinals such that 1ty
has the same value for all « € S, and that the threading forcing P satisfies Claim 5.3.
In particular, there is ng < o such that for all club C C k™, {s4(ng) : € SNC} is
unbounded, and s, [ ng is the same foralla € S.LetD =D, forany o« € S. We now
claim that P preserves stationary subsets of w;. This is a reminiscent of the forcing
for Friedman’s Problem (see [10, Theorem 9]).
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Fix a stationary set A C w and a condition 7y € PP. Let C be a P-name for a club
subset of wy, and let

M < (He++, €, (sa 1 <&™), S, P, 19, A, C, <)

be such that M Nk+ = § € S, where < is a well-order of H, ++. Let us assume further
that M is the union of an increasing sequence of models M,, such that M,, € M, 4.
We may also assume that ss(ng) > sup (MpN3).

Let N < M, be the Skolem hull of the finite set ran(ss) N M,. For @ < w; and
n < w, let N)[a] be the Skolem hull of N, U «. There is some o < w; such that for
alln < w, Nj[a] Nw; =« € A. Let N, = N, [] for such an . Let N = |J Ny, so
N < M is countable, sup (N NkT) = §,ran(ss) € N,and N Nw; € A.

Let (D,, : n < w) enumerate the dense subsets of P in N, such that D,, € N,,. Using
Claim 5.3, we can build a sequence ty > t{ > tp > - -- suchthatforn > 0,1, € D,N\N,
and ran(ss) N N, C ran(t,). We achieve that by working inside N,,. We first extend
t,—1 by the finite set ran(ss) N N, and then extend this condition to meet D,,. Let
y = ot (Un t,,), and let r = (J, 1, U {(y,8)}. Then ¢ is an (N, P)-master condition,
and so it forces AN C # @.

Applying MM, we find a thread ¢ of length w;. Let s: w; — kT be such that
s(a) = t(a) + 2 for limit « > 0 and s(@) = f(«) otherwise. Let us consider the
forcing

C= H Col(/cﬂ(“), K+s(“+1)_l).

a<w]

For every B € S, there is a projection from Cg to C. Therefore, since the quotient
adds no sets of ordinals of size < «, D x C forces the desired conclusion. O

Remark 5.5 By slightly modifying the proof of Theorem 5.2, one can strengthen the
conclusion of the theorem as follows. Suppose MM holds and there is a supercompact
cardinal. For every 8 < w; and every nonzero o, < S of countable cofinality, there is
an w1 -preserving generic extension in which (1™, 1) — (R, 11, Ry, ) forall u < R B»
such that cf t = w and u > R, .

6 Open problems

The construction in Sect. 4 is limited to instances of Chang’s Conjecture between suc-
cessors of singular cardinals below R ,». In order to push this mechanism forwards, one
needs to start with a model in which there is a cardinal « which is x 7**!-supercompact
and Chang’s Conjecture holds between any pair of singular cardinals in the interval
[«, «T*]. Since our method to produce an interval with such properties with limits of
limit cardinals includes Prikry forcing, it cannot preserve supercompactness.

Question 6.1 Ts it consistent relative to large cardinals that (u™, ) — (v™, v) holds
whenever u and v have countable cofinality?
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The known limitations on Global Chang’s Conjecture do not seem to rule out the
consistency of a strengthening of Theorem 5.1 to a global statement:

Question 6.2 Ts it consistent relative to large cardinals that (k ¥, k) — (w1, @) holds
for all infinite cardinals «?
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