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Abstract

We obtain a result on the Morse index of an exponentially harmonic map from a
Riemannian manifold into the unit n-sphere. Next, we prove a Liouville type 1 the-
orem for exponentially harmonic maps between two Riemannian manifolds. Finally,
let (M, go) be a complete Riemannian manifold with a pole x¢ and (N, #) a Rieman-
nian manifold, under certain conditions we establish a Liouville type 2 theorem for
exponentially harmonic maps f: (M, p>go) — N,0 < p € C®(M).
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1 Introduction

Exponentially harmonic maps between two Riemannian manifolds were first con-
sidered by Eells and Lemaire in [12]. A map f: (M, g) — (N, h) between two
Riemannian manifolds is called exponentially harmonic if it is a critical point of the
exponential energy functional E¢(f) = |, M exp(% ldf |2) dvg. In terms of the Euler—
Lagrange equation, f is exponentially harmonic if it satisfies the following second
order nonlinear PDE:

exp (1477 [z(f) + (v('dg'z), df)} —o.

where 7(f) is the tension field of f, and V is the connection on T*(M)® f~'TN
induced by the Levi—Civita connections on M and N, respectively. In the recent three
decades, exponentially harmonic maps have been extensively investigated by Duc and
Eells [11], Hong et al. [17], Hong and Yang [16], Chiang [3—6], Chiang and Pan [7],
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Chiang and Wolak [8], Chiang and Yang [9], Cheung and Leung [2], Zhang et al. [25],
Liu [20,21], and others.

In [16], Hong and Yang showed that there are harmonic maps which are not expo-
nentially harmonic, and conversely there are exponentially harmonic maps which are
not harmonic. It is interesting that Kanfon et al. [18] found applications of exponen-
tial harmonic maps in the Friedmann—Lemaitre universe, and considered some new
models of exponentially harmonic maps which are coupled with gravity based on a
generalization of Lagrangian for bosonic strings coupled with diatonic field. More-
over, Omori [22,23] recently obtained some results about Eells—Sampson’s existence
theorem [13] and Sacks—Uhlenbeck’s existence theorem [24] for harmonic maps via
exponentially harmonic maps.

In [9], Chiang and Yang proved that if f is an exponentially harmonic map from a
Riemannian manifold into another Riemannian manifold with non-positive sectional
curvature, then f is stable. Chiang [5] also showed that if f is an exponentially har-
monic map from a compact Riemannian manifold into the unit n-sphere S”, n > 3,
with |df|> < n—2,then f is unstable. The degree of instability of amap f is measured
by the Morse index. In this paper, we estimate the Morse index of an exponentially
harmonic map f from a compact Riemannian manifold into the unit n-sphere S”,
see Theorem 2.4. Next, we obtain a Liouville type 1 theorem for exponentially har-
monic maps between two Riemannian manifolds, see Sect. 3. Finally, let (M, go) be
a complete Riemannian manifold with a pole x¢ and (N, &) a Riemannian manifold,
in Sect. 4 we establish a Liouville type 2 theorem for exponentially harmonic maps
f: (M, p*go) — N,0 < p € C®(M), under certain conditions.

2 Exponentially harmonic maps and Morse index

A map f: (M,g) — (N,h) between two Riemannian manifolds is called expo-
nentially harmonic if it is a critical point of the exponential energy functional
Ec(f) = [, exp(31df1?) dvg. More precisely, a C2-map f: (M, g) — (N, h) is
exponentially harmonic if it satisfies

d
(] o =0,

for any compactly supported variations f;: M — N with fo = f. In terms of the
Euler-Lagrange equation, we arrive at the following definition.

Definition 2.1 ([9]) A map f: (M, g;j) — (N, heg) from an m-dimensional Rie-
mannian manifold (M", g;;) into an n-dimensional Riemannian manifold (N", hqp)
is called exponentially harmonic if its associated exponential tension field is zero, i.e.,

2
() = () + (v('d’;' ),df) o,

where the tension field t(f) = g'/f; = ¢" (f — Ff‘jf,f‘ + F/‘;yfl.ﬁf/.y). In terms
of local coordinates, f satisfies '
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where Ff‘j and F’%V

and N, respectively.

are the Christoffel symbols of the Levi—Civita connections on M

Theorem 2.2 ([9]) Let f: M — N be an exponentially harmonic map.

(a) If N has non-positive sectional curvature (i.e., Rgﬂy u)»“nﬁ AV nt < 0 for vector
fields A, n), then fis stable.
(b) If f is a Jacobi field, then fis stable.

Theorem 2.3 ([S])) If f: M™ — S" is a non-constant exponentially harmonic map
from a compact Riemannian manifold M into the n-dimensional sphere S", n > 3,
with |df|* < n — 2, then f is unstable.

Let f: (M™ g) — (N", h) be a differentiable map from an m-dimensional Rieman-
nian manifold M into an n-dimensional Riemannian manifold N. Let v be a vector
fieldon N, and (f;") be the flows of diffeomorphisms induced by von N, i.e., fy = f,
j—t S li=0 = v. Recall that the first variation of the exponential energy functional is

d 2
— Ee(f)],_o = / eI (Y dfy, df)i—o dv
dt M

= —/ (tracegV(eldflz/zdf), v) dv
M

Then the second variation of the exponential energy functional is

d2
T3 By = / PR [(Vu, df)? + |VlP] dv
M

0
—/ <V9,—f‘ , tracegV(eldf2/2df)) dv
M at 1t=0

_/ JUTR2N (RN, df (e)df (e), v) dv,
M

i=1

where {e;} is a local orthonormal frame at a point in M and R" is the Riemannian
curvature of N.

We now consider a differentiable map f: (M, g) — (S”, stn) from a Riemannian
manifold into the unit n-sphere, where stn is the standard metric on S™. Let f~!TS"
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be the pull-back vector field bundle of 78", I'(f™ I78") be the space of sections on
£~175" and denote by VM, V5" and V the Levi-Civita connections on TM, T S"
and 1T 8" respectively. Then vV is given by WY = Vf XY where X € TM and
Y € I'(f~'TS™). The variation in the directions of the vector fields of the subspace
L(f) of D(f~1TS") is defined by

L(f)={vof:veR™]

where v is a vector field on S” given by v(y) = v — (v, y)y forany y € S" It is
known that v is a conformal vector field on S”. Clearly, if f is not constant, L( f) is
of dimension n + 1.

For any vector field v on S” along an exponentially harmonic map f: (M, g) —
(S", stn), we associate the quadratic form

d*E.(f;)
dt? =0

QOr(v) =
The Morse index of f is defined as the positive integer
Ind(f) = sup {dim W W C I'(f) such that Qf(v) is negative defined on W},

where W is the subspace of I'(f). The Morse index measures the degree of the insta-
bility of f. A map f is called stable if Ind(f) = 0. In view of Theorems 2.2 and
2.3, we shall estimate the Morse index of an exponentially harmonic map into the unit
n-sphere. We define the (modified) exponential stress energy of f as

2
Se(f) = PP 1dfPg — 2eldf 2”( 7] )f stn

(for the definition of the exponential stress energy, see [5,12]). For x € M, we set
Se(f) = inf{Se(f)(X, X): X € T,(M) such that g(X, X) = 1}.

The tensor Se(f) is called positive (resp. semi-positive) if SO(f) > 0 (resp. S(f) =
0).

Theorem 2.4 Let f: (M™, g) — (S”, stn) be an exponentially harmonic map from a
compact m-dimensional Riemannian manifold, m > 2, into the unit n-sphere, n > 2.
Suppose that the exponential stress energy tensor Se(f) is positive. Then Ind(f) >
n+ 1

Proof Let u = vof € L(f) and set (v, f) = f,. For any point x € M, we
denote by uT and uN the tangential and normal components of the vector u(x) on
the spaces df (Tx M) and df (Tx M )L respectively. Let {eq, ..., e, } be an orthonor-
mal basis of T, M which diagonalizes f*stn so that {df(e;),...,df(ex)} forms a
basis of df (T, M). Since e/ */2(1 + |df|2/2) # 0 at the point x € M,
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k

(), df )
-2

T
@r T ldf el

For any i < k we have

2
2edf|2/2< |df| >|df( )| ‘df| /2 |df| Se(f)(x)(e“el) (2 1)

<P 1A = SO0 ().

This implies
2 k
2¢l4/1 /2(1 i )Z(E(X),df(ei))2< (FR1af 2 — s e) 8T
i=1

Since

@), df (€))” = (v = (v, /) f,df ())” = (v, df ()’ = |dfy (e’
we deduce

(PR 1ar P — S @)) T )P > 261 '2/2( 4 '2)|de( W (22)
It follows from (2.1) and (2.2) that

d 2
271 /2<1 1] )wlfv(xn2 — MR af 22

< - Idflze'df P2 N @12 = SO @) T @)1 < = SO () [B()[%

2.3)

The second variation of the exponential energy can be expressed as

d*Ec(f;)
dt?

= / P75, df)? + |V — |df PP + [dfu?) dv
= M

Therefore, we obtain

0 (v) = /M <2e|df2/z( ldf|? >|df| 'df2/2|df|2|v|2) v

Hence, (2.3) implies
Qr(v) < — /Msgm o) dv.
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Since Se(f) is positive, Qr (v) is negative defined on L( f). Consequently, the Morse
index Ind(f) >n+ 1. |

Example 2.5 Consider a homothetic map f: (M, g) — (S", stn), i.e., f*stn = kg,
k € R. Then |df|* = mk? with m = dim(M). The (modified) exponential stress
energy equals

Se(f) = eld/P121qf 2 g — 2eldf] /2(1 + |de2>

2 |df)?
(Wi
m

If f: (M, g) — (S" stn) is homothetic exponentially harmonic with |df|> < m — 2,
then S.(f) is positive defined. Consequently, it follows from Theorem 2.4 that the
Morse index Ind(f) > n + 1.

Proposition2.6 If f: (M, g) — (N, h) is an exponentially harmonic and homothetic
map between two Riemannian manifolds, then Ind (f) > Ind(v), where ¢ is the identity
map of M.

Proof Let f: (M, g) — (N, h) be a homothetic map, i.e., f*h = k2g, A € R. In this
case, the exponential tension field 7.(f) is proportional to the mean curvature of f,
and so f is exponentially harmonic if and only if f is minimal immersion.

Since f: (M, g) — (N, h) is exponentially harmonic, the second variation in the
direction of a vector field v reduces to

Or(v)

= emAZ/Z/M [(w, df)zf_]TN+ IVol? =" (RN, df (e)df (e:). v):|dv, @4

i=1

where {¢;}!" | is an orthonormal basis on M.

Let I'7( ) be the subspace of I'(f ~! T N) containing the vector fields on N of the
form df (X) where X is a vector field on M. The restriction of Q‘f to I'T(f) can be
written as (cf. [14])

Q4 (df (X)) = 1> Qi(X). (2.5)
Since Vdf takes its values in the normal fiber bundle of N, we have

(Vxdf(Y),df(2)) = (Vdf)(X.Y), Z) + (df (VxY),df(Z))

2.6
= A2(VxY, Z). 26)

Substituting (2.6) and (2.5) into (2.4), we obtain
2 2
Qp(df (X)) = ™ /232 /M (Ve, X, e)*dv + ™ 232 04(X) = A2 0,(X),
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and the result follows. O

3 Liouville type 1 theorem

We establish a Liouville type 1 theorem for exponentially harmonic maps between two
Riemannian manifolds. What we present here is very different from Liu’s resultin [21]
involving the sectional curvature of the source manifold M under certain condition.
We derive the Bochner formula for exponential energy density in the following lemma.
Then we can apply it to prove Theorem 3.2.

Lemma3.1 Let f: M — N be a differentiable map between two Riemannian mani-
folds. Then

Aeldf1P/2

— (M2 |:|Vdf|2 — (Audf.df) =Y (RN(fuei, fue)) feej. frei)

i 3.1

+ Y (fuRicYe;, fuer) + |df IVIdeIZ],

where A is the Laplacian—Beltram operator, Ay is the Hodge—Laplace operator, R
is the Riemannian curvature of N and Ric™ is the Ricci curvature of M.

Proof Let {e;}i=1....m be alocal orthonormal frame at a point in M. We compute

.....

NMIT2 = JUPR[(Vaf, df)? + (Adf, df) + Vdf ]
= PR [1af 2 VIdf |2 = (Audf. df) + VS
=Y (R¥faei, feep) ey, fuer) + 3 (fRicYer, fuen]. D

i,J

Theorem 3.2 Let f: M — N be anon-constant exponentially harmonic map between
two Riemannian manifolds. Suppose that the Ricci curvature of M is non-negative and
the Riemannian curvature of N is non-positive. Then f is totally geodesic. Moreover,
ifRic” > 0 at some point, then f is constant. IFRN < 0, then f is either constant or
a map of rank one (i.e., whose image is a closed geodesic).

Proof Integrating (3.1) and using the exponential harmonicity of f,

/ MITR (Aydf,df)dv = f (8df. 8/ Pap)) av =o.
M M

we have
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0</e|df|2/2|Vdf|2dv
M
= / e'df'z/Q[(RN(f*ei, fxej) fxej, fei)
M

— > (fiRicYe;, e) — IdeZIVIdeIZ] dv <0,
i

since RicM > 0 and RN < 0. It follows that Vd f = 0. Hence, f is totally geodesic.
Moreover, if Ric” > 0 at some point, thendf = O and so f is constant. If RN < 0, then
RN (frei, fxej) frej, fyei) = 0, and the rank of f is either zero (i.e. f is constant),
or one (i.e. the image of a totally geodesic is a closed geodesic). O

We are interested in exponentially harmonic maps to manifolds which admit convex
functions (cf. [15,19]), and the following lemma is important for Proposition 3.4 and
Theorem 3.5.

Lemma3.3 Let f: M — N be a C'-map between Riemannian manifolds and ¢ be a
real-valued C?-function on N. Then for every C'-function vy on M we have

(UPPadpof), dy) = — PP trace (Vd) (df , df )¢
+ (VW - (grad @) o ), /T2 af).

Proof Let {e¢;} be an orthonormal frame around a point in M such that Ve; = 0 at that
point. We calculate

(V(lﬂ -(grad ¢) o f), e'df‘2/2df)
- Z (Ve,- (Y- (grad @) o f), eldf|2/zdf(el_))

= 3" (d¥ (e (grad d) o f), T2 f (e)
+ 3 U2 (Vg ((grad §) o f), df (e)

= (P Rd(p o f), dy) + wel TP race (Vde) (df , df),

and the result follows. O

Proposition 3.4 Let M be a compact connected Riemannian manifold and N be a
Riemannian manifold admitting a convex function on N. Then every exponentially
harmonic map f: M — N is constant.

Proof Let ¢ be areal-valued convex function on N. Taking ¥ = 1 in the above lemma
and integrating on M, via the first variational formula for an exponentially harmonic
map, we obtain

/ P2 trace (Vdg) (df, df) dv = 0.
M
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This implies that df = 0 everywhere on M, and concludes the result. O

Theorem 3.5 Let M be a complete and non-compact connected Riemannian manifold
and N be a Riemannian manifold admitting a convex function ¢ on N such that the
uniform norm ||d¢|| o is bounded. Then every exponentially harmonic map f: M —

N with finite [, U P121df | dv is constant.

Proof For each o > 0 we can find a Lipschitz continuous function ¥ on M such that
Y(x) =1forx € By, ¥(x) =0forx € M — By, 0 < ¢ < 1,and |[dy| < C/o
with C > 0 independent of o, where B, is a geodesic ball with radius o about a fixed
point xg. Applying Lemma 3.3, we obtain

fe‘dﬂz/ztrace(Vd(p)(df,df)dflpdv = —/ P20 f), dy)dv
M M
</e‘df'z/z-||d¢||oo~|df|-|dw|dv.
M
Since [|d¢ ||« is bounded and [, el P12 |df|dv < oo, we have

. C .
/ el 2 ¢race (Vdg) (df, df) dv < —/ 214 F| dv.
M o Jm
As o0 — 00, this implies df = 0 and the result follows. O

We can construct a smooth and convex function whose uniform norm is bounded on
a simply connected manifold with non-positive sectional curvature (cf. [19]). Indeed,
let M be a complete and non-compact connected Riemannian manifold and N be a
simply connected Riemannian manifold with non-positive sectional curvature. Then
every exponentially harmonic map f: M — N, with finite || M eldf /2 |df|dv,iscon-
stant. In particular, when N = R, we deal with exponentially subharmonic functions.
A function f on M is exponentially subharmonic iff trace V (e!%/ 24 f) > 0.Let M
be a complete and non-compact connected Riemannian manifold. Then every expo-
nentially subharmonic function f on M, with finite | M eldf /2 |df|dv, is constant,
since there is a non-decreasing convex function ¢ with bounded derivative on the real
line. Thus we have

/ P race (Vdg) (df , df)yrdv < — / PP o f), dy) dv
M M

for every non-negative function i with compact support. It follows from a similar
argument as in Theorem 3.5.

4 Liouville type 2 theorem

Let M be a Riemannian manifold. For a 2-tensor K € I'(T*M ® T*M), its divergence
div K € I'(T*M) is defined as
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divK(X) =) (Ve K)(er, X),
i=1

where X is any smooth vector field on M. For two 2-tensors K1, K>, their inner product
is defined as

m
(K1, K2) = Y Ki(ei, ¢j)Ka(eir e)),
i,j=1
where {e;} is an orthonormal frame on M with respect to g. For a vector field X €

(T M), let 6x be its dual one form, i.e., 0x(Y) = (X, Y), with Y € I'(TM). The
covariant derivative of Oy gives a 2-tensor field VOy:

Vox (Y, Z) = Vy0x(Z) = (Vy X, Z),.

If X = Vp is the gradient field of a C>-function p on M, then Oy = dp and VOy =
Hess p.

Lemma 4.1 (cf.[1,10]) Let K be a symmetric (0, 2)-type tensor field and X be a vector
field. Then

div(ixK) = (div K)(X) + (K, VOx) = (div K)(X) + % (K, Lxg),

where Ly is the Lie derivative of the metric g in the direction of X. Let {e1, ..., en}
be a local orthonormal frame on M. Then

1

— (K, L
2( x8)

1
2 (K (ei,ej), Lxgl(ei, ej))

i 1

M= 1Ms

K(ei,ej)(Vei X, ej)g = (K, VOx).

i 1

Let D be a bounded domain of M with C!-boundary. Applying the Stokes theorem,
we have

/ K(X,n)dsng ((divK)(X)+<K,lLXg>>dvg, “4.1)
9D D 2

where n is the unit outward normal vector field along 9 D.
The exponential stress energy tensor of a differentiable map f: M — N between
Riemannian manifolds is defined by

d 2
Se(f) = oMf '2/2(% - f*h).
The exponential stress energy tensor of f is conserved if div Se(f) = 0.
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Lemmad4.2 ([5,12) If f: (M, g) — (N, h) is an exponentially harmonic map, then
divSe(f) = — (ze(f), df (X)) =0,

where X is a vector field on M. Hence, the associated exponential stress energy tensor
of f is conserved.

If f is an exponentially harmonic map, then we arrive at

/; S (X dsg = / <se<f) Lxg>dvg, 42)

using Lemma 4.2 and letting K = S¢(f) in (4.1).

Now, let (M, go) be acomplete m-dimensional Riemannian manifold with a pole xq
and (N, h) be an n-dimensional Riemannian manifold. Setr (x) = distg, (x, xo) the go-
distance function with respectto the pole xo. Put B(r) = {x € M : r(x) < r}.Itiswell
known that % is an eigenvector of Hessg, (r?) associated with the ei genvalue 2. Denote
by Umax (resp. tmin) the maximum (resp. minimal) eigenvalues of Hessgo(rz) —
2dr ®dr at each point of M — {x¢}. Suppose that f: (M, g) — (N, h) is a stationary
map (via exponential energy) with ¢ = p’gp, 0 < p € C®(M). It is clear that
the vector field n = p~! % is an outer normal vector field along dB(r) C (M, g).
Under certain conditions we establish the following Liouville type 2 theorem for
exponentially harmonic maps f: (M, pgo) — (N, h).

Theorem 4.3 (a) Let f: (M, p>go) — (N, h) be an exponentially harmonic map.
Assume that p satisfies condition (x): alogp > 0 and there is a constant C > 0
such that

dlogp —1
or 2

2 2
UI_C/ a2 A’ <0{C/ Jar21df”
B(o) 2 B(o) 2

forany 0 < o1 < 02.
2
(b) IffB(R) e'df‘z/z%dv = o(RC), then f is constant.

(m—=2r

Mmin + 1 —max {2, umax} = C

Then

Proof In (4.2), take D = B(r) and X = r% = %Vor2 (the covariant derivative V9
determined by go), we have

/ <Se(f) Lxg>dvg— f Se(f) (X, n) ds,.
B(r) 9B(r)

We have

dlogp
or

<Se(f) Lxg>=<5e(f)r >+<Se(f) ,OLxgo>
31 ] “4.3)
(0]
= agp (Se(). 8 + 5 (S (). Hessy ().
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Let {e;}!", be an orthonormal frame with respect to go and e, = 3 . We may
assume that Hessg, (r})isa diagonal matrix with respect to {¢;}. Keep in mind that
{éi = p—'e;} is an orthonormal frame with respect to g. We derive the following two
inequalities:

= p2(Se(f). Hessg, (1))

1 m R R
=507 D Self) (@, &) Hessg, (1) @, 7))
i,j=l1

:lp |:Z a2 1471 f| Hessg, (r%) (@, ¢))

27 |4
i=1
" 2
_ Z ldf| /2(df(’e‘i),df(’e}))Hesng(rz)(’e\i,/@})]
i,j=1
1 ey ldf? &
= e /2% > Hessg, (r2)(ei. )
i=1
L (4.4)
— S M2 N af @), df @) Hessg, () (i e)
i=1
1 e ldfI?
> 1l /2% [ = 1) poonin + 2]
1 2
— 5 max (2 umac} T2y (df @0). 7))
i=1
1 e ldf?
= 5 e‘d/|2/2 | gl [(m — 1) pemin + 2]
1 2
—_ 5 max {2, //Lmax}e‘dfl /2 |df|2
1 dfP
5 [(m — 1) tmin + 2 — 2max {2, Mmdx}] ldflz/z%a
and
2, |df? 2 . PPN
(Se(f), g) = mel/ /27 — TR df @), df @)@, o)
(4.5)

2 2
B meldfm@ — PR 1af 2 > (n —2) el —'d§| .

We obtain from (4.3), (4.4), (4.5) and condition (x) that
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1400 Y.-J. Chiang

dlo m—1
afp (m_z)‘i‘Tﬂmin

1
<Se(f), 3 Lxg> > [r

. df?
1 — max{2, Mmax}]eldf ?/2 % (4.6)

2
> Cewﬁn@,

Using co-area and the following fact:
m m—1
Vg =Y @)=Y p (er) +p°
i=1 i=1

m—1 P 2
= ZP_2|:<eiaa_> ] +p P =p77 (e [Vrlg=p7)),
T/ ¢
we arrive at
/ Se(/)(X, n) dsg
JdB(r)
25 [df?
= /a " )e'df | ”[T(x, n) — (df (X),df () | dsg
;
X df?
=r/ e\dﬂz/Zﬂpdsg
IB() 2

_ dfR2, -1 9 9
/BB(r)e ' <df<3r>7df<3r))hdsg @7

2
< r/ Glar2 1af pds,
IB(r) 2

d (7" df|?
L [
dr Jo JaBw) 2

d df?
_, 4 / Garr2 141
dr B(r) 2

It follows from (4.3), (4.6) and (4.7) that

dr

2 2
0< C/ e\dflz/Zldidv <r i/ e ldf] v,
B(r) 2 B(r) 2

or equivalently

d 1 2 ldf)?
- ldfi=/2 21 4 > 0.
dr rC ,/;;(r)e 2 v
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Hence,

2 2
L/ a2 " L/ Gar2 1417
o€ Json) 2 o5 JB@) 2

for any 0 < 01 < 0s. O

2
The energy functional E{(f) = f eldf?/21d/1° 'dfl dvofamap f: M — N is called

slowly divergent if there exists a positive functlond)(r) with || ;;;’ r(t‘f(’r) +00, Ry > 0,
such that
ldf1?/2 1472
lim / - IV 4y < . (4.8)
R—oo Jppy ¢(r(x)) 2

Theorem 4.4 Let f: (M, p>go) — (N, h) be an exponentially harmonic map. Sup-
pose that p satisfies condition (x) and E1(f) is slowly divergent, then f is constant.

Proof From the proof of Theorem 4.3 we have

2 2
cf earrnl g, g4 e I g 4.9)
B(R) 2 £ ar Japwr 2 P '

Assume that f is a non-constant map. Then there exists Ry > O such that for R > Ry,
d
/ Qlarr2 1477 il dv > Cy, (4.10)
B(R) 2

where Cj is a positive constant. It follows from (4.9) and (4.10) that

2 ldf 2 C-C
/ e|d/|2/2ﬂpdsg S ac
B(R) 2 R

for R > Ry. Consequently,

dfi2/2 2 2
i [ ST (AR [ it
R—oo Jpppy ¢(r(x)) 2 o (R) IB(R) 2

2
* 4R Glari2 1df 1’
Ry P(R) JoBr)

>c.c /oo aR
= U1 = 00,
Ry RO(R)

which contradicts (4.8). Hence, f must be constant. O

pdsg
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