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Abstract
We explore finitely generated groups by studying the nilpotent towers and the various
Lie algebras attached to such groups. Our main goal is to relate an isomorphism exten-
sion problem in the Postnikov tower to the existence of certain commuting diagrams.
This recasts a result of Grigory Rybnikov in a more general framework and leads to
an application to hyperplane arrangements, whereby we show that all the nilpotent
quotients of a decomposable arrangement group are combinatorially determined.
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1 Introduction

1.1 Motivation

The motivation for this paper comes from an effort to understand Rybnikov’s invari-
ant used in [36–38] to distinguish between the fundamental groups of complements
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of two hyperplane arrangements with the same incidence structure. Work of Arnol’d,
Brieskorn, and Orlik–Solomon insures that an arrangement complement, M(A), is
rationally formal, and that the cohomology ring H∗(M(A)) is determined solely
by the intersection lattice, L(A). Thus, the complements of the Rybnikov pair of
arrangements share the same rational homotopy type; in particular, the respective fun-
damental groups share the same rational associated graded Lie algebras and second
nilpotent quotients. Nevertheless, the third nilpotent quotients of those two groups are
not isomorphic, for reasons that are to this date somewhat mysterious, despite repeated
attempts to elucidate this phenomenon, see e.g. [1,2,26,27].

We take here a different approach, closelymodeled onRybnikov’s original approach
from [36,37], yet from a more general point of view. In the process, we develop
a machinery for determining when a given isomorphism between the n-th nilpotent
quotients of two groups satisfying certainmild finiteness and homological assumptions
extends to an isomorphism between the (n + 1)-st stages of the respective nilpotent
towers.

1.2 The holonomymap

Let X be a connected CW-complex.Wewill assume throughout that the first homology
group H1(X) is finitely generated and torsion-free. LetG = π1(X) be the fundamental
group of X , and let �n(G) denote its lower central series subgroups. Finally, let X →
K (Gab, 1) be a classifying map corresponding to the abelianization homomorphism
G → Gab. The induced homomorphism of second homology groups, h : H2(X) →
H2(Gab), is called the holonomy map of X .

Particularly interesting is the situation when the holonomy map is injective; this
happens, for instance, when X is the complement of a complex hyperplane arrange-
ment, or of a ‘rigid’ link, or of an arrangement of transverse planes in R4, [27]. Under
this injectivity assumption, we show in Theorem 3.1 that there is a split exact sequence

0 �n(G)/�n+1(G) H2(G/�n(G)) H2(X) 0. (1.1)

Many properties of a finitely generated group G are reflected in the Lie algebras
associated to it. One of those is the associated graded Lie algebra, gr(G), whose
graded pieces are defined as grn(G) = �n(G)/�n+1(G), and whose Lie bracket is
induced from the group commutator. The study of the associated graded Lie algebra
was initiated in work of Magnus [21], Witt [47], Hall [18], and Lazard [20]. Much
of the power of this approach comes from the various connections between the lower
central series, nilpotent quotients, and group homology, as evidenced in the work of
Stallings [42], Quillen [34], Dwyer [13], and many others.

Another Lie algebra associated to a group G is the holonomy Lie algebra, h(G),
which was introduced in work of Chen [8], Kohno [19], and Markl–Papadima [24],
and studied more recently by Papadima–Suciu [30] and Suciu–Wang [44,45]. This Lie
algebra depends only on data extracted from the cohomology of G in low degrees. In
more detail, assuming Gab is torsion-free, h(G) is defined as the quotient of the free
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Lie algebra on Gab modulo the ideal generated by the image of the holonomy map,
H2(G) → H2(Gab).

The holonomy Lie algebra h(G)may be viewed as a quadratic approximation of the
associated graded Lie algebra gr(G).More precisely, there is a canonical epimorphism
of graded Lie algebras, h(G) � gr(G), which is an isomorphism in degrees n ≤ 2, but
is not necessarily injective in higher degrees (see, for instance, the examples in [45]
of groups that are not graded-formal). Nevertheless, we show in Theorem 4.3 that
the map h3(G) → gr3(G) is an isomorphism under the aforementioned injectivity
assumption for the holonomy map.

1.3 Themain result

Let Xa and Xb be two path-connected spaces as above. From [42] it follows that if a
map f : Xa → Xb induces an isomorphism of first homology groups and an epimor-
phism of second homology groups, then f induces an isomorphism Ga/�n(Ga) �−−→
Gb/�n(Gb) for n ≥ 2, where Ga and Gb denote the fundamental groups of Xa and
Xb; respectively.

The main result in this paper gives a necessary and sufficient condition for a given
map of coalgebras,

H≤2(Xa) H≤2(Xb),
g

with g1 an isomorphism and g2 an epimorphism, to extend to an isomorphism of
nilpotent quotients for a given value of n; more precisely, that there be an isomorphism
fn : Ga/�n(Ga) → Gb/�n(Gb) such that the diagram

H2(Ga/�n(Ga)) H2(Gb/�n(Gb))

H2(Xa) H2(Xb)

( fn)∗

g2

commutes. To state the result, let N be a nilpotent group with N ∼= N/�n(N ).
Assume that the holonomy maps of Xa and Xb are injective, and there is a map
�b : Xb → K (N , 1) inducing an isomorphism Gb/�n(Gb)

�−−→ N . We then show in
Theorems 6.1 and 6.2 that there is an isomorphism

fn+1 : Ga/�n+1(Ga)
∼=−→ Gb/�n+1(Gb)

extending g2 if and only if there is amap �a : Xa → K (N , 1) inducing an isomorphism
Ga/�n(Ga) �−−→ N , and a splittingσ of the exact sequence (1.1) such that the following
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diagram commutes:

grn(N )

H2(N )

H2(Xa) H2(Xb).

σ

g2
∼=

μa

(�a)∗

μb

(�b)∗

Analogous results in characteristic p are proved in Theorems 6.4 and 6.5. In the case
n = 3 the obstruction to extending the map g2 to an isomorphism Ga/�4(Ga) �−−→
Gb/�4(Gb) is computed by generalized Massey triple products. This result along
with further results and applications will be given in a subsequent paper.

1.4 Hyperplane arrangements

Returning now to the setting of hyperplane arrangements, letA be a finite set of hyper-
planes in somefinite-dimensional complex vector space. The complement M(A), then,
has the homotopy type of a connected, finite CW-complex.Moreover, the cohomology
ring H∗(M(A)) is torsion-free and generated in degree 1, and so the holonomy map
of M(A) is injective. Consequently, if G = G(A) is the fundamental group of the
complement, then gr3(G) ∼= h3(G).

The second nilpotent quotient of an arrangement group is combinatorially deter-
mined; that is, if A and B are two arrangements such that L≤2(A) ∼= L≤2(B), then
G(A)/�3(G(A)) ∼= G(B)/�3(G(B)). On the other hand, as previously mentioned,
Rybnikov showed that the next nilpotent quotient, G(A)/�4(G(A)) is not always
determined by L≤2(A).

The invariant that Rybnikov defined in [36–38] to prove this result comes from
the case n = 3 of the main result in this paper, as follows. In [36,37] it is further
assumed that h3(G) is torsion-free. Replacing then the modules and maps in Theorem
6.1 with their Hom duals gives the result corresponding to [36, Theorem 2.2]. These
replacements in Theorem 6.2 yield [37, item 2 of Theorem 12].

Particularly interesting is the class of “decomposable" hyperplane arrangements.
Building on work of Papadima and Suciu [31] and applying Theorem 6.2, we prove
in Theorem 8.8 that, for such an arrangement A, the tower of nilpotent quotients of
G(A) is fully determined by the truncated intersection lattice L≤2(A). Our result
leaves open the question whether the group G(A) itself is combinatorially determined
when A is decomposable.
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1.5 Organization of the paper

The paper is divided into three parts, of roughly equal length.
The first part deals with the nilpotent quotients and Lie algebras associated to a

finitely generated group G. In Sect. 2 we describe the tower of nilpotent quotients
{G/�n(G)}n≥1, while in Sect. 3 we review the associated graded Lie algebra gr(G)

and the Malcev Lie algebra m(G). Finally, in Sect. 4 we discuss the holonomy Lie
algebra h(G) and relate it to gr(G).

In the second part we reprove and extend Rybnikov’s theorem. We start in Sect. 5
with some preparatory material on group extensions, splittings, and k-invariants. The
main results, including an extension in characteristic p, are stated and proved in Sect. 6.

In the third part we apply our machinery to the theory of hyperplane arrangements.
We start in Sect. 7 with a review of the relevant material on the topology and com-
binatorics of arrangements, and give a quick application to Lie algebras associated
to arrangement groups. Finally, in Sect. 8 we show that the nilpotent quotients of
decomposable arrangement groups are combinatorially determined.

2 Lower central series and Postnikov towers

In this sectionwe discuss the lower central series and the tower of nilpotent quotients of
a group.General references include theworks ofHall [18],Magnus [22], Stallings [42],
and Dwyer [13].

2.1 Lower central series

Let G be a group. The lower central series (LCS) is the sequence of subgroups
{�n(G)}n≥1 defined inductively by �1(G) = G and

�n+1(G) = [G, �n(G)]

for n ≥ 1. Here, if H and K are subgroups of G, then [H , K ] denotes the subgroup of
G generated by all elements of the form [a, b] = aba−1b−1 for a ∈ H and b ∈ K . If
both H and K are normal subgroups, then their commutator [H , K ] is again a normal
subgroup.

In our situation, the subgroups �n(G) are, in fact, characteristic subgroups of G.
Moreover, the LCS filtration is multiplicative, in the sense that, for all m, n,

[�n(G), �m(G)] ⊆ �m+n(G).

Note that �2(G) = [G, G] is the derived subgroup of G, and so G/�2(G) = Gab,
the abelianization of G. Furthermore, each term �n+1(G) contains [�n(G), �n(G)],
and thus the quotient group

grn(G) ..= �n(G)/�n+1(G) (2.1)
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is abelian.
Now let G = F/R be a presentation for our group, with F a free group and R a

normal subgroup. Then �n(G) = �n(F)/�n(F) ∩ R. Moreover, if G is finitely gen-
erated, then so are the LCS quotients from (2.1). We will write φn(G) = rank grn(G)

for the ranks of these groups.
For instance, if Fk is the free group on k generators, then all its LCS quotients

are torsion-free, with ranks φn = φn(Fk) given by
∏∞

n=1(1 − tn)φn = 1 − kt , or,
equivalently, φn = 1

k

∑
d|k μ(d)nk/d, where μ denotes the Möbius function.

2.2 Nilpotent quotients

It is readily seen that G/�n+1(G) is a nilpotent group, and in fact, the maximal n-step
nilpotent quotient of G. Letting qn : G/�n+1(G)→ G/�n(G) be the projection map,
we obtain a tower of nilpotent groups,

· · · G/�4(G) G/�3(G) G/�2(G).
q3 q2

For each n ≥ 1, we have a central extension,

0 grn(G) G/�n+1(G) G/�n(G) 0.
qn (2.2)

Passing to classifying spaces, we obtain a commutative diagram

K (G/�n+1(G), 1)

K (G, 1) K (G/�n(G), 1),

πn
ψn+1

ψn

(2.3)

where ψn corresponds to the projection G → G/�n(G) and πn corresponds to the
projection qn . Note that πn may be viewed as the fibration with fiber K (grn(G), 1)
obtained as the pullback of the pathspace fibration with base K (grn(G), 2) via a
k-invariant

χn : K (G/�n(G), 1) → K (grn(G), 2). (2.4)

2.3 Postnikov tower and the holonomymap

Now let X be a connected CW-complex, and let G = π1(X) be its fundamental group.
An Eilenberg–MacLane space K (G, 1) can be constructed by adding to X cells of
dimension three ormore; let ι : X → K (G, 1) be the inclusionmap. For each n ≥ 1, let
hn : X → K (G/�n(G), 1) be the compositeψn ◦ ι. This gives the followingPostnikov
tower of fibrations:
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K (G/�4(G), 1)

K (G/�3(G), 1)

X K (G/�2(G), 1).

π3

π2

h2

h3

h4

(2.5)

We take now homology with coefficients in Z. From the above discussion, we
deduce the well-known fact that the map ι : X → K (G, 1) induces an isomorphism
ι∗ : H1(X) �−−→ H1(G) and an epimorphism ι∗ : H2(X) � H2(G).

Consider now the Lyndon–Hochschild–Serre spectral sequence defined in [4],

Hp(G/N ; Hq(N ; M)) ⇒ Hn(G; M),

where G is a group, N is a normal subgroup of G, and M is a G-module. For the
central central extension (2.2), the 5-term exact sequence arising from the terms of
low degree (see e.g. [42, Theorem 2.1]) reduces to a short exact sequence

H2(G) H2(G/�n(G)) grn(G) 0,
(qn)∗ χn (2.6)

where the map χn corresponds to the k-invariant from (2.4) via the Universal Coeffi-
cient Theorem. Using now the surjectivity of the map ι∗ : H2(X) → H2(G)we obtain
an exact sequence

H2(X) H2(G/�n(G)) grn(G) 0.
(hn)∗ χn (2.7)

In general, the sequence in (2.7) is natural but not split exact. We call the homomor-
phism

(h2)∗ : H2(X) → H2(G/�2(G)) ∼= H1(X)∧ H1(X) (2.8)

the holonomy map of X . The following lemma easily follows from the definitions and
the Universal Coefficient Theorem.

Lemma 2.1 Suppose H1(X) is finitely generated and torsion-free. Then the holonomy
map of X is dual to the cup-product map

∪: H1(X)∧ H1(X) → H2(X). (2.9)
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Consequently, if the cup-product map from (2.9) is surjective, the holonomy map from
(2.8) is injective.

As the next example shows, the converse of the last statement does not hold.

Example 2.2 Let X be the connected, 2-dimensional CW-complex associated to the
group G with presentation G = 〈x, y | x2yx−2y−1 = 1〉. Clearly, H1(X) = Z2

and H2(X) = Z. With these identifications, the holonomy map (h2)∗ : Z → Z is
multiplication by 2, and thus injective, while the cup-product map ∪: Z → Z is also
multiplication by 2, and thus not surjective.

3 Associated graded Lie algebras andMalcev Lie algebras

3.1 The associated graded Lie algebra of a group

Given a group G, we let gr(G) be the direct sum of the successive quotients of the
lower central series of G; that is,

gr(G) =
⊕

n≥1

�n(G)/�n+1(G).

The map a ⊗b �→ aba−1b−1 induces homomorphisms [ · , · ] : grm(G)⊗grn(G) →
grm+n(G). It is readily seen that the following “Witt–Hall identities" hold in G:

[ab, c] = a[b, c] · [a, c], [ba, [c, b]] · [ cb, [a, c]] · [ac, [b, a]] = 1,

where ab = aba−1. It follows that gr(G), endowed with the aforementioned bracket,
has the structure of a graded Lie algebra, see for instance [22,41]. The construction
is functorial: every group homomorphism f : G → H induces a morphism of graded
Lie algebras, gr( f ) : gr(G) → gr(H).

If F is a free group, then, as shownbyMagnus andWitt, gr(F) is the free Lie algebra
on the same set of generators as F ; in particular, if F = F�, then gr(F) = Lie(Z�),
the free Lie algebra of rank �.

3.2 Injective holonomymap and an exact sequence

Once again, let X be a path-connected space, with fundamental group G = π1(X).

Theorem 3.1 Assume that the group H1(X) is finitely generated, torsion-free, and the
holonomy map (h2)∗ : H2(X) → H1(X)∧ H1(X) from (2.8) is injective. For each
n ≥ 2, there is then a natural, split exact sequence

0 grn+1(G) H2(G/�n+1(G)) H2(X) 0.i π (3.1)

Proof Recall that given a fibration of CW-complexes with base B, fiber F , and total
space E , the filtration of C∗(E) by the inverse images of the skeleta of B gives a
homology Serre spectral sequence with differentials
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Er
s,t

dr−→ Er
s−r ,t+r−1.

Furthermore, if the fundamental group of the base acts trivially on the fibers, then

E2
s,t = Hs(B)⊗ Ht (F).

For the fibration (2.3), the kernel of the differential d2 : H2(B) → H1(F) is by
equation (2.6) the image of H2(X) in H2(G/�n(G)). In turn, this image can be
identified with H2(X), since by assumption the holonomy map is a monomorphism.
This gives an exact sequence

0 F1 H2(G/�n+1(G)) H2(X) 0, (3.2)

where F1 denotes the image in H2(G/�n+1(G)) of the inverse image of the 1-skeleton
in K (G/�n(G), 1). It follows that a map (hn+1)∗ gives a right splitting of the exact
sequence (3.2). The result now follows from (2.7). ��
In particular, under the above hypothesis there is a natural exact sequence

0 gr3(G) H2(G/�3(G)) H2(X) 0. (3.3)

Furthermore, this sequence is split exact.Wedo not claim that there is a natural splitting
of the exact sequence (3.3), or of the other exact sequences from (3.1).

3.3 Malcev completion and theMalcev Lie algebra

In [23],Malcev established a one-to-one correspondence between certain nilpotent Lie
algebras over Q, and nilpotent groups over Q, leading to the Malcev Lie algebra of a
group. This was extended by Lazard [20] to groups with enough divisibility in central
series subgroups to establish a one-to-one correspondence between a wider class of
nilpotent groups and Lie algebras. An important next step was taken by Quillen,
who established in [35] an equivalence between rational homotopy theory and the
homotopy theory of reduced differential graded Lie algebras over Q with Malcev Lie
algebras as the equivalent of the rational fundamental group. This was extended by
Dwyer in [14] to an equivalence between the tame homotopy theory of 2-connected
spaces and differential graded Lazard Lie algebras.

In more detail, assume that G is a finitely generated group. It is then possi-
ble to replace each nilpotent quotient Nn = G/�n(G) by Nn ⊗Q, the (rationally
defined) nilpotent Lie group associated to the discrete, torsion-free nilpotent group
Nn/tors(Nn). The corresponding inverse limit,

M(G) = lim←−
n

(G/�n(G)⊗Q),
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is a prounipotent, filtered Lie group over Q, which is called the prounipotent comple-
tion, or Malcev completion of G.

Let us denote by L(K ) the Lie algebra of a Lie group K . The pronilpotent Lie
algebra

m(G) = lim←−
n

L(G/�n(G)⊗Q),

endowed with the inverse limit filtration, is called the Malcev Lie algebra of G. By
construction, m( ·) is a functor from the category of finitely generated groups to the
category of complete, separated, filtered Lie algebras over Q.

In [34,35], Quillen showed that m(G) is the set of all primitive elements in Q̂G,
the completion of the group algebra of G with respect to the filtration by powers
of the augmentation ideal, and that the associated graded Lie algebra of m(G) with
respect to the inverse limit filtration is isomorphic to gr(G;Q). Furthermore, the set of
all group-like elements in Q̂G, with multiplication and filtration inherited from Q̂G,
forms a complete, filtered group isomorphic toM(G).

3.4 The Sullivanminimal model

In a seminal paper [46], Sullivan showed that commutative differential graded algebras
(cdgas) of differential forms over Q can be used to model rational homotopy theory.
From this perspective the commutative differential graded algebra corresponding to the
Malcev Lie algebra of a group is obtained by taking the free commutative differential
graded algebra Hom dual to nilpotent quotients of the Lie algebra and passing to the
limit.

More precisely, Sullivan associated to each space X a cdga over the rationals,
denoted A∗

PL(X), for which there is an isomorphism H∗(APL(X)) ∼= H∗(X ,Q) under
which induced homomorphisms in cohomology correspond. A space X is said to be
formal if A∗

PL(X) ∼= (H∗(X;Q), d = 0), i.e., Sullivan’s algebra can be connected by
a zig–zag of quasi-isomorphisms to the rational cohomology ring of X , endowed with
the zero differential.

A Hirsch extension (of degree i) is a cdga inclusion (A, d) ↪→ (A⊗∧
(V ), d),

where V is a Q-vector space concentrated in degree i , while
∧

(V ) is the free graded-
commutative algebra generated by V , and d sends V into Ai+1. A cdga (A, d) is called
minimal if A is connected (i.e., A0= Q), and the following two conditions are satisfied:
(1) A = ⋃

j≥0 Aj , where A0 = Q and each Aj is a Hirsch extension of Aj−1; (2)

the differential is decomposable, i.e., d A ⊂ A+∧ A+, where A+ = ⊕
i≥1 Ai. A basic

result of Sullivan [46] and Morgan [28] asserts the following: Each connected cdga
(A, d) has a minimal model M(A), unique up to isomorphism.

Suppose now that X is a connected CW-complex with finitely many 1-cells. Then
the Lie algebra dual to the first stage of the minimal model associated to A∗

PL(X) is
isomorphic to the Malcev Lie algebram(π1(X)). A finitely generated group G is said
to be 1-formal (over Q) if it has a classifying space K (G, 1) which is 1-formal, or,
equivalently, if the Malcev Lie algebra m(G) is the completion of a quadratic Lie
algebra. For a comprehensive discussion of all these notions and more we refer to the
monographs [16,17] and to the papers [32,45].
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The next step is to look for invariants beyond rational homotopy theory. Chen, Fox,
and Lyndon [9] gave examples using Fox derivatives to find groups whose successive
quotients in the lower central series have torsion. Stallings [42] related homological
properties of a group to successive quotients in the lower central series and also to
successive quotients in a mod p descending series. Building on this work, Dwyer [13]
relatedMassey products in the cohomology of a group to properties of the quotients in
the lower central series and also to a mod p central series different than the one used
by Stallings. In [5–7], Cenkl and Porter used a commutative algebra of differential
forms to model tame homotopy theory and the Lazard Lie algebra completion of the
fundamental group.

Massey products were defined in [25] and applied to prove the Jacobi identity
for Whitehead products. Porter [33] gave a general formula for Massey products
in a commutator relators group in terms of coefficients in the Magnus expansions
of the relators and provided applications to links. In [26], Matei gave examples of
complements of hyperplane arrangements with nonzero mod p Massey products. This
shows that while arrangement complements are formal over the rationals—and hence
all Massey products with rational coefficients contain zero—they are not necessarily
formal over the integers. Recently, Salvatore [39] gave examples of configuration
spaces that are not formal over the integers.

4 Holonomy Lie algebras

Among all the Lie algebras one can associate to a group, the simplest is the holonomy
Lie algebra, which only depends on data extracted from cohomology in low degrees.
In this sectionwe shed new light on the relationship between the holonomy Lie algebra
and the associated graded Lie algebra of a group.

4.1 The holonomy Lie algebra of a group

Let G be a group, and fix a coefficient ring k, which we will take to be either a field
or the integers. We will assume throughout that H = H1(G, k) is a finitely generated
k-module; moreover, when k = Z, we will assume for simplicity that H is torsion-
free. We let Lie(H) denote the free Lie algebra on the free k-module H ; note that
Lie1(H) = H and Lie2(H) = H ∧ H .

Following [8,19,24,30,44,45], we define h(G, k), the holonomy Lie algebra of G,
as the quotient of the free Lie algebra on H1(G, k) by the Lie ideal generated by the
image of the holonomy map, (h2)∗ : H2(G, k) → H1(G, k)∧ H1(G, k):

h(G, k) = Lie(H1(G, k))/ideal(im((h2)∗)).

The holonomyLie algebra of G is a quadratic Lie algebra: it is generated in degree 1 by
h1(G, k) = H1(G, k), and all the relations are in degree 2. For k = Z, we simply write
h(G) = h(G,Z). Clearly, the construction is functorial: every group homomorphism
f : G → H induces a morphism of graded Lie algebras, h( f ) : h(G, k) → h(H , k).
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1050 R.D. Porter, A.I. Suciu

As noted in [44], the projection map ψn : G � G/�n(G) induces an isomorphism
h(ψn) : h(G) �−−→h(G/�n(G)) for all n ≥ 3. In particular, the holonomy Lie algebra
of G depends only on its second nilpotent quotient, G/�3(G).

In a completely analogous fashion, one may define the holonomy Lie algebra h(A)

of a graded, graded-commutative k-algebra A, provided that A0 = k and A1 is finite-
dimensional (and torsion-free if k = Z). It is readily seen that h(A) = h(A≤2).
Moreover, if G is a group as above, h(G) = h(H∗(G; k)). In fact, if X is any path-
connected space with G = π1(X), then we may define h(X) ..= h(H∗(X; k)), after
which it is easily verified that h(X) ∼= h(G).

On a historical note, the holonomy Lie algebra of a group G was first defined (over
k = Q) by Chen in [8], and later considered by Kohno in [19] in the case when G is the
fundamental group of the complement of a complex projective hypersurface. In [24],
Markl and Papadima extended the definition of the holonomy Lie algebra to integral
coefficients. Further in-depth studies were done by Papadima–Suciu [30] and Suciu–
Wang [44,45]; in particular, the more general case when the group H = H1(G,Z) is
allowed to have torsion is treated in [44].

4.2 A comparisonmap

Now set grn(G, k) = grn(G)⊗k, and let gr(G, k) = ⊕
n≥1 grn(G, k) be the associ-

ated graded Lie algebra of G over k. As shown in [24,30,44,45], there is a (functorially
defined) surjective morphism of graded Lie algebras,

h(G, k) � gr(G; k),

which restricts to isomorphisms hn(G, k) → grn(G; k) for n ≤ 2.
The above map is an isomorphism if the group G is 1-formal over a field k of

characteristic 0, but in general it fails to be injective in degrees n ≥ 3. Nevertheless,
for a large class of (not necessarily 1-formal) groups, the map h3(G, k) → gr3(G; k)

is an isomorphism, even for k = Z. This will be made more precise in Theorem 4.3
below.

4.3 Another exact sequence

Asbefore, let h2 : X → K (G/�2(G), 1)be the continuousmap induced by the projec-
tion of G to G/�2(G), and let (h2)∗ : H2(X) → H2(G/�2(G)) be the corresponding
holonomy map.

Theorem 4.1 If H1(X) is finitely generated and torsion-free, then there is an exact
sequence

0 h3(G) H2(G/�3(G)) H2(X)/(ker(h2)∗) 0. (4.1)
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Proof We shall make use of the homology Serre spectral sequence associated to the
extension

0 gr2(G) G/�3(G) G/�2(G) 0. (4.2)

The E2 page of this spectral sequence is depicted in diagram (4.3) below.

0 1 2 3

0

1

2

d 2
2,0d 2
2,0

d 2
3,0d 2
3,0

d 2
2,1d 2
2,1

(4.3)

Assume first that h2 is torsion-free, where h = h(G). Our hypotheses on the abelian
groups G/�2(G) = h1 = H1(X) and gr2(G) = h2 imply that all the terms E2

p,q =
Hp(G/�2(G), Hq(h2)) are finitely generated and torsion-free, and hence, Hom dual
to the E2 terms and differentials d2 in the cohomology spectral sequence associated to
extension (4.2). Since the E2 terms and differentials form a commutative differential
graded algebra, the differentials d2 are determined by the differential d 0,1

2 dual to
d 2
2,0 : H2(G/�2(G)) → H1(h2), which is given by

d 2
2,0(xa ∧ xb) = − [xa, xb], (4.4)

where [ · , · ] denotes the bracket map from h1∧h1 to h2. Computing the differential
d1,1
2 and d0,2

2 and then taking the dual maps gives the following:

d 2
3,0(xa ∧ xb∧ xc) = xa ∧[xb, xc] − xb∧[xa, xc] + xc∧[xa, xb] (4.5)

for xa, xb, xc ∈ h1 and

d 2
2,1(xa ∧ xb∧ xd) = − [xa, xb]∧ xd (4.6)

for xa, xb ∈ h1 and xd ∈ h2.
From (4.4) and (4.6) it follows that E3

0,2 = 0, while from (4.5) it follows that

E3
1,1 = h3. Now note that E3

2,0 is the kernel of the map d 2
2,0 in equation (4.4). From

the formula for d 2
2,0 in (4.4) and the exact sequence (2.6), it follows that E3

2,0 is the
image of H2(X) in H2(G/�2(G)), which is H2(X)/(ker(h2)∗).

Looking at the domains and ranges of the higher-order differentials in the spectral
sequence, we see that since E3

0,2 = 0, it follows that E3
p,q = E∞

p,q for p + q ≤ 2. We
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1052 R.D. Porter, A.I. Suciu

conclude that

E∞
0,2 = 0, E∞

1,1 = h3, and E∞
2,0 = H2(X)/(ker(h2)∗). (4.7)

Equation (4.1) now follows, and the proof of the lemma is complete in the case where
h2(G) is torsion-free.

In the case where h2 has torsion, let x1, . . . , x� be elements in G that project to
a basis for G/�2(G). Set F equal to the free group on the generators xi , and note
that h1(F) = h1 and h2(F) = h1∧h1. The identity map of generators gives a map of
central extensions

and hence a map of the respective homology spectral sequences. By the argument
above, equations (4.4), (4.5), and (4.6) hold in the spectral sequence for F and hence
in the spectral sequence for G. Moreover, each of the maps of the E2 terms involved
in these equations is onto, so it follows that the equations in (4.7) hold for G as well.
This completes the proof. ��

Remark 4.2 If the group h2 = h2(G) is torsion-free, then the commutative differential
graded algebra (E2, d2) is the Chevalley–Eilenberg cochain complex [4] of the Lie
algebra h/�3(h). Since E3

p,q = E∞
p,q for p + q = 2, it follows that the Lie algebra

homology group H2(h/�3(h)) is isomorphic to H2(G/�3(G)).

4.4 Identifying h3(G)with gr3(G)

We are now ready to state and prove the main result of this section. A proof of this
theoremwas first sketched byRybnikov in [37, Section 3]; we provide here an alternate
proof, with full details.

Theorem 4.3 Suppose H = H1(G;Z) is a finitely-generated, free abelian group, and
the holonomy map (h2)∗ : H2(G) → H ∧ H is injective. Then the canonical projection
h3(G) → gr3(G) is an isomorphism.

Proof Consider the homology spectral sequence of the exact sequence from (4.2),
whose E2 page is pictured in diagram (4.3). As in the proof of Theorem 3.1, let
F1 denote the image in H2(G/�3(G)) of the inverse image of the 1-skeleton of
K (G/�2(G), 1).

The proof of Theorem 4.1 shows that if H is torsion-free, then F1∼= h3(G).
The proof of Theorem 3.1 shows that if H is torsion-free and the holonomy map

(h2)∗ is injective, then F1∼= gr3(G), and the result follows. ��
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5 Second cohomology of nilpotent groups and associated
k-invariants

The purpose of this section is to use the exact sequence in equation (3.1) to relate
homomorphisms from H2(X) to grn(G) to the possible k-invariants of the central
extension of G/�n(G) to G/�n+1(G) from (2.2). Throughout this section, homology
will be taken with coefficients in Z.

In general, given an exact sequence of abelian groups

0 A B C 0,i j
(5.1)

a map σ : B → A with σ ◦ i = idA is called a left splitting and a map h : C → B
with j ◦h = idC is called a right splitting. Recall the following well-known fact:
The exact sequence in (5.1) splits (either on the left or the right) if and only if B ∼=
A⊕C . Furthermore, the direct sum decompositions of this sort are in one-to-one
correspondence with splitting maps B → A (or C → B). Moreover, as shown in the
proof of Lemma 5.1 below, a splitting yields a bijection between all splittings and the
set of homomorphisms from C to A.

Once again, let X be a path-connected space such that H1(X) is finitely generated
and torsion-free, and such that the holonomy map (h2)∗ : H2(X) → H1(X)∧ H1(X)

is injective. Set G = π1(X). Recall from Theorem 3.1 that for n ≥ 3 there is a split
exact sequence

0 grn(G) H2(G/�n(G)) H2(X) 0i π (5.2)

and from (2.6), the k-invariant χn gives a splitting; that is, in the diagram

0 grn(G) H2(G/�n(G)) H2(X) 0i π

χn (hn)∗

(5.3)

the map χn ◦ i is the identity on grn(G), while π ◦(hn)∗ is the identity on H2(X) and
ker(χn) = im(hn)∗.

Lemma 5.1 For n ≥ 3, any homomorphism σ : H2(G/�n(G)) → grn(G) with σ ◦ i
equal to the identity on grn(G) yields a bijection between splittings of the exact
sequence (5.2) and elements in Hom(H2(X), grn(G)).

Proof Themapσ gives an isomorphismbetween H2(G/�n(G)) andgrn(G)⊕ H2(X).
Without loss of generality, we can assume that via this isomorphism the inclusion i
and the projection π in (5.3) correspond to the maps ĩ and π̃ in the diagram below

0 grn(G) grn(G)⊕ H2(X) H2(X) 0,ĩ π̃ (5.4)

where ĩ is the inclusion into the first coordinate and π̃ is the projection onto the second
coordinate.
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An element λ ∈ Hom(H2(X), grn(G)) determines a splitting of (5.4) as follows.
Given λ, define a map h : H2(X) → grn(G)⊕ H2(X) by h(c) = (λ(c), c), and define
χ : grn(G)⊕ H2(X) → grn(G) by χ(x, c) = x − λ(c).

It is straightforward to check that in the diagram

0 grn(G) grn(G)⊕ H2(X) H2(X) 0ĩ π̃

χ h

(5.5)

the map χ ◦̃ i is the identity on grn(G), while π̃ ◦h is the identity on H2(X) and
ker(χ) = im(h). Every homomorphism h : H2(X) → grn(G)⊕ H2(X) with π̃ ◦h
equal to the identity on H2(X) has the form h(c) = (λ(c), c) and the lemma
follows. ��

In the context of the Postnikov tower (2.5) and the exact sequence in (5.2), this leads
to a formula for the k-invariant of the extension (2.2) from G/�n(G) to G/�n+1(G)

for a fixed n ≥ 3, in terms of a splitting map σ : H2(G/�n(G)) → grn(G) and a map
hn : X → K (G/�n(G), 1) corresponding to the projection of G to G/�n(G).

Corollary 5.2 With assumptions and notation as above, the k-invariant of the exten-
sion 0 → gr2(G) → G/�3(G) → G/�2(G) → 0 with respect to the direct sum
decomposition given by the splitting σ : H2(G/�n(G)) → grn(G) is the element

χn ∈ Hom(H2(G/�n(G)), grn(G)) ∼= H2(G/�n(G); grn(G))

given by the homomorphism χn(x, c) = x − λ(c), where λ = σ ◦(hn)∗ : H2(X) →
grn(G).

Proof The claim follows from Lemma 5.1 and the observation that for the map h in
(5.5), we have that λ = σ ◦h. ��

Example 5.3 We illustrate the above corollary with a simple example (for a more
general context, see Proposition 7.2 below). Let X be a wedge of � circles, so that
G = π1(X) is isomorphic to F�, the free group of rank �. Identifying G/�2(G) = Z�

and gr2(G) = ∧2Z�, the second nilpotent quotient N = G/�3(G) fits into a central
extension

0
∧2Z� N Z� 0.

q2 (5.6)

Note that H2(X) = 0, and so the homomorphism λ : H2(X) → Z� is the zero map.
Hence, by Corollary 5.2, the extension (5.6) is classified by the k-invariant χ2 = id ∈
Hom(

∧2Z�,
∧2Z�).
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6 Generalizations of Rybnikov’s theorem

6.1 The setup

Let X be a connected CW-complex. We will assume throughout that the homol-
ogy group H1(X) is finitely generated and torsion-free, and that the holonomy map
(h2)∗ : H2(X) → H1(X)∧ H1(X) is injective.

Let G = π1(X), and fix an integer n ≥ 2. Recall from (2.7) the exact sequence

H2(X) H2(G/�n(G)) grn(G) 0,
(hn)∗

where the map hn : X → K (G/�n(G), 1) is induced by the projection of G �
G/�n(G). If N is a nilpotent group with N ∼= N/�n(N ) ∼= G/�n(G), then Theorem
3.1 gives a split exact sequence

0 grn(G) H2(N ) H2(X) 0. (6.1)

Now let Xa and Xb be two spaces as above and let Ga , and Gb be the respective
fundamental groups. Suppose there is a map g : H≤2(Xb) → H≤2(Xa) which is an
isomorphism of graded rings. Set g : H≤2(Xa) → H≤2(Xb) equal to the dual to g.
Then

• There is an isomorphism Ga/�3(Ga) �−−→Gb/�3(Gb).
• The isomorphism g1 : H1(Xa) → H1(Xb) induces an isomorphism g# : h3(Ga) →
h3(Gb).

If f : Ga → Gb is a group homomorphism, we will denote by fn : Ga/�n(Ga) →
Gb/�n(Gb) the induced homomorphisms between the respective nilpotent quotients.

6.2 Statement and proof of the theorem

We are ready now to state and proof our generalization of [37, Theorem 12].

Theorem 6.1 With the assumptions above, fix n ≥ 3, let σa : H2(Ga/�n(Ga)) →
grn(Ga) be any left splitting of the exact sequence (6.1), and let fn : Ga/�n(Ga) →
Gb/�n(Gb) be any isomorphism that extends the map g1 : Ga/�2(Ga) →
Gb/�2(Gb). The following conditions are then equivalent:

1. The map g1 extends to an isomorphism fn+1 : Ga/�n+1(Ga) �−−→Gb/�n+1(Gb).
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2. There are liftings hc
n : Xc → K (Gc/�n(Gc), 1) for c = a and b such that the

following diagram commutes:

grn(Ga) grn(Gb)

H2(Ga/�n(Ga)) H2(Gb/�n(Gb))

H2(Xa) H2(Xb).

g#
∼=

( fn)∗

σa σb

(ha
n)∗

g2
∼=

λb

(hb
n)∗

λb (6.2)

In the above diagram, the map g# is the restriction of the map ( fn)∗ between the
respective extensions of type (6.1).

Proof First we show that if there is a commutative diagram such as the one above,
then the isomorphism fn : Ga/�n(Ga) �−−→ Gb/�n(Gb) extends to an isomorphism
Ga/�n+1(Ga) �−−→Gb/�n+1(Gb).

From the commutativity of diagram (6.2), it follows that σb is a left splitting. Using
the direct sum decompositions given by the left splittings, we may define maps

κc : H2(Gc/�n(Gc)) ∼= hn(Gc)⊕ H2(Xc) → hn(Gc)

for c = a or b by
κc(x, y) = x − λc(y).

Consider now the homology spectral sequences associated to the extensions (2.2)
for G = Ga and G = Gb, respectively. From the naturality of the Serre spectral
sequence and the commutativity of the aforementioned diagram, it follows that, with
respect to the direct sum decompositions, the map ( fn)∗ corresponds to the map
(x, y) → (g#(y), g2(y)). Thus, the following diagram is commutative:

hn(Ga) hn(Gb)

hn(Ga)⊕ H2(Xa) hn(Gb)⊕ H2(Xb).

g#

( fn)∗

κa κb (6.3)

Let E(κa) and E(κb) be the central extensions with k-invariants κa and κb, respec-
tively. Then from the commutativity of the diagram in (6.3) it follows that fn lifts to
an isomorphism f̃n : E(κa) → E(κb). On the other hand, Corollary 5.2 implies that
E(κa) = K (Ga/�n+1(Ga), 1) and E(κb) = K (Gb/�n+1(Gb), 1), and this com-
pletes the proof of the first part of the theorem.
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Toprove the reverse implication, assume that a left splittingσa : H2(Ga/�n(Ga) →
hn(Ga) and an isomorphism fn : Ga/�n(Ga) → Gb/�n(Gb) are given; we will then
show that there is a commutative diagram of the form (6.2).

Let en+1 : Ga/�n+1(Ga) → Gb/�n+1(Gb) be an isomorphism. The first step is
to prove that there is a commutative diagram

H2(Ga/�n(Ga)) H2(Gb/�n(Gb))

H2(Xa) H2(Xb).

( fn)∗

g2
∼=

(ha
n)∗ (hb

n)∗ (6.4)

Let en be the isomorphism from Ga/�n(Ga) to Gb/�n(Gb) induced by en+1. Then
en gives rise to the following commutative diagram in the tower of nilpotent quotients:

K (Ga/�n(Ga), 1) K (Gb/�n(Gb), 1)

Xa K (Ga/�2(Ga), 1) K (Gb/�2(Gb), 1) Xb.

en

πa
n πb

n

ha
2

h̃a
n

e2 hb
2

hb
n (6.5)

Since en and fn are both extensions of g, it follows that the automorphism e−1
n ◦ fn :

Ga/�n(Ga) → Ga/�n(Ga) is an extension of the identity map. This gives the
following commutative diagram:

K (Ga/�n(Ga), 1) K (Ga/�n(Ga), 1)

Xa K (Ga/�2(Ga), 1) K (Ga/�2(Ga), 1) Xa .

e−1
n ◦ fn

πa
n πa

n

ha
2

ha
n

id
ha
2

h̃a
n (6.6)

Putting diagrams (6.5) and (6.6) together and passing to homology gives the commu-
tative diagram (6.4). Then the left splitting σa determines a left splitting σb such that
the upper rectangle in the diagram (6.2) commutes, and the proof of the theorem is
complete. ��

6.3 Further refinements

The above proof shows the following: if the map hb
2 : Xb → K (Gb/�2(Gb), 1)

is given, and if fn : Ga/�n(Ga) �−−→ Gb/�n(Gb) is an isomorphism, then there is
an extension of fn to an isomorphism fn+1 : Ga/�n+1(Ga) �−−→ Gb/�n+1(Gb) if
and only if there is a lifting ha

n : X → K (Ga/�n(Ga), 1) such that diagram (6.2)
commutes. The next theorem recasts this result in a more compact fashion.
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Theorem 6.2 With notation and assumptions as above, suppose N is a nilpotent group
with N ∼= N/�n(N ) and that the map �b : Xb → K (N , 1) induces an isomorphism
Gb/�n(Gb)

�−−→ N. Let σ : H2(N ) → grn(N ) be a splitting of the exact sequence
(6.1) and fn : Ga/�n(Ga) → Gb/�n(Gb) an isomorphism. Then there is an isomor-
phism

fn+1 : Ga/�n+1(Ga)
∼=−→ Gb/�n+1(Gb)

extending fn if and only if there is a map �a : Xa → K (N , 1) inducing an isomorphism
Ga/�n(Ga) �−−→ N such that the following diagram commutes:

grn(N )

H2(N )

H2(Xa) H2(Xb).

σ

g2
∼=

μa

(�a)∗

μb

(�b)∗

(6.7)

Proof Let eb
n be a isomorphism from K (Gb/�n(Gb), 1) to K (N , 1) and consider the

following diagram:

K (Ga/�n(Ga), 1) K (N , 1) K (Gb/�n(Gb), 1)

Xa K (N/�2(N ), 1) Xb,

ea
n

pn

eb
n

ha
n

qa

�a

qb

�b
hb

n
(6.8)

where ea
n = eb

n ◦ fn and qa is determined by the condition that on the first homology
groups qa = qb◦g1. The corresponding diagram of homology groups and maps is

H2(Ga/�n(Ga)) H2(N ) H2(Gb/�n(Gb))

H2(Xa) Xb.

(ea
n )∗
∼=

( fn)∗

∼=
(eb

n)∗

(ha
n)∗

(�a)∗

∼=
g2

(�b)∗
(hb

n)∗ (6.9)

Since the maps ea
n and eb

n in (6.8) are isomorphisms, it follows that there is a bijection
between liftings �a and ha

n in (6.8), and also a bijection between liftings �b and hb
n .
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Moreover, in (6.9)

(�a)∗ = (�b)∗◦g2 ⇐⇒ (hb
n)∗◦g2 = ( fn)∗◦(ha

n)∗. (6.10)

Consider now the diagram

grn(Ga) grn(N ) grn(Gb)

H2(Ga/�n(Ga)) H2(N ) H2(Gb/�n(Gb))

H2(Xa) H2(Xb),

(ea
n )#

∼=

g#

∼=
(eb

n)#

(ea
n )∗
∼=

σa σ σb

∼=
(eb

n)∗

(ha
n)∗

g2

(�a)∗

λa

(�b)∗
(hb

n)∗

λb
(6.11)

where the maps (ea
n)# and (eb

n)# are induced by the corresponding isomorphisms of
groups ea

n and eb
n , and the splittings σa and σb are defined by requiring that the top two

rows in (6.11) form a commutative diagram.
From (6.10) and a diagram chase, it follows that (6.11) commutes if and only if

the corresponding diagram (6.2) commutes, and also that (6.11) commutes if and only
if diagram (6.7) commutes with μa = (ea

n)# ◦σa ◦(ha
n)∗ and μb = (eb

n)#◦σb ◦(hb
n)∗.

The desired conclusion follows. ��
Remark 6.3 In the work of Rybnikov [36,37], it is assumed that the groups h2 and h3
are torsion-free. Then replacing the modules and maps in Theorem 6.1 for n = 3 with
their Hom duals yields [37, item 2 of Theorem 12]. The result in Theorem 6.2 for
n = 3 corresponds to [36, Theorem 2.2].

6.4 The Stallings mod p lower central series

Let G be a group, and let p = 0 or a prime. Following Stallings [42], define subgroups
�

p
n (G) < G as follows:

�
p
1 (G) = G,

�
p
n+1(G) = 〈gug−1u−1v p | g ∈ G, u, v ∈ �

p
n (G)〉,

where 〈U 〉 denotes the subgroup generated by a subset U ⊂ G. Then {� p
n (G)}n≥1 is a

descending central series of normal subgroups. For p = 0 it is the lower central series;
for p �= 0 it is the most rapidly descending central series whose successive quotients
are vector spaces over the field of p elements. If we set gr p

n (G) = �
p
n (G)/�

p
n+1(G),

then gr p(G) ..= ⊕
n≥1 gr

p
n (G) is a graded Lie algebra over Zp in a natural way.
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Now let X be a path-connected space, and G = π1(X). For the remainder of this
section all homology groups are with Zp coefficients, where Z0 denotes the integers.
As shown in [42], there is an exact sequence

H2(X) H2(G/�
p
n (G)) gr p

n (G) 0,
(hn)∗ (6.12)

where the map hn : X → G/�
p
n (G) is induced by the projection of G = π1(X) to

G/�
p
n (G). The proof of Theorem 3.1 extends to show that if (h2)∗ is amonomorphism

and N is a nilpotent group with N ∼= N/�
p
n (N ) ∼= G/�

p
n (G), then there is a split

exact sequence

0 gr p
n (G) H2(N ) H2(X) 0 (6.13)

for all n ≥ 3.

6.5 An extension of Rybnikov’s theorem in characteristic p

Let Xa and Xb be path-connected spaces with Ga = π1(Xa) and Gb = π1(Xb).
Assume p = 0 or p a prime has been chosen; all homology groups in the following
theorem are with Zp coefficients. Assume also that H1(Xa) and H1(Xb) are finitely
generated, and the respective maps (h2)∗ are monomorphisms.

Suppose we are given an isomorphism g : H≤2(Xb) → H≤2(Xa) of graded alge-
bras. Set g : H≤2(Xa) → H≤2(Xb) equal to the dual to g. Then given the exact
sequences from (6.12) and (6.13), the steps in the proof of Theorem 6.1 apply to prove
the following.

Theorem 6.4 With the assumptions above, fix n ≥ 3, let σa : H2(Ga/�
p
n (G)) →

gr p
n (Ga) be any left splitting of the exact sequence (6.13), and let fn : Ga/�

p
n (Ga) →

Gb/�
p
n (Gb) be any isomorphism that extends the map g1 : Ga/�

p
2 (Ga) →

Gb/�
p
2 (Gb). The following conditions are then equivalent:

1. The map g1 extends to an isomorphism fn+1 : Ga/�
p
n+1(Ga) �−−→Gb/�

p
n+1(Gb).

2. There are liftings hc
n : Xc → K (Gc/�

p
n (Gc), 1) for c = a and b such that the

following diagram commutes:

gr p
n (Ga) gr p

n (Gb)

H2(Ga/�
p
n (Ga)) H2(Gb/�

p
n (Gb))

H2(Xa) H2(Xb).

g#
∼=

( fn)∗

σa σb

(ha
n)∗

g2
∼=

λa

(hb
n)∗

λb
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In the above diagram, the map g# is the restriction of the map ( fn)∗ between the
respective extensions of type (6.13). The reasoning from Theorem 6.2 generalizes to
show that Theorem 6.4 implies the following result.

Theorem 6.5 With the assumptions as in Theorem 6.4, assume N is a nilpotent
group with N ∼= N/�

p
n (N ) and that �b : Xb → K (N , 1) induces an isomorphism

Gb/�
p
n (Gb)

�−−→ N. Let σ be a splitting of the exact sequence (6.13). Then there is
an isomorphism

fn+1 : Ga/�
p
n+1(Ga)

∼=−→ Gb/�
p
n+1(Gb)

extending g2 if and only if there is a map �a : Xa → K (N , 1) inducing an isomorphism
of Ga/�

p
n (Ga) → N such that the following diagram commutes:

gr p
n (N )

H2(N )

H2(Xa) H2(Xb).

σ

g2
∼=

μa

(�a)∗

μb

(�b)∗

7 Hyperplane arrangements

We now apply the tools developed in the previous sections to a class of spaces that
arise in a combinatorial context. These spaces—complements of complex hyperplane
arrangements—have motivated to a large extent the approach taken here, and provide
a blueprint for further applications.

7.1 Complement and intersection lattice

We start with a brief review of arrangement theory; for details and references, we refer
to the monograph of Orlik and Terao [29].

An arrangement of hyperplanes is a finite setA of codimension-1 linear subspaces
in a finite-dimensional, complex vector space Cn. The combinatorics of the arrange-
ment is encoded in its intersection lattice, L(A), that is, the poset of all intersections
of hyperplanes inA (also known as flats), ordered by reverse inclusion, and ranked by
codimension. For a flat Y = ⋂

H∈B H defined by a sub-arrangement B ⊂ A, we let
rank Y = codim Y ; we also write Lk(A) = {Y ∈ L(A) | rank Y = k }.

The main topological invariant associated to such an arrangement A is its comple-
ment, M(A) = Cn \ ⋃

H∈A H . This is a connected, smooth complex quasi-projective
variety. Moreover, M(A) is a Stein manifold, and thus has the homotopy type of a
finite CW-complex of dimension at most n.
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Probably the best-known example is the braid arrangement An , consisting of the
diagonal hyperplanes in Cn. It is readily seen that L(An) is the lattice of partitions
of [n] = {1, . . . , n}, ordered by refinement, while M(An) is the configuration space
F(C, n) of n ordered points inC. In the early 1960s, Fox, Neuwirth, and Fadell showed
that M(An) is a classifying space for Pn , the pure braid group on n strings.

For a general arrangement A, the cohomology ring H∗(M(A),Z) was computed
by Brieskorn in the early 1970s, building on pioneering work of Arnol’d on the coho-
mology ring of the braid arrangement. It follows from Brieskorn’s work that the space
M(A) is formal over Q. Consequently, the fundamental group of the complement,
G(A) = π1(M(A), x0), is 1-formal over Q.

In 1980, Orlik and Solomon gave a simple combinatorial description of the ring
H∗(M(A),Z): it is the quotient E(A)/I (A) of the exterior algebra E(A) on classes
dual to the meridians around the hyperplanes, modulo a certain ideal I (A) defined
in terms of the intersection lattice of A. In particular, the cohomology ring of the
complement is combinatorially determined; that is to say, ifA andB are arrangements
with L(A) ∼= L(B), then H∗(M(A),Z) ∼= H∗(M(B),Z).

7.2 Localized sub-arrangements

The localization of an arrangement A at a flat Y ∈ L(A) is defined as the sub-
arrangement

AY = {H ∈ A | H ⊃ Y }.
The inclusion gives rise to an inclusion of complements, jY : M(A) ↪→
M(AY ). Choosing a point x0 sufficiently close to 0 ∈ Cn, we can make it a common
basepoint for both M(A) and all local complements M(AY ).

Lemma 7.1 [12] There exist basepoint-preserving maps rY : M(AY ) → M(A) such
that jY ◦rY � id relative to x0. Moreover, if H ∈ A and H �⊃ Y , then the composite
rY ◦ jY ◦rH is null-homotopic.

In particular, if we set G(AY ) = π1(M(AY ), x0), then the induced homomorphisms
(rY )# : G(AY ) → G(A) are all injective.

The inclusions { jY }Y∈L(A) assemble into a map

j : M(A) →
∏

Y∈L(A)

M(AY ). (7.1)

The classical Brieskorn Lemma insures that the induced homomorphism in cohomol-
ogy is an isomorphism in each degree k ≥ 1. By the Künneth formula, then, we have
that

Hk(M(A),Z) ∼=
⊕

Y∈Lk (A)

Hk(M(AY ),Z)

for all k ≥ 1. Likewise, the Orlik–Solomon ideal decomposes in each degree as

I k(A) ∼=
⊕

Y∈Lk (A)

I k(AY ).
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It follows that the homology groups of the complement of A are torsion-free, with
ranks given by

bk(M(A)) =
∑

Y∈Lk (A)

(−1)kμ(Y ),

where μ : L(A) → Z is the Möbius function of the intersection lattice, defined induc-
tively by μ(Cn) = 1 and μ(Y ) = −∑

Z�Y μ(Z). In particular, H1(M(A),Z) is free
abelian of rank equal to the cardinality of the arrangement, |A|.

Of particular interest to us is what happens in degree k = 2. For a 2-flat Y , the
localized sub-arrangement AY is a pencil of |Y | = μ(Y ) + 1 hyperplanes. Conse-
quently, M(AY ) is homeomorphic to (C\{μ(Y ) points})×C∗×Cn−2, and so M(AY )

is a classifying space for the group G(AY ) = Fμ(Y )×Z.

7.3 The second nilpotent quotient of an arrangement group

Let G = G(A) be an arrangement group. Then G admits a commutator-relators
presentation of the form G = F/R, where F is the free group on generators
{xH }H∈A corresponding to meridians about the hyperplanes, and R ⊂ [F, F] (see
for instance [10] as well as [43] and references therein).

Plainly, the abelianization Gab = H1(M(A)) is the free abelian group on {xH }H∈A.
On the other hand, as noted for instance in [27], the abelian group gr2(G) is theZ-dual
of I 2(A); in particular, gr2(G) is also torsion-free. The central extension (2.2) with
n = 2 takes a very explicit form, detailed in the next result.

Proposition 7.2 ([27]) For any arrangement A, the second nilpotent quotient of G(A)

fits into a central extension of the form

0 (I 2(A))∗ G(A)/�3(G(A)) H1(M(A)) 0.

Furthermore, the k-invariant of this extension, χ2 : H2(Gab) → gr2(G), is the dual
of the inclusion map I 2(A) ↪→ E2(A) = ∧2Gab.

It follows that G/�3(G) is the quotient of the free, 2-step nilpotent group F/�3(F)

by all commutation relations of the form

[

xH ,
∏

K∈A
K⊃Y

xK

]

,

indexed by pairs of hyperplanes H ∈ A and flats Y ∈ L2(A) such that H ⊃ Y
(see [27,36]). From this description it is apparent that the second nilpotent quotient of
an arrangement group is combinatorially determined. More precisely, if A and B are
two arrangements such that L≤2(A) ∼= L≤2(B), there is then an induced isomorphism,
G(A)/�3(G(A)) ∼= G(B)/�3(G(B)).
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7.4 Holonomy Lie algebra

The holonomy Lie algebra of an arrangementA is defined as h(A) = h(G(A)). Using
the Orlik–Solomon description of the cohomology ring of M(A), it is readily seen
that h(A) is the quotient of L(A), the free Lie algebra on variables {xH }H∈A, modulo
the ideal generated by relations arising from the rank 2 flats:

h(A) = L(A)
/
ideal

{[

xH ,
∑

K∈A
K⊃Y

xK

] ∣
∣
∣ H ∈ A, Y ∈ L2(A), and H ⊃ Y

}

. (7.2)

By construction, this is a quadratic Lie algebra which depends solely on the ranked
poset L≤2(A). More precisely, if A and B are two arrangements such that L≤2(A) ∼=
L≤2(B), there is then an induced isomorphism h(A) ∼= h(B).

As shown by Kohno [19] (based on foundational work by Sullivan [46] and Mor-
gan [28]), the associated graded Lie algebra gr(G(A)) and the holonomy Lie algebra
h(A) are rationally isomorphic:

h(A)⊗Q ∼= gr(G(A))⊗Q.

In [15], Falk sketched the construction of a 1-minimal model for M(A) and used this
to show that the rank of gr3(G(A))—now sometimes known as the “Falk invariant" of
the arrangement—is equal to the nullity of the multiplication map E1(A)⊗ I 2(A) →
E3(A) over Q. Further information on the ranks of the LCS quotients grn(G(A)) can
be found in [40].

At the integral level, there is a surjective Lie algebra map, Ψ : h(A) � gr(G(A)),
such that Ψ ⊗Q is an isomorphism. In general, there exist arrangements for which
the map Ψ is not injective. Nevertheless, as a consequence of Theorem 4.3 and the
preceding discussion, we have the following result.

Theorem 7.3 For any arrangement A, the map Ψ3 : h3(A) → gr3(G(A)) is an iso-
morphism.

Consequently, the group gr3(G(A)) is combinatorially determined; that is, ifA andB
are two arrangements such that L≤2(A) ∼= L≤2(B), then gr3(G(A)) ∼= gr3(G(B)).

On the other hand, as first noted in [43], there exist arrangements A for which
grk(G(A)) has non-zero torsion for some k > 3. This naturally raised the question
whether such torsion in the LCS quotients of arrangement groups is combinatorially
determined. The question was recently answered by Artal Bartolo, Guerville-Ballé,
and Viu-Sos [3], who produced a pair of arrangements A and B with L≤2(A) ∼=
L≤2(B), yet gr4(G(A)) � gr4(G(B)); the difference (detected by computer-aided
computation) lies in the 2-torsion of the respective groups.
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8 Decomposable arrangements and nilpotent quotients

We conclude with an in-depth study of a particularly nice class of hyperplane arrange-
ments. Building on work of Papadima and Suciu [31], we show that the tower of
nilpotent quotients of the fundamental group of the complement of a decomposable
arrangement is fully determined by the intersection lattice.

8.1 Decomposable arrangements

LetA be an arrangement. As we saw in Sect. 7.2, for each 2-flat Y ∈ L2(A), the group
G(AY ) is isomorphic to Fμ(Y )×Z; hence, gr(G(AY )) ∼= Lμ(Y )×L1. Furthermore,
from the defining relations (7.2), we infer that h(AY ) ∼= gr(G(AY )).

Let j be the map from (7.1). Projecting onto the factors corresponding to rank 2
flats we obtain a map

j : M(A) →
∏

Y∈L2(A)

M(AY ).

The induced homomorphism on fundamental groups

j# : G(A) →
∏

Y∈L2(A)

G(AY )

defines a morphism of graded Lie algebras

h( j#) : h(A) →
∏

Y∈L2(A)

h(AY ).

Proposition 8.1 ([31]) For any arrangement A, the homomorphism

hn( j#) : hn(A) →
∏

Y∈L2(A)

hn(AY )

is a surjection for n ≥ 3 and an isomorphism for n = 2.

Following [31], we say that the arrangementA is decomposable if the map h3( j#) is an
isomorphism (for related notions of decomposability, see also [11,40]). The following
theorem completely describes the structure of the associated graded and holonomy
Lie algebras of a decomposable arrangement.

Theorem 8.2 ([31]) If A is a decomposable arrangement, then the following hold:

1. The map h′( j#) : h′(A) → ∏
Y∈L2(A) h

′(AY ) is an isomorphism of graded Lie
algebras.

2. The map ΨA : h(A) � gr(G(A)) is an isomorphism.
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It follows from this theorem that the groups hn(A) = grn(G(A)) are torsion-free,
with ranks φn = φn(G(A)) given by

∞∏

n=1

(1 − tn)φn = (1 − t)|A|−∑
Y∈L2(A) μ(Y )

∏

Y∈L2(A)

(1 − μ(Y )t).

Moreover, since the holonomy Lie algebra of any arrangement is combinatorially
determined, we have the following immediate corollary.

Corollary 8.3 If A and B are decomposable arrangements with L≤2(A) ∼= L≤2(B),
then gr(G(A)) ∼= gr(G(B)).

8.2 Nilpotent quotients and localized arrangements

Our goal now is to strengthen Corollary 8.3 from the level of the LCS quotients
grn(G(A)) to the level of the nilpotent quotients G(A)/�n(G(A)). We start with
some preparatory results on the second homology of these nilpotent groups.

Lemma 8.4 Let A be an arrangement and set G = G(A). There is then a natural,
split exact sequence

0 h3(A) H2(G/�3(G)) H2(M(A)) 0.

Moreover, if A is decomposable, then for every n ≥ 3 there is a natural, split exact
sequence

0 hn(A) H2(G/�n(G)) H2(M(A)) 0. (8.1)

Proof Thefirst assertion follows fromTheorems3.1 and7.3,while the second assertion
follows from Theorems 3.1 and 8.2. ��
For an arbitrary arrangement A and for a 2-flat Y ∈ L2(A), we let AY be the
corresponding localized arrangement, and write GY = G(AY ). The inclusion map
jY : M(A) → M(AY ) induces a homomorphism ( jY )# : G → GY on fundamental
groups, which in turn induces homomorphisms

Nn( jY ) : G/�n(G) → GY /�n(GY )

on the respective nilpotent quotients. Assembling these maps, we obtain a homomor-
phism

Nn( j) : G/�n(G) →
∏

Y∈L2(A)

GY /�n(GY ).
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Proposition 8.5 For any arrangement A, and for each n ≥ 3, the map Nn( j) induces
a surjection in second homology,

Nn( j)∗ : H2(G/�n(G)) �
⊕

Y∈L2(A)

H2(GY /�n(GY )).

Moreover, if A is decomposable, then the maps Nn( j)∗ are isomorphisms, for all
n ≥ 3.

Proof Fix n ≥ 3, and set N = G(A)/�n(G(A)) and NY = G(AY )/�n(G(AY )).
Consider the following diagram:

0 hn(A) H2(N ) H2(M(A)) 0

0
⊕

Y hn(AY )
⊕

Y H2(NY )
⊕

Y H2(M(AY )) 0.

hn( j#) Nn( j)∗ j∗

It follows from Lemma 8.4 that the top and bottom rows are (split) exact. Furthermore,
the naturality of the exact sequence (8.1) implies that the diagram commutes. By
Brieskorn’s Lemma, the map j∗ is an isomorphism. Furthermore, by Proposition 8.1,
the map hn( j#) is a surjection. The first claim follows at once.

If the arrangement is decomposable, then by Theorem 8.2 the map hn( j#) is an
isomorphism, whence Nn( j)∗ is also an isomorphism. ��

8.3 Liftingmaps to nilpotent quotients

Let A be an arrangement and set G = π1(M(A)). Composing a classifying map
M(A) → K (G, 1)with themap K (G, 1) → K (Gab, 1) induced by the abelianization
homomorphism G → Gab, we obtain a map of spaces, h : M(A) → K (Gab, 1),
uniquely defined up to homotopy. Fix an integer n ≥ 3, and write N = G/�n(G) and
NY = GY /�n(GY ) for Y ∈ L2(A).

Lemma 8.6 Suppose � : M(A) → K (N , 1) is a (homotopy) lifting of h. For each 2-
flat Y ∈ L2(A), there is then a map �Y : M(AY ) → K (NY , 1) which lifts the map
hY : M(AY ) → K ((GY )ab, 1) and fits in the commuting diagram

K (N , 1) K (NY , 1)

M(A) M(AY ).

Nn( jY )

�

jY

�Y

Proof We define the map �Y by forming the composite

M(AY ) M(A) K (N , 1) K (NY , 1),
rY � Nn( jY )

123



1068 R.D. Porter, A.I. Suciu

where the first map is the one from Lemma 7.1, while the last map is induced by the
homomorphism Nn( jY ) : N → NY . The two claims follow at once. ��
We now prove a converse to Lemma 8.6: given “local lifts" �Y , there is a way to
assemble them into a “global lift," which we will denote by �̃. To state the result
more precisely, start by recalling that the map j : M(A) → ∏

Y M(AY ) induces an
isomorphism h2( j#) : h2(G) �−−→⊕

Y h2(GY ).

Lemma 8.7 LetA be an arrangement. Suppose that, for each 2-flat Y ∈ L2(A), we are
given a lift �Y : M(AY ) → K (NY , 1) of the map hY : M(AY ) → K ((GY )ab, 1). There
is then a map �̃ : M(A) → K (N , 1) which lifts the map h : M(A) → K (Gab, 1), and
such that the following diagram commutes:

H2(N )
⊕

Y H2(NY )

H2(M(A))
⊕

Y H2(M(AY )).

Nn( j)∗

�̃∗
j∗
∼=

⊕
Y (�Y )∗ (8.2)

Proof Recall that we have a central extension

0 grn(G) G/�nG G/�n−1G 0.

Recall also that the group G is generated by meridians xH about the hyperplanes
H ∈ A, and likewise for Gab. Thus, if � : M(A) → K (N , 1) is any map which lifts
h : M(A) → K (Gab, 1), the homomorphism �# : G → N is given on generators by

�#(xH ) = xH a2(H) · · · an−1(H), (8.3)

for some ai (H) ∈ gr i (G). What we need to do is pick these elements ai (H) in such
a way so that diagram (8.2) commutes.

First note the following consequence of Lemma 7.1: If Z and Y are different 2-flats
and H ⊃ Z , then ( jY )# ◦(rZ )#(xH ) is the identity element in NY .

The next step is to see that if Z and Y are distinct 2-flats and if a ∈ gr i (G Z ), for
2 ≤ i ≤ n − 1, then ( jY )#(a) is the identity element in NY . The group gr i (G Z ) is
generated by iterated brackets of the generators xH for H ∈ AZ . If any one or more
of these generators is replaced by the identity, then the resulting bracket equals the
identity. Let a be an iterated bracket in gr i (G Z ). Since a involves at least one generator
xH ′ with H ′ �⊃ Y , and since ( jY )# ◦(rZ )#(xH ′) is the identity in NY , it follows that
( jY )# ◦(rZ )#(a) is also the identity in NY .

By (8.3), the homomorphism (�Y )# : GY → NY is given on generators by

(�Y )#(xH ) = xH a2(H , Y ) · · · an−1(H , Y ),
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for some ai (H , Y ) ∈ hi (GY ), where H ⊃ Y . Define a map �̃ : M(A) → K (N , 1) by
requiring that

�̃#(xH ) = xH

∏

H⊃Y

a2(H , Y ) · · ·
∏

H⊃Y

an−1(H , Y ).

Now let X and Y be different 2-flats in L2(A) and consider the composition

ξXY : M(AX ) M(A) K (N , 1) K (NY , 1).
rX �̃ Nn( jY )

From the result above, it follows that (ξXY )#(xH ) is the identity in NY for all hyper-
planes H ∈ A such that H ⊃ X but H �⊃ Y . Since there is a unique hyperplane
K with K ⊃ X and K ⊃ Y , the image of the homomorphism (ξXY )# : G X → NY

is the (infinite cyclic) subgroup generated by the single element (ξXY )#(xK ). Hence,
the map ξXY factors through K (Z, 1). Since H2(Z) = 0, it follows that the induced
homomorphism (ξXY )∗ : H2(M(AX )) → H2(NY ) is the zero map. The lemma now
follows by a diagram chase. ��

8.4 The nilpotent quotients of a decomposable arrangement group

In [36,37], Rybnikov showed that, in general, the third nilpotent quotient of an arrange-
ment group is not determined by the intersection lattice. Specifically, he produced a
pair of arrangements A and B of 13 hyperplanes in C3 such that L(A) ∼= L(B),
yet G(A)/�4(G(A)) � G(B)/�4(G(B)). By contrast, we can use our approach to
show that the phenomenon detected byRybnikov cannot happen among decomposable
arrangements. Here, then, is the main result of this section.

Theorem 8.8 If A and B are decomposable arrangements with L≤2(A) ∼= L≤2(B),
then, for each n ≥ 2, there is an isomorphism

G(A)/�n(G(A)) ∼= G(B)/�n(G(B)).

Proof Let G = π1(M(B)) and set N = G/�n(G). We start by picking a lifting
�B : M(B) → K (N , 1) of the map M(B) → K (Gab, 1). For each 2-flat Z ∈ L2(B),
we obtain a map �Z : M(BZ ) → K (NZ , 1), defined as in Lemma 8.6.

Having an isomorphism of posets L≤2(A) ∼= L≤2(B) means we have a bijection
A → B which induces a compatible bijection L2(A) → L2(B). Let Y ∈ L2(A) and
Z ∈ L2(B) be a pair of 2-flats which correspond under the aforementioned bijection.
Using the description of localized arrangement complements from (7.2), we obtain a
homeomorphism f Y Z : M(AY ) → M(BZ ) between the respective complements.

By the forward implication of Theorem 6.2, there is a map �Y : M(AY ) →
K (NY , 1) and a splitting σY : H2(NY ) → hn(NY ) such that the following diagram

123



1070 R.D. Porter, A.I. Suciu

commutes:
hn(NY )

H2(NY )

H2(M(AY )) H2(M(BZ )).

σY

f Y Z∗
∼=

μY

(�Y )∗

μZ

(�Z )∗

Using the bijection L2(A) → L2(B), the maps f Y Z∗ assemble to give an isomorphism
Φ : H2(M(A)) �−−→ H2(M(B)). The decomposability assumption together with The-
orem 8.2 insure that

hn(G) ∼=
⊕

Z∈L2(B)

hn(G(BZ )).

Furthermore, by Proposition 8.5, we have that

H2(N ) ∼=
⊕

Z∈L2(B)

H2(NZ ).

Consequently, the homomorphisms σZ : H2(NY ) → hn(NY ) may be assembled into
a homomorphism σ : H2(N ) → hn(N ).

Next, using the maps �Y : M(AY ) → NY , we define a lifting �̃A : M(A) →
K (N , 1) by the procedure outlined in Lemma 8.7. It is then readily verified that
the diagram

hn(N )

H2(N )

H2(M(A)) H2(M(B))

σ

Φ
∼=

μA

(�̃A)∗

μB

(�B)∗

commutes. The result follows from the backwards implication of Theorem 6.2. ��
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