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Abstract
Self-dual cyclic codes over rings and their generalizations have become of interest
due to their rich algebraic structures and wide applications. Cyclic and self-dual cyclic
codes over the ring Fpk + uFpk have been quite well studied, where p is a prime, k is
a positive integer, and u2 = 0. We focus on negacyclic codes over Fpk + uFpk , where
p is an odd prime and k is a positive integer. An alternative and explicit algebraic
characterization of negacyclic codes of length ps over Fpk+ uFpk is presented. Based
on this result, representation and enumeration of self-dual negacyclic codes of length
ps over Fpk + uFpk are given under both the Euclidean and Hermitian inner products.
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1 Introduction

Self-dual cyclic and negacyclic codes over finite fields have been extensively studied
for both theoretical and practical reasons. Codes over finite rings have been of interest
since it was proven that some binary non-linear codes such as the Kerdock, Preparata,
and Goethal codes are the Gray images of linear codes over Z4 (see [9]). Cyclic codes,
negacyclic codes and their generalizations have extensively been studied over Zpr ,
Galois rings, Fpk + uFpk with u2 = 0 and finite chain rings (see [1–8,10,11,13–16]
and references therein).

Recently, a lot attention has been paid to families of negacyclic and self-dual codes
over Fpk+ uFpk , and there is a significant progress on these topics (see [3,6–8,14]). In
[3], characterization and presentation of negacyclic codes of length ps over Fpk+uFpk

have been established. Later, the algebraic structure of negacyclic codes of lengths 2ps

and 4ps over the ringFpk+uFpk has been studied in [6–8,14]. Subsequently, properties
of Euclidean duals of negacyclic codes and Euclidean self-dual negacyclic codes of
lengths 2ps and 4ps overFpk+uFpk have been studied in [8,14] and [6,7], respectively.
To the best of our knowledge, a complete characterization and enumeration of self-dual
negacyclic codes of length ps have not been explicitly given so far.

Using a method which is a modification of the one in [13], the algebraic structure
and number of cyclic codes of length ps over Fpk + uFpk have been presented in [2].
In loc. cit., a complete characterization and enumeration of self-dual cyclic codes of
length ps over Fpk + uFpk have been given under both the Euclidean and Hermitian
inner products.

In this paper, we focus on negacyclic codes of length ps over Fpk + uFpk which
makes sense only in the case where p is an odd prime and k is a positive integer.
Throughout, assume that p is an odd prime and k is a positive integer. It is not difficult
to verify that the map

ω : (
Fpk + uFpk

)[x]/〈x ps − 1〉 → (
Fpk + uFpk

)[x]/〈x ps + 1〉

defined by

f (x) + 〈x ps − 1〉 �→ f (−x) + 〈x ps + 1〉

is a ring isomorphism. Hence, the results on cyclic codes and self-dual cyclic codes
of length ps over Fpk + uFpk in [2] can be carried over to negacyclic codes and
self-dual negacyclic codes of length ps over Fpk + uFpk . Here, an alternative and
direct method to study negacyclic codes and self-dual negacyclic codes of length ps

over Fpk + uFpk is given. Characterization and enumeration of negacyclic codes of
length ps over Fpk+ uFpk are given by extending the techniques used in [2,10,12,13].
Furthermore, characterization of self-dual negacyclic codes of length ps over Fpk +
uFpk is established under both the Euclidean and Hermitian inner products. Based on
this characterization, enumeration of such self-dual codes is provided as well.

The paper is organized as follows. InSect. 2, somebasic results on the ringFpk+uFpk

are recalled. The characterization and enumeration of negacyclic codes of length ps
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overFpk+uFpk are provided in Sect. 3. In Sect. 4, the characterization and enumeration
of self-dual negacyclic codes of length ps over Fpk + uFpk are discussed.

2 Preliminaries

In this section, some definitions and basic properties of negacyclic codes over Fpk +
uFpk are recalled. For a prime p and positive integer k, denote by Fpk the finite field of
order pk. The set Fpk+ uFpk

..= {a + ub : a, b ∈ Fpk } forms a commutative chain ring
with identity, where addition and multiplication are defined as in the usual polynomial
ring over Fpk with indeterminate u together with the condition u2 = 0. In the case
where k is even, the map ·̃ : Fpk + uFpk → Fpk + uFpk defined by

α̃ = a pk/2+ ubpk/2 (1)

for all α = a + ub ∈ Fpk+ uFpk is a ring automorphism. For more details concerning
properties of Fpk + uFpk , we refer the reader to [3].

A linear code of length n overFpk+uFpk is defined to be an (Fpk+uFpk )-submodule
of the (Fpk + uFpk )-module (Fpk + uFpk )

n.
The Euclidean inner product on (Fpk + uFpk )

n is defined by

〈a, b〉E ..=
n−1∑

i=0

αiβi

for all a = (α0, α1, . . . , αn−1) and b = (β0, β1, . . . , βn−1) in (Fpk + uFpk )
n. In

addition, if k is even, the Hermitian inner product on (Fpk + uFpk )
n is defined to be

〈a, b〉H ..=
n−1∑

i=0

αi β̃i

for all a = (α0, α1, . . . , αn−1) and b = (β0, β1, . . . , βn−1) in (Fpk + uFpk )
n. The

Euclidean dual of a linear code C of length n over Fpk + uFpk is defined to be

C⊥E ..= {
a ∈ (

Fpk + uFpk
)n : 〈a, b〉E = 0 for all b ∈ C

}
.

Similarly, if k is even, the Hermitian dual of C is defined as

C⊥H ..= {
a ∈ (

Fpk + uF
)n : 〈a, b〉H = 0 for all b ∈ C

}
.

A linear code C is said to be Euclidean self-dual (resp., Hermitian self-dual) if C =
C⊥E (resp., C = C⊥H).

In the case where p is odd, −1 �= 1 in Fpk . Then we have the following con-
cepts. A linear code C of length n over Fpk + uFpk is called a negacyclic code if
C is invariant under the negacyclic shift, i.e., (−cn−1, c0, c1, . . . , cn−2) ∈ C for all
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(c0, c1, . . . , cn−1) ∈ C . It is well known that there exists a one-to-one correspondence
between the negacyclic codes of length n over Fpk + uFpk and the ideals in the quo-
tient ring (Fpk+ uFpk )[x]/〈xn+ 1〉. Precisely, a negacyclic code C of length n can be
represented by the ideal

{ n−1∑

i=0

ci x
i : (c0, c1, . . . , cn−1) ∈ C

}

in (Fpk + uFpk )[x]/〈xn + 1〉.
Here, we focus on negacyclic and self-dual negacyclic codes over Fpk + uFpk . For

convenience, denote by N(pk, n),NE(pk, n) and NH(pk, n) the number of negacyclic
codes, the number of Euclidean self-dual negacyclic codes, and the number of Her-
mitian self-dual negacyclic codes of length n over Fpk + uFpk , respectively.

3 Negacyclic codes of length ps over Fpk+ uFpk

In this section, the characterization and enumeration of negacyclic codes of length ps

over Fpk+ uFpk are given. By extending techniques used for cyclic codes of length ps

over Fpk+ uFpk in [2], the algebraic structure and presentation of negacyclic codes of

length ps over Fpk+uFpk can be derived in terms of ideals in (Fpk+uFpk )[x]/〈x ps+1〉.
Since the proofs are quite straightforwardly extended from [2], they will be omitted.

First, we note that themapμ : (Fpk+uFpk )[x]/〈x ps+1〉 → Fpk [x]/〈x ps+1〉 defined
by

μ( f (x)) = f (x) (mod u)

is a surjective ring homomorphism.
For each negacyclic code C in (Fpk + uFpk )[x]/〈x ps+ 1〉 and i ∈ {0, 1}, let

Tori (C) = {
μ(v(x)) : v(x) ∈ (

Fpk + uFpk
)[x]/〈x ps+ 1〉 and uiv(x) ∈ C

}
.

For each i ∈ {0, 1}, Tori (C) is called the i th torsion code of C . The codes
Tor0(C) = μ(C) and Tor1(C) are sometimes called the residue and torsion codes
of C , respectively. It is not difficult to see that for each i ∈ {0, 1}, c(x) ∈ Tori (C) if
and only if ui (c(x) + uz(x)) ∈ C for some z(x) ∈ Fpk [x]/〈x ps+ 1〉. Consequently,
Tor0(C) ⊆ Tor1(C) are ideals in Fpk [x]/〈x ps+ 1〉, i.e., they are negacyclic codes of

length ps overFpk . We note that every ideal inFpk [x]/〈x ps+1〉 is of the form 〈(x+1)i 〉
for some 0 � i � ps and its Fpm -dimension is ps−i.

Proposition 3.1 ([2, Proposition 5]) Let C be an ideal in (Fpk + uFpk )[x]/〈x ps+ 1〉
and let i ∈ {0, 1}. Then the following statements hold:

(i) Tori (C) is an ideal of Fpk [x]/〈x ps+ 1〉 and Tori (C) = 〈(x + 1)Ti 〉 for some
0 � Ti � ps.
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(ii) If Tori (C) = 〈(x + 1)Ti 〉, then |Tori (C)| = (pk)p
s−Ti.

(iii) |C | = |Tor0(C)| · |Tor1(C)| = (pk)2p
s−(T0+T1).

With the notations given in Proposition 3.1, for each i ∈ {0, 1}, Ti (C) ..= Ti is called
the i th-torsional degree ofC . Since Tor0(C) ⊆ Tor1(C), we have 0 � T1(C) � T0(C)

� ps . Moreover, if u(x + 1)t ∈ C , then t � T1(C).
Next, we focus on negacyclic codes of length ps over Fpk + uFpk , or equivalently,

ideals in (Fpk + uFpk )[x]/〈x ps+ 1〉.
Theorem 3.2 ([2, Theorem 8]) Let C be an ideal in (Fpk + uFpk )[x]/〈x ps+ 1〉, T0 ..=
T0(C), and T1 ..= T1(C). Then

C = 〈 f0(x), f1(x)〉,

where

f0(x) =
{

(x + 1)T0 + u(x + 1)t h(x) if T0 < ps,

0 if T0 = ps,

and

f1(x) =
{
u(x + 1)T1 if T1 < ps,

0 if T1 = ps,

with h(x) ∈ Fpk [x]/〈x ps+ 1〉 is either zero or a unit with t + deg(h(x)) < T0. More-
over, ( f0(x), f1(x)) is unique in the sense that if there exists a pair (g0(x), g1(x)) of
polynomials satisfying the above conditions, then f0(x) = g0(x) and f1(x) = g1(x).

For each ideal C in (Fpk + uFpk )[x]/〈x ps+ 1〉, denote by C = 〈〈 f0(x), f1(x)〉〉 the
unique representation of the ideal C obtained in Theorem 3.2.

In order to determine the number of ideals in (Fpk+uFpk )[x]/〈x ps+1〉, the definition
and some properties of the annihilator of an ideal in (Fpk + uFpk )[x]/〈x ps+ 1〉 are
revisited. For an ideal C in (Fpk + uFpk )[x]/〈x ps+ 1〉, the annihilator of C is defined

to be Ann(C) = { f (x) ∈ (Fpk+uFpk )[x]/〈x ps+1〉 : f (x)g(x) = 0 for all g(x) ∈ C}.
The following properties can be derived easily (cf. results for (Fpk+uFpk )[x]/〈x ps−1〉
in [10, Theorems 12–13]).

Theorem 3.3 Let C be an ideal of (Fpk + uFpk )[x]/〈x ps+ 1〉. Then the following
statements hold:

(i) Ann(C) is an ideal of (Fpk + uFpk )[x]/〈x ps+ 1〉.
(ii) If |C | = (pk)d, then |Ann(C)| = (pk)(2·ps−d).
(iii) Ann(Ann(C)) = C.

Theorem 3.4 Let I denote the set of ideals of (Fpk + uFpk )[x]/〈x ps+ 1〉, and let
A = {C ∈ I : T0(C) + T1(C) � ps} and A′ = {C ∈ I : T0(C) + T1(C) � ps}. Then
the map φ : A → A′ defined by C �→ Ann(C) is a bijection.
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In view of Theorem 3.4, it suffices to focus on the ideals in A. For each C =
〈〈 f0(x), f1(x)〉〉 inA, if f0(x) = 0, then T0(C) = ps and T1(C) = 0. Hence, the only
ideal inAwith f0(x) = 0 is of the form 〈〈0, u〉〉. Under the assumption that f0(x) �= 0,
the following two results can be obtained (cf. [10, Theorems 14–15] for cyclic codes).

Theorem 3.5 Let 〈〈(x + 1)i0 + u(x + 1)t h(x), u(x + 1)i1〉〉 be the representation of
an ideal in (Fpk + uFpk )[x]/〈x ps+ 1〉. Then it is a representation of an ideal in A if

and only if i0, i1, t are integers and h(x) ∈ Fpk [x]/〈x ps+ 1〉 such that 0 � i0 < ps,
0 � i1 � min{i0, ps − i0}, t � 0, t + deg(h(x)) < i1, and h(x) is either zero or a
unit in Fpk [x]/〈x ps+ 1〉.

Since every polynomial
∑m

i=0 ai (x + 1)i inFpk [x]/〈x ps+1〉 is either 0 or (x + 1)t h(x),

where h(x) is a unit in Fpk [x]/〈x ps+ 1〉 and 0 � t � m − deg(h(x)), Theorem 3.5
can be rewritten as follows.

Theorem 3.6 The expression
〈〈
(x + 1)i0 + u

∑i1−1
j=0 hj (x + 1) j, u(x + 1)i1

〉〉
represents

an ideal in A if and only if i0 and i1 are integers such that 0 � i0 < ps, 0 � i1 �
min{i0, ps − i0}, i0 + i1 � ps, and hj ∈ Fpk for all 0 � j < i1.

Proposition 3.7 Let 0 � d � ps. Then the number of distinct ideals in (Fpk +
uFpk )[x]/〈x ps+ 1〉 with T0 + T1 = d is

pk(K+1) − 1

pk − 1
,

where K = min {�d/2�, ps − �d/2�}.
Proof Let T1 = i1 and i0 := T0 = d − T1 be fixed.

Case 1: d < ps . Then i0 � i0 + i1 = T0 + T1 = d < ps. By Theorem 3.6, it fol-
lows that C = 〈〈

(x + 1)i0 + u
∑i1−1

j=0 hj (x + 1) j, u(x + 1)i1
〉〉
. Then the choice for

∑i1−1
j=0 hj (x + 1) j is (pk)i1 . By Theorem 3.6 again, we also have T1 � min{T0, ps −

T0}. Since T0 + T1 = d , we obtain that T1 � �d/2� � T0, and hence, T1 �
min{�d/2�, ps − T0} � min{�d/2�, ps − �d/2�}. Now, vary T1 from 0 to K , we
obtain that there are 1 + pk + · · · + (pk)K = (pk(K+1) − 1)/(pk − 1) ideals with
T0 + T1 = d .

Case 2: d = ps . If i0 = ps, then the only ideal with T0 + T1 = ps is the ideal rep-
resented by 〈〈0, u〉〉. If i0 < ps, then we have pk + (pk)2 + · · · + (pk)K ideals by
arguments similar to those in Case 1. �
For a negacyclic code C inA, we have C �= Ann(C) whenever T0(C) + T1(C) < ps.
In the case where T0(C) + T1(C) = ps, by Theorem 3.5, the annihilator of the
negecyclic code C = 〈〈(x + 1)i0 + u(x + 1)t h(x), u(x + 1)i1〉〉 is of the form
Ann(C) = 〈(x +1)i0 −u(x +1)t h(x), u(x +1)i1〉. Since p is odd, then C = Ann(C)

occurs only in the case h(x) = 0. By Proposition 3.7 and the bijection given in Theo-
rem 3.4, we have
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Corollary 3.8 The number of negacyclic codes of length ps over Fpk + uFpk is

N(pk, ps) = 2

( ps∑

d=0

pk(min{�d/2�,ps−�d/2�}+1) − 1

pk − 1

)
− 1.

Proof FromTheorem 3.4, the number of negacyclic codes of length ps overFpk+uFpk

is |A ∪ A′| = |A| + |A′| − |A ∩ A′|. The desired result follows immediately from the
discussion above. �

4 Self-dual negacyclic codes of length ps over Fpk+ uFpk

In this section, the characterization and enumeration of self-dual negacyclic codes of
length ps over Fpk + uFpk are established under both the Euclidean and Hermitian
inner products.

4.1 Euclidean self-dual negacyclic codes of length ps over Fpk+ uFpk

We define a conjugation · on (Fpk + uFpk )[x]/〈x ps+ 1〉 to be the map that fixes
Fpk + uFpk and sends xl to x−l for all l ∈ Zps . For each subset A of the ring

(Fpk + uFpk )[x]/〈x ps+ 1〉, we denote by A the set of polynomials f (x) for all f (x)
in A. The following result can be derived similarly to [10, Theorem 18].

Theorem 4.1 Let C be an ideal in (Fpk + uFpk )[x]/〈x ps+ 1〉. Then C⊥E = Ann(C).

Theorem 4.2 The Euclidean dual C⊥E of the ideal C = 〈〈
(x + 1)i0 + u

∑i1−1
j=0 hj (x +

1) j, u(x + 1)i1
〉〉
given in Theorem 3.6 is of the form

C⊥E =
〈〈

(x + 1)p
s−i1− u(x + 1)p

s−i0−i1
i1−1∑

r=0

r∑

j=0

(−1)i0−r
(
i0 − j
r − j

)
hj (x + 1)r, u(x + 1)p

s−i0

〉〉
.

Proof From Theorem 3.6, it can be concluded that

Ann(C) =
〈〈

(x + 1)p
s−i1− u(x + 1)p

s−i0−i1
i1−1∑

j=0

hj (x + 1) j, u(x + 1)p
s−i0

〉〉
.

By Theorem 4.1, it follows that C⊥E = Ann(C). Hence, C⊥E contains the elements
u(x + 1)p

s−i0 and

(x + 1)p
s−i1 − u(x + 1)p

s−i0−i1
i1−1∑

j=0

hj (x + 1) j x i0− j .
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By writing x = (x + 1) − 1 and applying the Binomial Theorem, it can be concluded
that C⊥E contains an element of the form

(x + 1)p
s−i1 − u(x + 1)p

s−i0−i1
i1−1∑

j=0

i0− j∑

l=0

(−1)i0− j−l
(
i0 − j

l

)
hj (x + 1)l+ j .

Hence,
〈〈

(x + 1)p
s−i1− u(x + 1)p

s−i0−i1
i1−1∑

j=0

i0− j∑

l=0

(−1)i0− j−l
(
i0 − j

l

)
hj (x + 1)l+ j, (x + 1)p

s−i1

〉〉
⊆ C⊥E .

Comparing the cardinalities, the two sets are equal. Updating the indices, it follows
that

C⊥E =
〈〈

(x + 1)p
s−i1− u(x + 1)p

s−i0−i1
i1−1∑

r=0

r∑

j=0

(−1)i0−r
(
i0 − j
r − j

)
hj (x + 1)r, (x + 1)p

s−i1

〉〉

as desired. �
We note that, if i1 = 0, then C = 〈u〉 is the only Euclidean self-dual ideal.

Assume that C is Euclidean self-dual. Then C = C⊥E which implies that
|C | = (pk)p

s
and i0 + i1 = ps.

Assume that i1 � 1. Since

C =
〈〈

(x + 1)i0 + u
i1−1∑

j=0

hj (x + 1) j, u(x + 1)i1
〉〉

is Euclidean self-dual in (Fpk + uFpk )[x]/〈x ps+ 1〉, it follows that ps = i0 + i1 and

− ht =
t∑

j=0

(−1)i0−t
(
i0 − j
t − j

)
hj (2)

in Fpk for all 0 � t � ii − 1 by Theorem 4.2.
Let V (ps, i1) be an (i1× i1)-matrix defined by

V (ps, i1) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

(−1)i0 + 1 0 0 · · · 0

(−1)i0−1(i0
1

)
(−1)i0−1 + 1 0 · · · 0

(−1)i0−2(i0
2

)
(−1)i0−2(i0−1

1

)
(−1)i0−2 + 1 . . . 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

(−1)i0−i1+1( i0
i1−1

)
(−1)i0−i1+1(i0−1

i1−2

)
(−1)i0−i1+1(i0−2

i1−3

) · · · (−1)i0+i1−1+ 1

⎤

⎥
⎥⎥⎥⎥⎥
⎦

. (3)

It is easily seen that the i1 equations from (2) are equivalent to the matrix equation

V (ps, i1)h = 0, (4)

where h = (h0, h1, . . . , hi1−1)
T and 0 = (0, 0, . . . , 0)T.
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Hence, the ideal C in (Fpk + uFpk )[x]/〈x ps+ 1〉 is Euclidean self-dual if and only
if ps = i0 + i1 and h0, h1, . . . , hi1−1 satisfy (4). Since h0 = h1 = · · · = hi1−1 = 0
is a solution to (4), the corresponding ideal 〈(x + 1)p

s−i1, u(x + 1)i1〉 is a Euclidean
self-dual negacyclic code in (Fpk+ uFpk )[x]/〈x ps+ 1〉. Hence, for a fixed first torsion
degree 1 � i1 � ps, a Euclidean self-dual ideal in (Fpk + uFpk )[x]/〈x ps + 1〉 always
exists. By solving (4), all Euclidean self-dual ideals in (Fpk + uFpk )[x]/〈x ps+ 1〉 can
be constructed.

In order to determine the number of solutions to (4), or equivalently, the nullity of
V (ps, i1), we recall the (i1× i1)-matrix M(ps, i1) over Fpk defined in [13] as

M(ps, i1) =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

(−1)i0 + 1 0 0 . . . 0

(−1)i0
(i0
1

)
(−1)i0+1 + 1 0 . . . 0

(−1)i0
(i0
2

)
(−1)i0+1

(i0−1
1

)
(−1)i0+2 + 1 . . . 0

...
...

...
. . .

...

(−1)i0
( i0
i1−1

)
(−1)i0+1

(i0−1
i1−2

)
(−1)i0+2

(i0−2
i1−3

)
. . . (−1)i0+i1−1+ 1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

The nullity of V (ps, i1) can be determined in terms of M(ps, i1) as in the following
theorem.

Theorem 4.3 Let i1 be a positive integer such that i1 � ps. Then the nullity of V (ps, i1)
is �i1/2� .
Proof First, we show that V (ps, i1) and M(ps, i1) have the same nullity. We consider
the following two cases.

Case 1: i1 is odd. Let A = diag(1,−1, . . . ,−1, 1) be an (i1× i1)-matrix over Fps . It
is not difficult to see that A is invertible and AV (ps, i1)A = M(ps, i1).

Case 2: i1 is even. Let A = diag(1,−1, . . . , 1,−1) be an i1×i1 matrix over Fps . It is
not difficult to see that A is invertible and AV (ps, i1)A = M(ps, i1).

From the two cases, the nullity of V (ps, i1) and the nullity of M(ps, i1) are equal.
From [13, Proposition 3.3], the nullity of M(ps, i1) is �i1/2�. Hence, the nullity of
V (ps, i1) is �i1/2� as desired. �
Proposition 4.4 Let i1 > 0 and let κ be the nullity of V (ps, i1) overFpk . Then the num-
ber of Euclidean self-dual negacyclic codes of length ps over Fpk with first torsional

degree i1 is (pk)κ.

From Theorem 3.6, we have 0 � i1 � �ps/2� since i0 + i1 = ps.

Corollary 4.5 Let k and s be positive integers and let p an odd prime. Then the number
of Euclidean self-dual negacyclic codes of length ps over Fpk + uFpk is

NE(pk, ps) =

⎧
⎪⎨

⎪⎩

2
(

(pk )(p
s+1)/4−1
pk−1

)
if ps ≡ 3 mod 4,

2
(

(pk )(p
s−1)/4−1
pk−1

)
+ (pk)(p

s−1)/4 if ps ≡ 1 mod 4.
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Proof FromTheorem4.3 andProposition 4.4, the number of Euclidean self-dual nega-
cyclic codes of length ps overFpk+uFpk is

∑�ps/2�
i1=0 (pk)�i1/2�. Note that ps ≡ 3 mod 4

(resp., ps ≡ 1 mod 4) if and only if (ps + 1)/4 (resp., (ps − 1)/4) is an integer.Hence,
the results follow from a geometric sum. �

4.2 Hermitian self-dual negacyclic codes of length ps over Fpk+ uFpk

Under the assumption that k is even, characterization and enumeration Hermitian
self-dual negacyclic codes of length ps over Fpk + uFpk are given. For a subset A of

(Fpk + uFpk )[x]/〈x ps+ 1〉, let

Ã ..=
{ps−1∑

i=0

ãi x
i :

ps−1∑

i=0

ai x
i ∈ A

}
,

where ·̃ is the automorphism defined in (1).
Based on the unique presentation of a negacyclic code given in Theorem 3.6, its

Hermitian dual can be determined using Theorem 4.2 and the fact that C⊥H = C̃⊥E .

Theorem 4.6 The Hermitian dual C⊥H of the ideal C = 〈〈
(x + 1)i0 + u

∑i1−1
j=0 hj (x +

1) j, u(x + 1)i1
〉〉
given in Theorem 3.6 has the representation

C⊥H =
〈〈

(x + 1)p
s−i1− u(x + 1)p

s−i0−i1
i1−1∑

r=0

r∑

j=0

(−1)i0+r
(
i0 − j
r − j

)
h pk/2

j (x + 1)r, u(x + 1)p
s−i0

〉〉
.

If i1 = 0, then it is not difficult to see that the ideal generated by u is the onlyHermitian
self-dual negacyclic code of length ps over Fpk + uFpk .

Assume that C is Hermitian self-dual. Then C = C⊥H implies that |C | = (pk)p
s

and i0 + i1 = ps.
Assume that i1 � 1. Then, by Theorems 3.6 and 4.6, we have

− uh pk/2
t = u

t∑

j=0

(−1)i0−t
(
i0 − j
t − j

)
hj

for all 0 � t � i1 − 1.
From the i1 equations above and the definition of V (ps, i1), we have

V (ps, i1)x + (
x pk/2− x

) = 0 (5)

where x = (x1, x2, . . . , xi1)
T, x pk/2= (x pk/2

1 , x pk/2

2 , . . . , x pk/2

i1
)T and 0 = (0, 0, . . . , 0)T.

It can be concluded that an ideal C in (Fpk + uFpk )[x]/〈x ps + 1〉 is Hermi-
tian self-dual if and only if ps = i0 + i1 and h0, h1, . . . , hi1−1 satisfy (5). Since
h0 = h1 = · · · = hi1−1 = 0 is a solution to (5), the corresponding ideal 〈(x +
1)p

s−i1, u(x+1)i1〉 is aHermitian self-dual negacyclic code in (Fpk+uFpk )[x]/〈x ps+1〉.
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Hence, for a fixed first torsion degree 1 � i1 � ps, a Hermitian self-dual negacyclic
code in (Fpk+uFpk )[x]/〈x ps+1〉 always exists. By solving (5), all Hermitian self-dual

negacyclic codes in (Fpk + uFpk )[x]/〈x ps+ 1〉 can be constructed.
In order to determine the number of solutions to (5),we shall need someproperties of

V (ps, i1). For integers i and j such that 1 � i, j � i1, let vi j denote the entry in the i th
row and the j th column of the matrix V (ps, i1). For an integer l, 1 � l � j < i � i1,
we have

vi j = (−1)i0−i+1
(
i0 − j + 1

i − j

)

and

vi jv jl = (−1)i0−i+1
(
i − l
j − l

)
vil .

The following two maps in [10] are key to determine the number of solutions to (5)
in F

i1
pk
:

• The map � : Fpk → Fpk is defined by α �→ α pk/2− α for all α ∈ Fpk .

• The trace map Tr : Fpk → Fpk/2 is defined by α �→ α pk/2+ α for all α ∈ Fpk .

From [10], we have that � and Tr are Fpk/2 -linear.

Lemma 4.7 ([10, Lemma 3.2]) Let Tr and � be defined as above. Then the following
statements hold:

• For each α ∈ Fpk , �(α) = 0 if and only if α ∈ Fpk/2 .
• � ◦Tr ≡ Tr◦�.
• For each a ∈ �(Fpk ), |�−1(a)| = pk/2.

• For each a ∈ Tr(Fpk/2), |Tr−1(a)| = pk/2.

Similarly to [10, Proposition 3.3], we have

Proposition 4.8 Let k and s be positive integers such that k is even, and let p be an
odd prime. Let i1 be a positive integer such that i1 � �ps/2�. Then the number of
solutions to (5) in F

i1
pk

is pki1/2.

Proof From (3), the diagonal of V (ps, i1) has two different presentations depending
on the parity of i1. Hence, the proof consists of two cases.

Case 1: i1 is odd. Then i1 = 2μ + 1 for some non-negative integer μ. From (3), the
matrix V (ps, i1) can be written as

V (ps, i1) =

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

2 0 0 0 · · · 0 0
∗ 0 0 0 · · · 0 0
∗ ∗ 2 0 · · · 0 0
∗ ∗ ∗ 0 · · · 0 0
...

...
...

...
. . .

...
...

∗ ∗ ∗ ∗ · · · 0 0
∗ ∗ ∗ ∗ · · · ∗ 2

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

,
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where ∗ denotes an entry of the matrix V (ps, i1) as defined in (3). It is easily seen that

Tr(x1) = 0, (6)

�(x2I ) = −
2i−1∑

j=1

v2i, j xj , (7)

Tr(x2i+1) = −
2i∑

j=1

v2i+1, j xj (8)

for all integers 1 � i � μ. We observe that (5) has a solution if and only if the right-
hand sides of (6) and (8) are in Fpk/2 and the right-hand side of (7) is in �(Fpk ). In
this case, it can be deduced that

x1 ∈ Tr−1(0), x2i ∈ �−1
(

−
2i−1∑

j=1

v2i, j xj

)
and x2i+1 ∈ Tr−1

(
−

2i∑

j=1

v2i+1, j xj

)

for all integers 1 � i � μ. Equivalently, the number of solutions to (5) is pki1/2 by
Lemma 4.7.

To reason the discussion above, by Lemma 4.7, it suffices to show that the images
under � of the right-hand sides of (6) and (8) are 0 and the image under the trace
map Tr of the right-hand side of (7) is 0. We note that the image under � of the
right-hand sides of (6) is 0.

Let 1 � i � μ be an integer. Using calculation similar to the one in [10, Equation
(3.11)], it follows that

Tr

(
−

2i−1∑

j=1

v2i, j xj

)
= −

2i−1∑

j=1

v2i, jTr(xj ) = 0 in Fpk/2 .

Using calculation similar to the one in [10, Equation (3.12)], it follows that

�

(
−

2i∑

j=1

v2i+1, j xj

)
= −

2i∑

j=1

v2i+1, j�(xj ) = 0 in Fpk/2 .

Case 2: i1 is even. Then i1 = 2μ for some positive integer μ. From (3), the matrix
V (ps, i1) can be written as

V (ps, i1) =

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

0 0 0 0 · · · 0
∗ 2 0 0 · · · 0
∗ ∗ 0 0 · · · 0
∗ ∗ ∗ 2 · · · 0
...

...
...

...
. . .

...

∗ ∗ ∗ ∗ · · · 2

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

,
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where ∗ denotes an entry of the matrix V (ps, i1) defined in (3). We see that

�(x2i−1) = −
2i−2∑

j=1

v2i−1, j xj , (9)

Tr(x2i ) = −
2i−1∑

j=1

v2i, j xj (10)

for all integers 1 � i � μ.
We observe that (5) has a solution if and only if the right-hand side of (9) is in

�(Fpk ) and the right-hand side of (10) is in Fpk/2 . In this case, the number of solutions
to (5) is pki1/2 by Lemma 4.7. By Lemma 4.7 again, it is sufficient to show that the
image under the trace map Tr of right-hand side of (9) and the image under the � of
right-hand side of (10) are 0. By using calculation similar to the one in Case 1, the
proof is completed. �
Corollary 4.9 Let k and s be positive integers such that k is even, and let p be an odd
prime. Then the number of Hermitian self-dual negacyclic codes of length ps over
Fpk + uFpk is

NH(pk, ps) =
�ps/2�∑

i1=0

pki1/2 = (pk/2)�ps/2�+1 − 1

pk/2 − 1
.
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