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Abstract
We obtain a result on the Morse index of an exponentially harmonic map from a
Riemannian manifold into the unit n-sphere. Next, we prove a Liouville type 1 the-
orem for exponentially harmonic maps between two Riemannian manifolds. Finally,
let (M, g0) be a complete Riemannian manifold with a pole x0 and (N , h) a Rieman-
nian manifold, under certain conditions we establish a Liouville type 2 theorem for
exponentially harmonic maps f : (M, ρ2g0) → N , 0 < ρ ∈ C∞(M).
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1 Introduction

Exponentially harmonic maps between two Riemannian manifolds were first con-
sidered by Eells and Lemaire in [12]. A map f : (M, g) → (N , h) between two
Riemannian manifolds is called exponentially harmonic if it is a critical point of the
exponential energy functional Ee( f ) = ∫

M exp
( 1
2 |d f |2) dvg . In terms of the Euler–

Lagrange equation, f is exponentially harmonic if it satisfies the following second
order nonlinear PDE:

exp

(
1

2
|d f |2

)[

τ( f ) +
(

∇
( |d f |2

2

)

, d f

)]

= 0,

where τ( f ) is the tension field of f , and ∇ is the connection on T ∗(M)⊗ f −1T N
induced by the Levi–Civita connections on M and N , respectively. In the recent three
decades, exponentially harmonic maps have been extensively investigated by Duc and
Eells [11], Hong et al. [17], Hong and Yang [16], Chiang [3–6], Chiang and Pan [7],
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Chiang andWolak [8], Chiang and Yang [9], Cheung and Leung [2], Zhang et al. [25],
Liu [20,21], and others.

In [16], Hong and Yang showed that there are harmonic maps which are not expo-
nentially harmonic, and conversely there are exponentially harmonic maps which are
not harmonic. It is interesting that Kanfon et al. [18] found applications of exponen-
tial harmonic maps in the Friedmann–Lemaître universe, and considered some new
models of exponentially harmonic maps which are coupled with gravity based on a
generalization of Lagrangian for bosonic strings coupled with diatonic field. More-
over, Omori [22,23] recently obtained some results about Eells–Sampson’s existence
theorem [13] and Sacks–Uhlenbeck’s existence theorem [24] for harmonic maps via
exponentially harmonic maps.

In [9], Chiang and Yang proved that if f is an exponentially harmonic map from a
Riemannian manifold into another Riemannian manifold with non-positive sectional
curvature, then f is stable. Chiang [5] also showed that if f is an exponentially har-
monic map from a compact Riemannian manifold into the unit n-sphere Sn, n � 3,
with |d f |2 < n−2, then f is unstable. The degree of instability of amap f ismeasured
by the Morse index. In this paper, we estimate the Morse index of an exponentially
harmonic map f from a compact Riemannian manifold into the unit n-sphere Sn,
see Theorem 2.4. Next, we obtain a Liouville type 1 theorem for exponentially har-
monic maps between two Riemannian manifolds, see Sect. 3. Finally, let (M, g0) be
a complete Riemannian manifold with a pole x0 and (N , h) a Riemannian manifold,
in Sect. 4 we establish a Liouville type 2 theorem for exponentially harmonic maps
f : (M, ρ2g0) → N , 0 < ρ ∈ C∞(M), under certain conditions.

2 Exponentially harmonic maps andMorse index

A map f : (M, g) → (N , h) between two Riemannian manifolds is called expo-
nentially harmonic if it is a critical point of the exponential energy functional
Ee( f ) = ∫

M exp
( 1
2 |d f |2) dvg . More precisely, a C2-map f : (M, g) → (N , h) is

exponentially harmonic if it satisfies

d

dt
Ee( ft )

∣
∣
t=0 = 0,

for any compactly supported variations ft : M → N with f0 = f . In terms of the
Euler–Lagrange equation, we arrive at the following definition.

Definition 2.1 ([9]) A map f : (M, gi j ) → (N , hαβ) from an m-dimensional Rie-
mannian manifold (Mm, gi j ) into an n-dimensional Riemannian manifold (Nn, hαβ)

is called exponentially harmonic if its associated exponential tension field is zero, i.e.,

τe( f ) = τ( f ) +
(

∇
( |d f |2

2

)

, d f

)

= 0,

where the tension field τα( f ) = gi j f α
i | j = gi j ( f α

i j − �k
i j f

α
k + �′α

βγ f β
i f γ

j ). In terms
of local coordinates, f satisfies
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gi j
(

∂2 f α

∂xi∂x j
− �k

i j
∂ f α

∂xk
+ �′α

βγ

∂ f β

∂xi
∂ f γ

∂x j

)

+ gilg jmhβγ

∂ f α

∂xl
∂ f γ

∂xm
∂2 f β

∂xi∂x j

− gilg jmhβγ �k
i j

∂ f α

∂xl
∂ f β

∂xm
∂ f γ

∂xk

+ gi jglmhβγ �′β
μν

∂ f μ

∂xi
∂ f ν

∂xl
∂ f γ

∂xm
∂ f α

∂x j
= 0,

where �k
i j and �′α

βγ are the Christoffel symbols of the Levi–Civita connections on M
and N , respectively.

Theorem 2.2 ([9]) Let f : M → N be an exponentially harmonic map.

(a) If N has non-positive sectional curvature (i.e., RN
αβγμλαηβλγ ημ � 0 for vector

fields λ, η), then f is stable.
(b) If ḟ is a Jacobi field, then f is stable.

Theorem 2.3 ([5]) If f : Mm → Sn is a non-constant exponentially harmonic map
from a compact Riemannian manifold M into the n-dimensional sphere Sn, n � 3,
with |d f |2 < n − 2, then f is unstable.

Let f : (Mm, g) → (Nn, h) be a differentiable map from an m-dimensional Rieman-
nian manifold M into an n-dimensional Riemannian manifold N . Let v be a vector
field on N , and ( f v

t ) be the flows of diffeomorphisms induced by v on N , i.e., f v
0 = f ,

d
dt f

v
t |t=0 = v. Recall that the first variation of the exponential energy functional is

d

dt
Ee( ft )

∣
∣
t=0 =

∫

M
e|d f |2/2(∇∂t d ft , d ft )t=0 dv

= −
∫

M

(
traceg∇(e|d f |2/2d f ), v

)
dv.

Then the second variation of the exponential energy functional is

d2

dt2
Ee( ft )

∣
∣
t=0 =

∫

M
e|d f |2/2[(∇v, d ft )

2 + |∇v|2] dv

−
∫

M

(

∇∂t
∂ f

∂t

∣
∣
∣
t=0

, traceg∇(e|d f |2/2d f )
)

dv

−
∫

M
e|d f |2/2

m∑

i=1

(
RN(v, d f (ei ))d f (ei ), v

)
dv,

where {ei } is a local orthonormal frame at a point in M and RN is the Riemannian
curvature of N .

We now consider a differentiable map f : (M, g) → (Sn, stn) from a Riemannian
manifold into the unit n-sphere, where stn is the standard metric on Sn. Let f −1T Sn
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be the pull-back vector field bundle of T Sn, �( f −1T Sn) be the space of sections on
f −1T Sn, and denote by ∇M , ∇Sn and ∇̃ the Levi–Civita connections on T M , T Sn

and f −1T Sn, respectively. Then ∇̃ is given by ∇̃XY = ∇Sn
f∗XY , where X ∈ T M and

Y ∈ �( f −1T Sn). The variation in the directions of the vector fields of the subspace
L( f ) of �( f −1T Sn) is defined by

L( f ) = {
v ◦ f : v ∈ R

n+1},

where v is a vector field on Sn given by v(y) = v − (v, y)y for any y ∈ Sn. It is
known that v is a conformal vector field on Sn. Clearly, if f is not constant, L( f ) is
of dimension n + 1.

For any vector field v on Sn along an exponentially harmonic map f : (M, g) →
(Sn, stn), we associate the quadratic form

Qf (v) = d2Ee( ft )

dt2

∣
∣
∣
t=0

.

The Morse index of f is defined as the positive integer

Ind( f ) = sup
{
dimW : W ⊂ �( f ) such that Qf (v) is negative defined on W

}
,

where W is the subspace of �( f ). The Morse index measures the degree of the insta-
bility of f . A map f is called stable if Ind( f ) = 0. In view of Theorems 2.2 and
2.3, we shall estimate the Morse index of an exponentially harmonic map into the unit
n-sphere. We define the (modified) exponential stress energy of f as

Se( f ) = e|d f |2/2|d f |2g − 2e|d f |2/2
(

1 + |d f |2
2

)

f ∗stn

(for the definition of the exponential stress energy, see [5,12]). For x ∈ M , we set

Soe ( f ) = inf
{
Se( f )(X , X) : X ∈ Tx (M) such that g(X , X) = 1

}
.

The tensor Se( f ) is called positive (resp. semi-positive) if Soe ( f ) > 0 (resp. Soe ( f ) �
0).

Theorem 2.4 Let f : (Mm, g) → (Sn, stn) be an exponentially harmonic map from a
compact m-dimensional Riemannian manifold, m � 2, into the unit n-sphere, n � 2.
Suppose that the exponential stress energy tensor Se( f ) is positive. Then Ind( f ) �
n + 1.

Proof Let u = v ◦ f ∈ L( f ) and set (v, f ) = fv . For any point x ∈ M , we
denote by uT and uN the tangential and normal components of the vector u(x) on
the spaces d f (TxM) and d f (TxM)⊥, respectively. Let {e1, . . . , em} be an orthonor-
mal basis of TxM which diagonalizes f ∗stn so that {d f (e1), . . . , d f (ek)} forms a
basis of d f (TxM). Since e|d f |2/2(1 + |d f |2/2) �= 0 at the point x ∈ M ,
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1392 Y.-J. Chiang

|vT(x)|2 =
k∑

i=1

(v(x), d f (ei ))2

|d f (ei )|2 .

For any i � k we have

2e|d f |2/2
(

1 + |d f |2
2

)

|d f (ei )|2 = e|d f |2/2 |d f |2 − Se( f )(x)(ei , ei )

� e|d f |2/2 |d f |2 − Soe ( f )(x).

(2.1)

This implies

2e|d f |2/2
(

1 + |d f |2
2

) k∑

i=1

(v(x), d f (ei ))
2�

(
e|d f |2/2 |d f |2 − Soe ( f )(x)

) |vT(x)|2.

Since

(v(x), d f (ei ))
2 = (v − (v, f ) f , d f (ei ))

2 = (v, d f (ei ))
2 = |d fv(ei )|2,

we deduce

(
e|d f |2/2 |d f |2 − Soe ( f )(x)

) |uT(x)|2 � 2e|d f |2/2
(

1 + |d f |2
2

)

|d fv(x)|2. (2.2)

It follows from (2.1) and (2.2) that

2e|d f |2/2
(

1 + |d f |2
2

)

|d fv(x)|2 − e|d f |2/2 |d f |2 |v|2

� − |d f |2 e|d f |2/2 |vN(x)|2 − Soe ( f )(x) |vT(x)|2 � − Soe ( f )(x) |v(x)|2.
(2.3)

The second variation of the exponential energy can be expressed as

d2Ee( ft )

dt2

∣
∣
∣
t=0

=
∫

M
e|d f |2/2((∇v, d f )2 + |∇v|2 − |d f |2 |v|2 + |d fv|2

)
dv.

Therefore, we obtain

Qf (v) =
∫

M

(

2e|d f |2/2
(

1 + |d f |2
2

)

|d fv|2 − e|d f |2/2 |d f |2 |v|2
)

dv.

Hence, (2.3) implies

Qf (v) � −
∫

M
Soe ( f ) |v|2dv.
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Since Se( f ) is positive, Qf (v) is negative defined on L( f ). Consequently, the Morse
index Ind( f ) � n + 1. �
Example 2.5 Consider a homothetic map f : (M, g) → (Sn, stn), i.e., f ∗stn = k2g,
k ∈ R. Then |d f |2 = mk2 with m = dim(M). The (modified) exponential stress
energy equals

Se( f ) = e|d f |2/2 |d f |2 g − 2e|d f |2/2
(

1 + |d f |2
2

)

k2g

= e|d f |2/2
(

1 − 2

m
− |d f |2

m

)

|d f |2g.

If f : (M, g) → (Sn, stn) is homothetic exponentially harmonic with |d f |2 < m − 2,
then Se( f ) is positive defined. Consequently, it follows from Theorem 2.4 that the
Morse index Ind( f ) � n + 1.

Proposition 2.6 If f : (M, g) → (N , h) is an exponentially harmonic and homothetic
map between two Riemannian manifolds, then Ind( f ) � Ind(ι), where ι is the identity
map of M.

Proof Let f : (M, g) → (N , h) be a homothetic map, i.e., f ∗h = λ2g, λ ∈ R. In this
case, the exponential tension field τe( f ) is proportional to the mean curvature of f ,
and so f is exponentially harmonic if and only if f is minimal immersion.

Since f : (M, g) → (N , h) is exponentially harmonic, the second variation in the
direction of a vector field v reduces to

Qf (v)

= emλ2/2
∫

M

[

(∇v, d f )2f −1T N + |∇v|2−
m∑

i=1

(
RN(v, d f (ei )d f (ei ), v

)
]

dv,
(2.4)

where {ei }mi=1 is an orthonormal basis on M .
Let �T( f ) be the subspace of �( f −1T N ) containing the vector fields on N of the

form d f (X) where X is a vector field on M . The restriction of Qι
f to �T( f ) can be

written as (cf. [14])

Qι
f (d f (X)) = λ2Qι

ι(X). (2.5)

Since ∇d f takes its values in the normal fiber bundle of N , we have

(∇Xd f (Y ), d f (Z)) = ((∇d f )(X ,Y ), Z) + (d f (∇XY ), d f (Z))

= λ2(∇XY , Z).
(2.6)

Substituting (2.6) and (2.5) into (2.4), we obtain

Qf (d f (X)) = emλ2/2 λ2
∫

M
(∇ei X , ei )

2dv + emλ2/2 λ2Qι
ι(X) = λ2Qι(X),
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1394 Y.-J. Chiang

and the result follows. �

3 Liouville type 1 theorem

We establish a Liouville type 1 theorem for exponentially harmonicmaps between two
Riemannianmanifolds.What we present here is very different fromLiu’s result in [21]
involving the sectional curvature of the source manifold M under certain condition.
We derive the Bochner formula for exponential energy density in the following lemma.
Then we can apply it to prove Theorem 3.2.

Lemma 3.1 Let f : M → N be a differentiable map between two Riemannian mani-
folds. Then

�e|d f |2/2

= e|d f |2/2
[

|∇d f |2 − (�H d f , d f ) −
∑

i, j

(
RN( f∗ei , f∗ej ) f∗ej , f∗ei

)

+
∑

i

( f∗RicMei , f∗ei ) + |d f |2 · |∇|d f ||2
]

,

(3.1)

where � is the Laplacian–Beltram operator, �H is the Hodge–Laplace operator, RN

is the Riemannian curvature of N and RicM is the Ricci curvature of M.

Proof Let {ei }i=1,...,m be a local orthonormal frame at a point in M . We compute

�e|d f |2/2 = e|d f |2/2[(∇d f , d f )2 + (�d f , d f ) + |∇d f |2]

= e|d f |2/2[|d f |2 · |∇|d f ||2 − (�H d f , d f ) + |∇d f |2
−

∑

i, j

(
RN( f∗ei , f∗ej ) f∗ej , f∗ei

) +
∑

i

( f∗RicMei , f∗ei )
]
. �

Theorem 3.2 Let f : M → N be a non-constant exponentially harmonicmap between
two Riemannian manifolds. Suppose that the Ricci curvature of M is non-negative and
the Riemannian curvature of N is non-positive. Then f is totally geodesic. Moreover,
if RicM > 0 at some point, then f is constant. If RN < 0, then f is either constant or
a map of rank one (i.e., whose image is a closed geodesic).

Proof Integrating (3.1) and using the exponential harmonicity of f ,

∫

M
e|d f |2/2(�H d f , d f ) dv =

∫

M

(
δd f , δ(e|d f |2/2d f )

)
dv = 0,

we have
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0 �
∫

M
e|d f |2/2 |∇d f |2dv

=
∫

M
e|d f |2/2

[
(
RN( f∗ei , f∗ej ) f∗ej , f∗ei

)

−
∑

i

( f∗RicMei , ei ) − |d f |2 |∇|d f ||2
]

dv � 0,

since RicM � 0 and RN � 0. It follows that ∇d f = 0. Hence, f is totally geodesic.
Moreover, if RicM > 0 at some point, then d f = 0 and so f is constant. If RN < 0, then
(RN( f∗ei , f∗ej ) f∗ej , f∗ei ) = 0, and the rank of f is either zero (i.e. f is constant),
or one (i.e. the image of a totally geodesic is a closed geodesic). �
We are interested in exponentially harmonic maps to manifolds which admit convex
functions (cf. [15,19]), and the following lemma is important for Proposition 3.4 and
Theorem 3.5.

Lemma 3.3 Let f : M → N be a C1-map between Riemannian manifolds and φ be a
real-valued C2-function on N. Then for every C1-function ψ on M we have

(
e|d f |2/2d(φ ◦ f ), dψ

) = − e|d f |2/2 trace (∇dφ)(d f , d f )ψ

+ (∇(ψ ·(grad φ) ◦ f ), e|d f |2/2d f
)
.

Proof Let {ei } be an orthonormal frame around a point in M such that ∇ei = 0 at that
point. We calculate

(∇(ψ ·(grad φ)◦ f ), e|d f |2/2d f
)

=
∑

i

(∇ei (ψ ·(grad φ) ◦ f ), e|d f |2/2d f (ei )
)

=
∑

i

(
dψ(ei )((grad φ) ◦ f ), e|d f |2/2d f (ei )

)

+
∑

i

ψe|d f |2/2(∇d f (ei )((grad φ) ◦ f ), d f (ei )
)

= (
e|d f |2/2d(φ ◦ f ), dψ

) + ψe|d f |2/2 trace (∇dφ)(d f , d f ),

and the result follows. �
Proposition 3.4 Let M be a compact connected Riemannian manifold and N be a
Riemannian manifold admitting a convex function on N. Then every exponentially
harmonic map f : M → N is constant.

Proof Let φ be a real-valued convex function on N . Takingψ = 1 in the above lemma
and integrating on M , via the first variational formula for an exponentially harmonic
map, we obtain

∫

M
e|d f |2/2 trace (∇dφ)(d f , d f ) dv = 0.
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1396 Y.-J. Chiang

This implies that d f = 0 everywhere on M , and concludes the result. �

Theorem 3.5 Let M be a complete and non-compact connected Riemannian manifold
and N be a Riemannian manifold admitting a convex function φ on N such that the
uniform norm ‖dφ‖∞ is bounded. Then every exponentially harmonic map f : M →
N with finite

∫
M e|d f |2/2 |d f | dv is constant.

Proof For each σ > 0 we can find a Lipschitz continuous function ψ on M such that
ψ(x) = 1 for x ∈ Bσ , ψ(x) = 0 for x ∈ M − B2σ , 0 � ψ � 1, and |dψ | � C/σ

with C > 0 independent of σ , where Bσ is a geodesic ball with radius σ about a fixed
point x0. Applying Lemma 3.3, we obtain

∫

M
e|d f |2/2 trace (∇dφ)(d f , d f ) d f ψ dv = −

∫

M
e|d f |2/2(d(φ ◦ f ), dψ) dv

�
∫

M
e|d f |2/2 ·‖dφ‖∞ ·|d f | · |dψ | dv.

Since ‖dφ‖∞ is bounded and
∫
M e|d f |2/2 |d f |dv < ∞, we have

∫

M
e|d f |2/2 trace (∇dφ)(d f , d f ) dv � C

σ

∫

M
e|d f |2/2 |d f | dv.

As σ → ∞, this implies d f = 0 and the result follows. �

We can construct a smooth and convex function whose uniform norm is bounded on
a simply connected manifold with non-positive sectional curvature (cf. [19]). Indeed,
let M be a complete and non-compact connected Riemannian manifold and N be a
simply connected Riemannian manifold with non-positive sectional curvature. Then
every exponentially harmonic map f : M → N , with finite

∫
M e|d f |2/2 |d f | dv, is con-

stant. In particular, when N = R, we deal with exponentially subharmonic functions.
A function f on M is exponentially subharmonic iff trace∇(e|d f |2/2d f ) � 0. Let M
be a complete and non-compact connected Riemannian manifold. Then every expo-
nentially subharmonic function f on M , with finite

∫
M e|d f |2/2 |d f | dv, is constant,

since there is a non-decreasing convex function φ with bounded derivative on the real
line. Thus we have

∫

M
e|d f |2/2 trace (∇dφ)(d f , d f )ψ dv � −

∫

M
e|d f |2/2(d(φ ◦ f ), dψ) dv

for every non-negative function ψ with compact support. It follows from a similar
argument as in Theorem 3.5.

4 Liouville type 2 theorem

Let M be a Riemannian manifold. For a 2-tensor K ∈ �(T ∗M⊗T ∗M), its divergence
div K ∈ �(T ∗M) is defined as
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Exponentially harmonic maps, Morse index and Liouville... 1397

div K (X) =
m∑

i=1

(∇ei K )(ei , X),

where X is any smooth vector field onM . For two 2-tensors K1, K2, their inner product
is defined as

〈K1, K2〉 =
m∑

i, j=1

K1(ei , ej )K2(ei , ej ),

where {ei } is an orthonormal frame on M with respect to g. For a vector field X ∈
�(T M), let θX be its dual one form, i.e., θX (Y ) = (X ,Y )g with Y ∈ �(T M). The
covariant derivative of θX gives a 2-tensor field ∇θX :

∇θX (Y , Z) = ∇Y θX (Z) = (∇Y X , Z)g.

If X = ∇ρ is the gradient field of a C2-function ρ on M , then θX = dρ and ∇θX =
Hess ρ.

Lemma 4.1 (cf. [1,10]) Let K be a symmetric (0, 2)-type tensor field and X be a vector
field. Then

div(iX K ) = (div K )(X) + 〈K ,∇θX 〉 = (div K )(X) + 1

2
〈K , LXg〉,

where LX is the Lie derivative of the metric g in the direction of X. Let {e1, . . . , em}
be a local orthonormal frame on M. Then

1

2
〈K , LXg〉 =

m∑

i, j=1

1

2
〈K (ei , ej ), LXg(ei , ej )〉

=
m∑

i, j=1

K (ei , ej )(∇ei X , ej )g = 〈K ,∇θX 〉.

Let D be a bounded domain of M with C1-boundary. Applying the Stokes theorem,
we have

∫

∂D
K (X , n) dsg =

∫

D

(

(div K )(X) +
〈

K ,
1

2
LXg

〉)

dvg, (4.1)

where n is the unit outward normal vector field along ∂D.
The exponential stress energy tensor of a differentiable map f : M → N between

Riemannian manifolds is defined by

Se( f ) = e|d f |2/2
( |d f |2

2
g − f ∗h

)

.

The exponential stress energy tensor of f is conserved if div Se( f ) = 0.
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1398 Y.-J. Chiang

Lemma 4.2 ([5,12]) If f : (M, g) → (N , h) is an exponentially harmonic map, then

div Se( f ) = − (τe( f ), d f (X)) = 0,

where X is a vector field on M. Hence, the associated exponential stress energy tensor
of f is conserved.

If f is an exponentially harmonic map, then we arrive at
∫

∂D
Se( f )(X , n) dsg =

∫

D

〈

Se( f ),
1

2
LXg

〉

dvg, (4.2)

using Lemma 4.2 and letting K = Se( f ) in (4.1).
Now, let (M, g0) be a completem-dimensional Riemannianmanifoldwith a pole x0

and (N , h) be ann-dimensionalRiemannianmanifold. Set r(x) = distg0(x, x0) the g0-
distance functionwith respect to the pole x0. Put B(r) = {x ∈ M : r(x) � r }. It iswell
known that ∂

∂r is an eigenvector ofHessg0(r
2) associatedwith the eigenvalue 2. Denote

by μmax (resp. μmin) the maximum (resp. minimal) eigenvalues of Hessg0(r
2) −

2dr ⊗dr at each point of M −{x0}. Suppose that f : (M, g) → (N , h) is a stationary
map (via exponential energy) with g = ρ2g0, 0 < ρ ∈ C∞(M). It is clear that
the vector field n = ρ−1 ∂

∂r is an outer normal vector field along ∂B(r) ⊂ (M, g).
Under certain conditions we establish the following Liouville type 2 theorem for
exponentially harmonic maps f : (M, ρ2g0) → (N , h).

Theorem 4.3 (a) Let f : (M, ρ2g0) → (N , h) be an exponentially harmonic map.
Assume that ρ satisfies condition (�): ∂ log ρ

∂r � 0 and there is a constant C > 0
such that

(m − 2)r
∂ log ρ

∂r
+ m − 1

2
μmin + 1 − max {2, μmax} � C .

Then

σ−C
1

∫

B(σ1)

e|d f |2/2 |d f |2
2

dv � σ−C
2

∫

B(σ2)

e|d f |2/2 |d f |2
2

dv

for any 0 < σ1 � σ2.

(b) If
∫
B(R)

e|d f |2/2 |d f |2
2 dv = o(RC ), then f is constant.

Proof In (4.2), take D = B(r) and X = r ∂
∂r = 1

2 ∇0r2 (the covariant derivative ∇0

determined by g0), we have

∫

B(r)

〈

Se( f ),
1

2
LXg

〉

dvg =
∫

∂B(r)
Se( f )〈X , n〉 dsg.

We have
〈

Se( f ),
1

2
LXg

〉

=
〈

Se( f ), r
∂ log ρ

∂r
g

〉

+
〈

Se( f ),
1

2
ρ2LXg0

〉

= r
∂ log ρ

∂r
〈Se( f ), g〉 + 1

2
η2

〈
Se( f ),Hessg0(r

2)
〉
.

(4.3)
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Let {ei }mi=1 be an orthonormal frame with respect to g0 and em = ∂
∂r . We may

assume that Hessg0(r
2) is a diagonal matrix with respect to {ei }. Keep in mind that

{êi = ρ−1ei } is an orthonormal frame with respect to g. We derive the following two
inequalities:

1

2
ρ2 〈Se( f ),Hessg0(r

2)
〉

= 1

2
ρ2

m∑

i, j=1

Se( f )(̂ei , êj )Hessg0(r
2)(̂ei , êj )

= 1

2
ρ2

[ m∑

i=1

e|d f |2/2 |d f |2
2

Hessg0(r
2)(̂ei , êj )

−
m∑

i, j=1

e|d f |2/2(d f (̂ei ), d f (̂ej ))Hessg0(r2)(̂ei , êj )
]

= 1

2
e|d f |2/2 |d f |2

2

m∑

i=1

Hessg0(r
2)(ei , ei )

− 1

2
e|d f |2/2

m∑

i=1

(d f (̂ei ), d f (̂ei ))Hessg0(r
2)(ei , ei )

� 1

2
e|d f |2/2 |d f |2

2
[(m − 1)μmin + 2]

− 1

2
max {2, μmax}e|d f |2/2

m∑

i=1

(d f (̂ei ), êi ))

= 1

2
e|d f |2/2 |d f |2

2
[(m − 1)μmin + 2]

− 1

2
max {2, μmax}e|d f |2/2 |d f |2

� 1

2

[
(m − 1)μmin + 2 − 2max {2, μmax}

]
e|d f |2/2 |d f |2

2
,

(4.4)

and

〈Se( f ), g〉 = me|d f |2/2 |d f |2
2

− e|d f |2/2(d f (̂ei ), d f (̂ej ))h (̂ei , êj )g

= me|d f |2/2 |d f |2
2

− e|d f |2/2 |d f |2 � (m − 2)e|d f |2/2 |d f |2
2

.

(4.5)

We obtain from (4.3), (4.4), (4.5) and condition (�) that
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〈

Se( f ),
1

2
LXg

〉

�
[

r
∂ log ρ

∂r
(m − 2) + m − 1

2
μmin

+ 1 − max{2, μmax}
]

e|d f |2/2 |d f |2
2

� Ce|d f |2/2 |d f |2
2

.

(4.6)

Using co-area and the following fact:

|∇r |2g =
m∑

i=1

(̂eir)
2 =

m−1∑

i=1

ρ−2(eir)
2 + ρ−2

=
m−1∑

i=1

ρ−2
[(

ei ,
∂

∂r

)

g0

]2
+ ρ−2 = ρ−2 (i.e., |∇r |g = ρ−1),

we arrive at

∫

∂B(r)
Se( f )(X , n) dsg

=
∫

∂B(r)
e|d f |2/2

[ |d f |2
2

(X , n) − (d f (X), d f (n))h

]

dsg

= r
∫

∂B(r)
e|d f |2/2 |d f |2

2
ρ dsg

−
∫

∂B(r)
e|d f |2/2rρ−1

(

d f

(
∂

∂r

)

, d f

(
∂

∂r

))

h
dsg

� r
∫

∂B(r)
e|d f |2/2 |d f |2

2
ρ dsg

= r
d

dr

∫ r

0

∫

∂B(t)

[

|∇r |−1e|d f |2/2 |d f |2
2

dsg

]

dt

= r
d

dr

∫

B(r)
e|d f |2/2 |d f |2

2
dv.

(4.7)

It follows from (4.3), (4.6) and (4.7) that

0 � C
∫

B(r)
e|d f |2/2 |d f |2

2
dv � r

d

dr

∫

B(r)
e|d f |2/2 |d f |2

2
dv,

or equivalently

d

dr

1

rC

∫

B(r)
e|d f |2/2 |d f |2

2
dv � 0.
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Hence,

1

σC
1

∫

B(σ1)

e|d f |2/2 |d f |2
2

dv � 1

σC
2

∫

B(σ2)

e|d f |2/2 |d f |2
2

dv

for any 0 < σ1 � σ2. �

The energy functional E1( f ) = ∫
M e|d f |2/2 |d f |2

2 dv of a map f : M → N is called
slowly divergent if there exists a positive functionφ(r)with

∫ ∞
R0

dr
rφ(r) = +∞, R0 > 0,

such that

lim
R→∞

∫

B(R)

e|d f |2/2

φ(r(x))

|d f |2
2

dv < ∞. (4.8)

Theorem 4.4 Let f : (M, ρ2g0) → (N , h) be an exponentially harmonic map. Sup-
pose that ρ satisfies condition (�) and E1( f ) is slowly divergent, then f is constant.

Proof From the proof of Theorem 4.3 we have

C
∫

B(R)

e|d f |2/2 |d f |2
2

dvg � R
d

dr

∫

∂B(R)

e|d f |2/2 |d f |2
2

ρ dsg (4.9)

Assume that f is a non-constant map. Then there exists R0 > 0 such that for R � R0,

∫

B(R)

e|d f |2/2 |d f |2
2

dv � C1, (4.10)

where C1 is a positive constant. It follows from (4.9) and (4.10) that

∫

∂B(R)

e|d f |2/2 |d f |2
2

ρ dsg � C1 ·C
R

,

for R � R0. Consequently,

lim
R→∞

∫

B(R)

e|d f |2/2

φ(r(x))

|d f |2
2

dv =
∫ ∞

0

dR

φ(R)

∫

∂B(R)

e|d f |2/2 |d f |2
2

ρ dsg

�
∫ ∞

R0

dR

φ(R)

∫

∂B(R)

e|d f |2/2 |d f |2
2

ρ dsg

� C ·C1

∫ ∞

R0

dR

Rφ(R)
= ∞,

which contradicts (4.8). Hence, f must be constant. �
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