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Abstract
We study the average size of independent (vertex) sets of a graph. This invariant can be
regarded as the logarithmic derivative of the independence polynomial evaluated at 1.
We are specifically concerned with extremal questions. The maximum and minimum
for general graphs are attained by the empty and complete graph respectively, while
for trees we prove that the path minimises the average size of independent sets and the
star maximises it. Although removing a vertex does not always decrease the average
size of independent sets, we prove that there always exists a vertex for which this is
the case.

Keywords Independent sets · Average size · Trees · Extremal problems

Mathematics Subject Classification 05C35 · 05C05 · 05C07

1 Introduction

The number of independent sets is a graph invariant that has been studied extensively.
It has been dubbed the Fibonacci number of a graph [10] due to the fact that the
number of independent sets in a path is always a Fibonacci number, and is now known
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as Merrifield–Simmons index in mathematical chemistry in honour of the work of
chemistsMerrifield and Simmons [8].Moreover, its connection to the hard core model
in statistical physics is well established (see [1] for a general reference).

Extremal problems (concerned with finding maximum or minimum values) regard-
ing the number of independent sets have been of particular interest, especially in the
aforementioned context of mathematical chemistry. Graphs with various restrictions
have been studied, as well as graph classes such as trees, unicyclic or bicyclic graphs;
see [14] for a recent survey.

In this paper, we study similar questions for the average size of independent sets.
This invariant, while interesting in its own right, comes up in various contexts: in
[3], an asymptotic lower bound is given for triangle-free graphs, which can be used
to obtain bounds on Ramsey numbers. In [2], the same authors established an upper
bound as a tool to prove that the disjoint union of complete bipartite graphs Kd,d

maximises the number of independent sets of a d-regular graph.
An invariant of a similar nature is the average order of a subtree, as introduced to the

literature by Jamison [5,6]. In particular, he proved that the average order of subtrees
of an n-vertex tree is at least (n + 2)/3, with equality for the path, which parallels
our Theorem 4.4. There has been a fair amount of recent activity around this invariant
[4,9,13,15] and its generalisations [12].

This paper is structured as follows: in the next section, we collect some basic results
that will be needed for our analysis. In Sect. 3, we consider the behaviour of the average
size of the independent sets under removal of vertices or edges. It turns out that the
average size of independent sets is not monotonic under these operations, as we will
show by explicit counterexamples. This is in contrast to the number of independent
sets, but also to the aforementioned average subtree order [6]. However, we prove
that it is always possible to find a vertex whose removal decreases the average size
of independent sets. We also show that—not unexpectedly—the empty and complete
graph attain the maximum and minimum respectively among graphs of a given order.
Finally, we focus on trees in Sect. 4, where it is shown that the path and the star are
extremal. While the proof for the star is fairly short and straightforward, the situation
for the path is much more complex. The paper concludes with a brief discussion of a
generalised invariant.

2 Preliminaries

Let G be a graph, and let i(G, k) be the number of independent sets of size k. The
independence polynomial of G is defined by

I(G, x) =
∑

k

i(G, k) xk,

see [7] for a survey on the independence polynomial and its properties. The total num-
ber of independent subsets of G is simply the value of the independence polynomial
at 1:
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I(G, 1) =
∑

k

i(G, k),

and the first derivative, evaluated at x = 1, is

I ′(G, 1) =
∑

k

k i(G, k).

Hence the average size of independent vertex subsets inG is the logarithmic derivative

avi(G) = I ′(G, 1)

I(G, 1)
.

For ease of notation, we will write I(G) instead of I(G, 1), as well as T(G) instead of
I ′(G, 1) (total size of all independent sets).

Example 2.1 Let us compute the average size of independent sets of the n-vertex
edgeless graph En and the n-vertex star Sn . We have

I(En, x) = (1 + x)n, I(Sn, x) = (1 + x)n−1 + x,

which give

I(En) = 2n and I(Sn) = 2n−1 + 1,

T(En) = n2n−1 and T(Sn) = (n − 1)2n−2 + 1,

and hence

avi(En) = n

2
, avi(Sn) = n − 1

2
+ 3 − n

2n + 2
. (1)

The following standard recursion, which is obtained by distinguishing independent
sets containing a vertex v and those not containing it, is very useful in calculating the
independence polynomial of graphs.

Proposition 2.2 Let v be a vertex of G and N [v] = {u : uv ∈ E(G)} ∪ {v} its closed
neighbourhood. We have

I(G, x) = I(G − v, x) + x I(G − N [v], x).

As an immediate consequence, we obtain recursions for the aforementioned invariants
I(G) and T(G).

Proposition 2.3 Let v be a vertex of G and N [v] its closed neighbourhood. We have

I(G) = I(G − v) + I(G − N [v]), (2)

T(G) = T(G − v) + T(G − N [v]) + I(G − N [v]).
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Proof The first equation (2) is obtained from Proposition 2.2 by putting x = 1, the
second by differentiating first and plugging in x = 1 afterwards. ��
Thus, we get the following identities for the average size of independent sets:

Proposition 2.4 Let v be a vertex of G and N [v] its closed neighbourhood. We have

avi(G) = T(G − v) + T(G − N [v]) + I(G − N [v])
I(G − v) + I(G − N [v])

= avi(G − v) I(G − v) + (avi(G − N [v]) + 1) I(G − N [v])
I(G − v) + I(G − N [v]) .

We conclude this section with the following lemma, which will be useful later.

Lemma 2.5 If G1,G2, . . . ,Gk are the disjoint components of a graph G, then

avi(G) =
∑

k

avi(Gk).

Proof It is well known that

I(G, x) =
∏

k

I(Gk, x).

Now take the logarithm on both sides, differentiate and plug in x = 1 to obtain the
desired result. ��

3 Vertex or edge removal

Many graph invariants satisfy a monotonicity property with respect to vertex or edge
removal. This means that removing a vertex (or alternately, removing an edge) either
always decreases or always increases the value of the invariant. The total number of
independent sets is a simple example for such monotonicity properties: clearly, we
have

I(G − v) < I(G) and I(G − e) > I(G)

for every vertex v and every edge e of a graph G. As we will see in this section, the
average size of independent sets is not a monotonic invariant. However, we will show
that there always exists a vertex in the graph whose removal decreases avi. Then, we
characterize extremal graphs among all n-vertex graphs.

Let us first show that the average size of independent sets is not monotonic with
respect to vertex removal. If v and u are respectively a leaf and the centre of the
4-vertex star S4, then we have (see (1))

avi(S4 − v) = avi(S3) = 1 <
13

9
= avi(S4),
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Fig. 1 A tree T

e1 e2

but

avi(S4 − u) = avi(E3) = 3

2
>

13

9
= avi(S4).

The average size of independent sets is also not monotonic with respect to edge
removal: considering the tree in Fig. 1, we have I(T , x) = 2x4 +7x3 +10x2 +6x +1
and

avi(T − e1) = avi(S4) + avi(S2) = 13

9
+ 2

3
= 19

9
<

55

26
= avi(T ),

but

avi(T − e2) = avi(S5) + avi(S1) = 33

17
+ 1

2
= 83

34
>

55

26
= avi(T ).

While the inequality avi(G − v) < avi(G) does not always hold (as the example
of the star shows), we can show that for every graph G, there exists a vertex v with
this property. To this end, Theorem 3.2 will be needed.

Definition 3.1 Let X be a nonempty finite set, and P(X) its powerset. For a nonempty
subset A of P(X), we define

av(A) = 1

|A|
∑

A∈A
|A|.

Theorem 3.2 Let B be a subset of the powerset P(X) of a nonempty set X, such that
the cardinalities of the elements of B are not all the same. Then there exists x0 ∈ X
such that B ∩ P(X − {x0}) is not empty and

av(B) > av(B ∩ P(X − {x0})).

Proof It is convenient to use the abbreviations

nk(A) = |{A ∈ A : |A| = k }| and S(A) =
∑

A∈A
|A| =

∑

k�0

k ·nk(A).

We will prove that

av(B) >

∑
x∈X S(B ∩ P(X − {x}))∑
x∈X |B ∩ P(X − {x})| . (3)
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Note here that the denominator is not 0: if B∩P(X − {x}) were empty for all x , then
B could only contain the set X and nothing else, contradicting our assumption that
the cardinalities of the elements of B are not all the same. The claim of the theorem
follows immediately, since there must be an x0 ∈ X such that

∑
x∈X S(B ∩ P(X − {x}))∑
x∈X |B ∩ P(X − {x})| � S(B ∩ P(X − {x0}))

|B ∩ P(X − {x0})| .

Now let us prove (3). In the sum

∑

x∈X
S(B ∩ P(X − {x})) =

∑

x∈X

∑

k�0

k ·nk(B ∩ P(X − {x})),

the size of each B ∈ B contributes |X | − |B| times. Hence

∑

x∈X
S(B ∩ P(X − {x})) =

∑

k�0

(|X | − k)k ·nk(B) = |X |S(B) −
∑

k�0

k2nk(B)

= |X |av(B)|B| −
∑

k�0

k2nk(B).

Similarly,

∑

x∈X
|B ∩ P(X − {x})| =

∑

x∈X

∑

k�0

nk(B ∩ P(X − {x}))

=
∑

x∈X

∑

k�0

(|X | − k)nk(B) = |X ||B| − S(B).

By the Cauchy–Schwarz inequality, we have

S(B)2 =
( ∑

k�0

k ·nk(B)

)2
�

∑

k�0

nk(B) ·
∑

k�0

k2nk(B) = |B|
∑

k�0

k2nk(B),

and equality holds if and only if there is only one k such that nk(B) �= 0, which means
all the elements of B have the same size. Since this is ruled out by our assumptions,
we actually have

av(B)S(B) <
∑

k�0

k2nk(B).

Therefore we get
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The average size of independent sets of graphs 567

∑
x∈X S(B ∩ P(X − {x}))∑
x∈X |B ∩ P(X − {x})| = |X |av(B)|B| − ∑

k�0 k
2nk(B)

|X ||B| − S(B)

<
|X |av(B)|B| − av(B)S(B)

|X ||B| − S(B)
= av(B),

which concludes the proof of (3) and thus the theorem. ��

Corollary 3.3 If G is a nonempty graph, then there exists a vertex v in G such that

avi(G − v) < avi(G).

Proof Apply Theorem 3.2, withB being the set of independent vertex subsets of G. ��

We have seen that there is always a vertex in a graph whose removal decreases the
average size of independent sets avi. However, the dual statement for edge removal
does not hold, namely there is not always an edge whose removal increases avi (nor
is there always an edge whose removal decreases avi). As counterexamples, we can
consider the stars S6 and S4: for any edge e in S6 (S4, respectively) we have

avi(S6) = 27

11
>

83

34
= avi(S6 − e),

avi(S4) = 13

9
<

3

2
= avi(S4 − e).

So every edge removal in S6 decreases avi, while every edge removal in S4 increases
avi. Despite this, the edgeless graphs and the complete graphs are extremal:

Theorem 3.4 For every n-vertex graph G that is not the edgeless graph En or the
complete graph Kn, n/(n + 1) = avi(Kn) < avi(G) < avi(En) = n/2.

Proof The first inequality is straightforward from the fact that the only independent
sets of Kn are n independent sets of size 1 and the empty set: all other graphs with
n vertices have these independent sets and some larger ones. We prove the second
inequality by induction. For n = 1, there is no possible graph different from En , so
there is nothing to prove. Now, assume that the inequality is true for all n � k, for
some k � 1. Let G be a (k+1)-vertex graph that is not edgeless. Let v ∈ V (G) be a
vertex such that deg(v) � 1. We have

avi(G) = T(G − v) + T(G − N [v]) + I(G − N [v])
I(G − v) + I(G − N [v]) .

Using the induction hypothesis, we obtain
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568 E.O.D. Andriantiana et al.

avi(G) � (k/2) I(G − v) + ((k − 1)/2 + 1)(I(G − N [v]))
I(G − v) + I(G − N [v])

= k

2
+ I(G − N [v])/2

I(G − v) + I(G − N [v]) <
k

2
+ 1

2
= k + 1

2
= avi(Ek+1).

4 Trees

In this section, we are concerned with extremal trees regarding the average size of
independent sets. Let us first consider the problem of maximizing the average size of
independent sets among all n-vertex trees.

Theorem 4.1 For every n-vertex tree T , avi(Sn) � avi(T ).

Proof In the cases where n = 1, 2, 3, we must have T = Sn , and thus the claim holds.
Assume the inequality holds for all n � k, for some k � 3. Now suppose that

T �= Sn is a tree with n = k + 1 vertices. Let v ∈ V (T ) be a leaf of T and u its
neighbour. Then T − v is still a tree and by Proposition 2.3

I(T − v) − I(T − v − u) = I(T − v − N [u]) > 1.

Moreover, the star minimises the number of independent sets among all n-vertex trees
(see [10]), i.e., I(T − v) � I(Sn−1) = 2n−2 + 1. Thus

I(T − N [v])
I(T − v)

= 1 − I(T − v) − I(T − N [v])
I(T − v)

< 1 − 1

I(T − v)
� 1 − 1

2n−2 + 1
.

(4)

Using the recursion of Proposition 2.4 and Theorem 3.4, we obtain

avi(T ) = avi(T − v) I(T − v) + (avi(T − N [v]) + 1) I(T − N [v])
I(T − v) + I(T − N [v])

� avi(Sn−1) I(T − v)/I(T − N [v]) + (n − 2)/2 + 1

I(T − v)/I(T − N [v]) + 1
.

Since avi(Sn−1) < (n − 2)/2 + 1, avi(Sn−1)x+(n−2)/2+1
x+1 is decreasing as a function of

x for x � 0. Combined with the inequality in (4), this shows that

avi(T ) <
avi(Sn−1)(2n−2 + 1)/2n−2 + (n − 2)/2 + 1

(2n−2 + 1)/2n−2 + 1
= avi(Sn).

It is not unexpected that the star maximises avi, since it has the greatest independence
number among trees. It is also the tree with the greatest number of independent sets (a
well-known fact first established in [10]). The path, on the other hand, has the smallest
number of independent sets among all trees of a given size. Onewould therefore expect
that the average size of independent sets also attains its minimum for the path, which
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is indeed the case. Proving this fact requires more effort. Let us first find an explicit
formula for the average size of independent sets of a path. We denote the golden ratio
by φ = (

√
5 + 1)/2 and obtain the following result.

Lemma 4.2 The average size of independent sets of the n-vertex path Pn is

avi(Pn) = 5 − √
5

10
n + 3 − √

5

5
− n + 2√

5((−φ2)n+2 − 1)
. (5)

In particular,

(a) limn→∞ avi(Pn) − 5−√
5

10 n = 3−√
5

5 ,

(b) avi(Pn) � 5−√
5

10 n+ 1√
5
− 1

3 , with equality only for n = 2. For all positive integers

n �= 2, we even have avi(Pn) � 5−√
5

10 n + 2√
5

− 3
4 , with equality only for n = 4.

Proof It is well known that the number of independent sets of Pn is the Fibonacci
number Fn+2 = 1√

5

(
φn+2 − (−φ)−n−2

)
(see [10]). The total number of vertices

T(Pn) in all independent sets of Pn is determined by the recursion

T(Pn) = T(Pn−1) + T(Pn−2) + I(Pn−2)

that follows from Proposition 2.3, and the initial values T(P1) = 1 and T(P2) = 2.
The solution to this recursion is easily found to be

T(Pn) =
(
1 + √

5

10
n + 2

√
5

25

)
φn +

(
1 − √

5

10
n − 2

√
5

25

)
(−φ)−n.

The formula (5) for the quotient avi(Pn) = T(Pn)/I(Pn) follows immediately, as does
the limit in (a).

Now we show that the absolute value of the error term is decreasing: for n � 2, we
have

∣∣∣∣
n + 2√

5 ((−φ2)n+2 − 1)
·
√
5((−φ2)n+1 − 1)

n + 1

∣∣∣∣ �
(
1 + 1

n + 1

)
· φ2(n+1) + 1

φ2(n+2) − 1

= φ−2
(
1 + 1

n + 1

)
· φ−2(n+1) + 1

1 − φ−2(n+2)
� φ−2 · 4

3
· φ−6 + 1

1 − φ−8 = 4(
√
5 − 1)

9
< 1.

Therefore, the difference

∣∣∣∣avi(Pn) − 5 − √
5

10
n − 3 − √

5

5

∣∣∣∣

is decreasing in n. Moreover, note that the sign of n+2√
5((−φ2)n+2−1)

alternates, so that

avi(Pn) is alternatingly greater and less than 5−√
5

10 n + 3−√
5

5 . It follows that the
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Table 1 Values of c1, c2, . . . , c5 for independent sets

n 1 2 3 4 5

cn
1

2
√
5

≈ 0.2236 1√
5

− 1
3 ≈ 0.1139 3

2
√
5

− 1
2 ≈ 0.1708 2√

5
− 3

4 ≈ 0.1444
√
5
2 − 25

26 ≈ 0.1565

minimum of the difference avi(Pn)− 5−√
5

10 n is attained for n = 2. Among all n �= 2,
the minimum occurs when n = 4. The values of avi(Pn) are easily calculated in both
cases, and the two inequalities in (b) follow. ��
For ease of notation, we set

a = 5 − √
5

10
≈ 0.27639320 (6)

and cn = avi(Pn) − an. Table 1 gives values of cn for small n.
Before we prove our main result, we require one more lemma:

Lemma 4.3 For every tree T and every vertex v of T , we have

1

2
� I(T − v)

I(T )
< 1.

Proof Note first that I(T ) = I(T − v) + I(T − N [v]). Since T − N [v] is a subgraph
of T − v, we have I(T − N [v]) � I(T − v), hence 2I(T − v) � I(T ), which proves
the first inequality. The second inequality simply follows from the fact that T − v is
an induced proper subgraph of T . ��
Theorem 4.4 For every tree T of order n that is not a path, we have the inequality
avi(T ) � an + b, where b = (79

√
5 − 165)/70 ≈ 0.16641957 and a is as in (6).

Consequently, the path minimises the value of avi(T ) among all trees of order n.

Proof We prove the inequality by induction on n. For n � 3, there is nothing to prove
since the only trees with three or fewer vertices are paths. Thus assume now that n � 4,
and consider a vertex v of the tree T whose degree is at least 3 (which must exist if
T is not a path). Denote the neighbours of v by v1, v2, . . . , vk and the components of
T − v by T1, T2, . . . , Tk (in such a way that vj is contained in Tj ). By Proposition 2.4,
we have

avi(T ) = T(T )

I(T )
= T(T − v) + (I(T − N [v]) + T(T − N [v]))

I(T )

= I(T − v)

I(T )
· T(T − v)

I(T − v)
+ I(T − N [v])

I(T )
·
(
1 + T(T − N [v])

I(T − N [v])
)

= I(T − v)

I(T )
avi(T − v) + I(T ) − I(T − v)

I(T )
(1 + avi(T − N [v]))

= I(T − v)

I(T )

k∑

j=1

avi(Tj ) +
(
1 − I(T − v)

I(T )

)(
1 +

k∑

j=1

avi(Tj − vj )

)
.
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The average size of independent sets of graphs 571

Assume first that k � 5, and let T ′ = T − Tk be the tree obtained by removing Tk
from T . Repeating the calculation, we also have

avi(T ′) = I(T ′ − v)

I(T ′)

k−1∑

j=1

avi(Tj ) +
(
1 − I(T ′ − v)

I(T ′)

)(
1 +

k−1∑

j=1

avi(Tj − vj )

)
.

For simplicity, let us introduce the notations ρ = I(T−v)
I(T )

and ρ′ = I(T ′−v)
I(T ′) . Note that

ρ = I(T − v)

I(T )
=

∏k
j=1 I(Tj )∏k

j=1 I(Tj ) + ∏k
j=1 I(Tj − vj )

=
(
1 +

k∏

j=1

I(Tj − vj )

I(Tj )

)−1

(7)

and likewise

ρ′ =
(
1 +

k−1∏

j=1

I(Tj − vj )

I(Tj )

)−1

,

so that Lemma 4.3 implies ρ > ρ′. Now we write

avi(T ) = ρ

k∑

j=1

avi(Tj ) + (1 − ρ)

(
1 +

k∑

j=1

avi(Tj − vj )

)

= ρ avi(Tk) + (1 − ρ)avi(Tk − vk)

+ ρ

k−1∑

j=1

avi(Tj ) + (1 − ρ)

(
1 +

k−1∑

j=1

avi(Tj − vj )

)

= ρ avi(Tk) + (1 − ρ)avi(Tk − vk)

+ 1 − ρ

1 − ρ′

(
ρ′

k−1∑

j=1

avi(Tj ) + (1 − ρ′)
(
1 +

k−1∑

j=1

avi(Tj − vj )

))

+ ρ − ρ′

1 − ρ′
k−1∑

j=1

avi(Tj ).

By Lemma 4.2 and the induction hypothesis, we have avi(Tj ) � a|Tj | + 1√
5

− 1
3 for

all j . It follows that

k−1∑

j=1

avi(Tj ) �
k−1∑

j=1

(
a|Tj | + 1√

5
− 1

3

)
= a(|T ′| − 1) + (k − 1)

(
1√
5

− 1

3

)

� a|T ′| + 4

(
1√
5

− 1

3

)
− a > a|T ′| + b.
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Moreover, the induction hypothesis gives us avi(T ′) � a|T ′| + b. Finally,

• If |Tk | � 4, then by the induction hypothesis, Lemmas 4.2 and 4.3 , we have

ρ avi(Tk) + (1 − ρ)avi(Tk − vk)

� ρ

(
a|Tk | + 2√

5
− 3

4

)
+ (1 − ρ)

(
a(|Tk | − 1) + 2√

5
− 3

4

)

= a|Tk | + 2√
5

− 3

4
− (1 − ρ)a � a|Tk | + 2√

5
− 3

4
− a

2
> a|Tk |.

• If |Tk | = 3, thenρ avi(Tk)+(1−ρ)avi(Tk−vk) � ρ+(1−ρ)· 23 = 2+ρ
3 � 5

6 > 3a
(by Lemma 4.3).

• If |Tk | = 2, then ρ avi(Tk) + (1− ρ)avi(Tk − vk) = ρ · 23 + (1− ρ) · 12 = 3+ρ
6 �

7
12 > 2a (by Lemma 4.3).

• If |Tk | = 1, then ρ avi(Tk) + (1 − ρ)avi(Tk − vk) = ρ · 12 + (1 − ρ) ·0 = ρ
2 , and

since I(Tk−vk )
I(Tk )

= 1
2 in this case, we have ρ � 2

3 by (7). Thus

ρ avi(Tk) + (1 − ρ)avi(Tk − vk) � 1

3
> a.

In conclusion, ρ avi(Tk) + (1 − ρ)avi(Tk − vk) > a|Tk |. Combining all inequalities,
we obtain

avi(T ) > a|Tk | + 1 − ρ

1 − ρ′ (a|T ′| + b) + ρ − ρ′

1 − ρ′ (a|T ′| + b)

= a(|T ′| + |Tk |) + b = a|T | + b.

This completes the case that k � 5, so we are left with the cases k = 3 and k = 4. We
return to the representation

avi(T ) = ρ

k∑

j=1

avi(Tj ) + (1 − ρ)

(
1 +

k∑

j=1

avi(Tj − vj )

)
. (8)

Now we distinguish different cases depending on how many of the branches Tj have
one, two or three vertices respectively. If Tj has three vertices, we also distinguish
whether vj is the centre vertex or a leaf of Tj . This gives us a total of 35 cases for
k = 3 and 70 cases for k = 4, corresponding to the solutions of

x1 + x2 + x3 + x4 + x5 = k.

Here, x1 and x2 stand for the number of Tj ’s with one and two vertices respectively,
x3 and x4 for the number of Tj ’s with three vertices and vj the centre (x3) or a leaf
(x4) respectively, and x5 is the number of Tj ’s with four or more vertices. In each of
the cases, we use the following explicit values and estimates:
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avi(Tj )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

= 1
2 |Tj | = 1,

= 2
3 |Tj | = 2,

= 1 |Tj | = 3,

� a|Tj | + 2√
5

− 3
4 otherwise,

avi(Tj − vj )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

= 0 |Tj | = 1,

= 1
2 |Tj | = 2,

= 2
3 |Tj | = 3 and vj is a leaf of Tj ,

= 1 |Tj | = 3 and vj is the centre of Tj ,

� a(|Tj | − 1) + 2√
5

− 3
4 otherwise,

I(Tj − vj )

I(Tj )

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

= 1
2 |Tj | = 1,

= 2
3 |Tj | = 2,

= 3
5 |Tj | = 3 and vj is a leaf of Tj ,

= 4
5 |Tj | = 3 and vj is the centre of Tj ,

∈ [ 1
2 , 1

]
otherwise.

The bounds on avi in the case that Tj has four or more vertices follow from the
induction hypothesis (if Tj −vj is disconnected, applied to all components), while the
last inequality is simply Lemma 4.3.

We plug these bounds into (8) and also use the identity (7) again. Since the expres-
sion (8) is linear in ρ, its minimum is either attained for the largest or smallest possible
value of ρ. This gives us a lower bound for avi(T ) in each of the aforementioned 105
cases, which can all be checked easily with a computer. As an example, let us consider
the case that gives us the worst bound: it is obtained for x1 = x3 = x4 = 0, x2 = 1 and
x5 = 2 (i.e., one branch with two vertices, two branches with four or more vertices).
Let T1 and T2 both have four or more vertices, so that the third branch T3 consists of
only two vertices. We have

avi(T1) � a|T1| + 2√
5

− 3

4
,

avi(T2) � a|T2| + 2√
5

− 3

4
,

avi(T3) = 2

3

and

avi(T1 − v1) � a|T1| − a + 2√
5

− 3

4
,

avi(T2 − v2) � a|T2| − a + 2√
5

− 3

4
,

avi(T3 − v3) = 1

2
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as well as

ρ =
(
1 + 2

3

I(T1 − v1)I(T2 − v2)

I(T1)I(T2)

)−1

∈
[
3

5
,
6

7

]

by Lemma 4.3. Thus

avi(T1) + avi(T2) + avi(T3) � a(|T1| + |T2|) + 2

(
2√
5

− 3

4

)
+ 2

3

= a(|T | − 3) + 4√
5

− 5

6
= a|T | + 11

2
√
5

− 7

3

and likewise

avi(T1 − v1) + avi(T2 − v2) + avi(T3 − v3)

� a(|T1| − 1 + |T2| − 1) + 2

(
2√
5

− 3

4

)
+ 1

2

= a(|T | − 5) + 4√
5

− 1 = a|T | + 13

2
√
5

− 7

2
.

Plugging all these inequalities into (8), we obtain

avi(T ) � ρ

(
a|T | + 11

2
√
5

− 7

3

)
+ (1 − ρ)

(
1 + a|T | + 13

2
√
5

− 7

2

)

= a|T | + 13

2
√
5

− 5

2
+ ρ

(
1

6
− 1√

5

)
� a|T | + 13

2
√
5

− 5

2
+ 6

7

(
1

6
− 1√

5

)

= a|T | + b.

The other cases are treated in the same fashion and give lower bounds with larger
constant terms. To complete the proof of the theorem, it only remains to prove an
upper bound on avi(Pn). However, we already know from Lemma 4.2 that

avi(Pn) = an + 3 − √
5

5
− n + 2√

5((−φ2)n+2 − 1)

� an + 3 − √
5

5
− 7√

5((−φ2)7 − 1)
= an +

√
5

2
− 25

26

for n > 3, and
√
5
2 − 25

26 ≈ 0.15649553 < b. Therefore, avi(Pn) < an + b � avi(T )

for every tree T with n vertices other than Pn . ��
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5 Amore general setting

It is common in statistical physics to consider the hard-core distribution on the inde-
pendent sets I of a graph G. That is, the study of a random independent set I with
probability proportional to α|I |. In [2,3], the authors consider this model and prove
bounds on the expected size of an independent set drawn from the hard-core model
on G at fugacity α. When α = 1, this expected size is precisely the invariant avi
that we investigated in this paper. Recall that i(G, k) is the number of independent
vertex subsets of size k in G. Now, choose a random independent set with probability
proportional to αk, where k is the size of the set and α is a positive number. We define
the weighted total number of independent subsets of G, the weighted total size of
independent subsets of G and the weighted average size of independent vertex subsets
in G:

I α(G) = I(G, α) =
∑

k�0

i(G, k)αk,

T α(G) = T(G, α) =
∑

k�0

k i(G, k)αk,

aviα(G) = T(G, α)

I(G, α)
.

Example 5.1 For the n-vertex edgeless graph En and the star Sn , we have

Iα(En) =
n∑

k=0

(
n
k

)
αk = (1 + α)n,

Iα(Sn) = α +
n−1∑

k=0

(
n − 1
k

)
αk = α + (1 + α)n−1,

Tα(En) =
n∑

k=0

(
n
k

)
kαk = αn(1 + α)n−1,

Tα(Sn) = α + α(n − 1)(1 + α)n−2,

aviα(En) = αn

1 + α
,

aviα(Sn) = α + α(n − 1)(1 + α)n−2

α + (1 + α)n−1 .

All the results presented in this paper, except for the extremality of the path, generalise
to this weighted average.

Theorem 5.2 For any n-vertex graph G which is not the complete graph Kn and not
the edgeless graph En we have aviα(Kn) < aviα(G) < aviα(En).

Theorem 5.3 For any n-vertex tree T �= Sn, we have aviα(T ) < aviα(Sn).
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The proof that the path is extremal generalises to the case that α ∈ (0, 1], but not to
all real values of α (in fact, the path is not extremal for large values of α).

Theorem 5.4 For every α ∈ (0, 1] and every tree T of order n, we have the inequality
aviα(T ) � aviα(Pn).

To some extent, this also explains why proving extremality of the path is harder than
proving extremality of the star. We refer to [11] for more details.
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