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Abstract
We give a complete description of the absolute of commutative finitely generated
groups and semigroups. The absolute (previously called the exit boundary) is a further
elaboration of the notion of the boundary of a random walk on a group (the Poisson–
Furstenberg boundary); namely, the absolute of a (semi)group is the set of all ergodic
probability measures on the compactum of all infinite trajectories of a simple random
walk which has the same so-called cotransition probability as the simple randomwalk.
Related notions have been discussed in the probability literature: Martin boundary,
entrance and exit boundaries (Dynkin), central measures on path spaces of graphs
[see Vershik (J Math Sci 209(6):860–873, 2015)]. The main result of this paper, which
is a far-reaching generalization of de Finetti’s theorem, is as follows: the absolute of
a commutative semigroup coincides with the set of central measures corresponding
to Markov chains with independent identically distributed increments. Topologically,
the absolute is (in the main case) a closed disk of finite dimension.
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1 Introduction

The problem of describing the set of all Borel measures satisfying some invariance
condition is typical for several areas of mathematics (probability, dynamical systems,
graph theory, representation theory, etc.). Its most general setting presumes the exis-
tence of some equivalence relation on a Borel space (for instance, the orbit partition
for a group action) and a 2-cocycle on this equivalence relation, and the problem is
to describe all probability measures for which this cocycle is the Radon–Nikodym
cocycle.

If the equivalence classes are countable, the equivalence relation itself is hyperfinite
(i.e., is amonotone limit of finite equivalence relations), and the cocycle is identically 1,
then the problem reduces to describing the so-called central measures (see below) on
the space of infinite paths of a graded graph (Bratteli diagram). In a certain sense, the
notion of centrality coincides with the notion of invariance, namely, if we introduce the
transformation of paths called the adic shift, then the centrality of a measure coincides
with its invariance under this shift. It follows, in particular, that the set of central
measures is a Choquet simplex.

The set of all ergodic central measures for a given equivalence relation, endowed
with the weak topology of the space of all Borel measures, is called the absolute (for
more details on the setting and the history of the problem, see [8,9]).

The special case of this problem considered in this paper is that of finding the
absolute for randomwalks ongroups, semigroups, and for dynamicgraphs.Wedevelop
an approach and present a solution of the problem for an important special case,
namely, for random walks on countable commutative groups and semigroups. This
case has important special properties as compared with the general case; the details
are discussed below.

Note that the definition of absolute resembles the definition of boundaries in poten-
tial theory or the theory of random walks (the Poisson–Furstenberg (PF) boundary,
Martin boundary, etc.; see, e.g., [4]). And indeed, the absolute is a generalization, or,
better to say, a refinement of the PF boundary; more exactly, it can be nontrivial even
if the PF boundary is trivial, i.e., consists of a single point; hence the absolute provides
additional information on random walks on groups.

The foundations of the theory of absolute were laid in [8–10]. In [12], a descrip-
tion of the absolute for the case of free groups and homogeneous trees is obtained.
This paper deals with the opposite class of groups, that of commutative groups and
semigroups. In a paper in preparation, we will consider the next case: the absolute of
nilpotent groups and, in particular, Heisenberg groups; this case seems to be much
more complicated and interesting.

Let us discuss in more detail what is meant by a description of the absolute. The
absolute is defined as a collection of measures. Measures on the compactum of infinite
paths admit a direct description in terms of their values on finite paths (i.e., on cylinder
sets corresponding to finite paths). For central measures, there is a more concise
description in terms of functions on the set of vertices of the dynamic graph. With this
approach, the absolute corresponds to classes of proportional minimal nonnegative
harmonic functions on the dynamic graph. Another form of describing the absolute,
in terms of the transition probabilities of a Markov chain, appears since the random
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1478 A.M. Vershik, A.V. Malyutin

process corresponding to a central measure is Markovian. It is this description that is
most convenient for our constructions.

The key result of this paper is Theorem 3.1, which says that in the case of a com-
mutative semigroup (with an arbitrary system of generators), the set of ergodic central
measures (i.e., the absolute) coincides with the set of central measures that give rise to
Markov chains with independent identically distributed (i.i.d.) increments. The tran-
sition probabilities of a chain with i.i.d. increments are the same for all vertices of the
graph, they depend only on the generators assigned to edges.

Theorem 3.1, on the one hand, generalizes de Finetti’s theorem and, on the other
hand, is related to known results on harmonic functions on commutative groups (see [1,
3], and also [14, pp. 311–312], and references therein). De Finetti’s theorem follows
from Theorem 3.1 if we consider the case of a free semigroup. Harmonic functions
are related to the absolute as follows: in the case of a group, there is a natural bijection
between the main part of the absolute (for the definition, see Sect. 2) and the space
of classes of proportional minimal positive eigenfunctions of the Laplace operator.1

(For this reason, in the case of a group, the main part of the absolute is also called the
Laplace part of the absolute or simply the Laplace absolute. We will discuss this in
more detail in [13].)

The paper is organized as follows. Section 2 contains the basic definitions. Theo-
rem 3.1 is proved in Sect. 3, where we also present Theorem 3.2, which gives equations
for describing the absolute. Theorems 3.1 and 3.2 allow us to describe the absolute of
a commutative semigroup given a set of defining relations. The absolute is described
as the set of solutions of a system of equations in a Euclidean space. In the same
section, we give a series of examples of such a description. In Sect. 4, we use The-
orems 3.1 and 3.2 to derive theorems on the topological structure of the absolute of
commutative groups and semigroups. In this case, the absolute is compact; moreover,
for groups and cancellative semigroups, it is a closed disk of finite dimension. The
main technical difficulty in the proof of these theorems is to describe the degenerate
part of the absolute. A technical result solving this difficulty is placed in a separate
Sect. 5. In Sect. 6, we discuss the relation of the absolute of a commutative group to
multiplicative semigroup characters.

2 Necessary definitions

First, we will give another definition of the absolute of a graph, which does not involve
the group-theoretic terminology. By a graph we mean a locally finite directed graph
with a distinguished vertex. Loops and multiple edges are allowed. A path in a graph
is a (finite or infinite) sequence of alternating vertices and edges of the form

1 Hereafter, given a semigroup G with a fixed finite system of generators S, by the Laplace operator
(Laplacian) we mean the operator on the space of functions on G that sends a function f to the function L f
defined by the formula

L f (g) ..= 1

|S|
∑

s∈S
f (gs).
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v0, e1, v1, e2, . . . , en, vn,

where ek is an edge leading from the vertex vk−1 to the vertex vk (both vertices and
edges may be repeated). We will consider graphs in which each path is a part of an
infinite one.

Let � be a graph of the above form. Denote by P� the set of all infinite paths
in � starting at the distinguished vertex. This set is compact in the weak topology.
We consider Borel probability measures on this space. Given such a measure, by the
measure of a finite path R (starting at the distinguished vertex) we mean the measure
of the cylinder of all infinite paths that begin with R. A measure ν on P� is called
central if it has the following property: for every vertex v of � and every positive
integer n, the measure ν takes the same value at all paths of length n that lead from the
distinguished vertex to v. (For more details, see the definition of centrality in [13].)
The set of central measures is a convex compactum, which is a simplex (see [10]) in
the compactum of all measures onP� . A central measure is called ergodic (or regular)
if it is an extreme point of this simplex.

The absolute of a graph is the set of all ergodic central measures on the compactum
of infinite paths starting at the distinguished vertex. (More details are given in [9,13].)
The absolute of a finitely generated semigroup with a fixed finite system of generators
is the absolute of the corresponding Cayley graph. In this definition, there is a subtlety
related to noncancellative semigroups. Recall that a semigroupG is called cancellative
if there are no elements a, b, c inG such that a �= b, but ac = bc and/or ca = cb. In the
case of the Cayley graph of a cancellative semigroup, the choice of the distinguished
vertex does not affect the absolute; but in the case of a noncancellative semigroup G,
we will assume that in G there is an identity element (or it has been added), and it is
this element that is chosen as the distinguished vertex. The absolute of a semigroup G
with a system of generators S is denoted by AS(G).

A measure ν on the compactum of paths is called nondegenerate if the probability
of every finite path is nonzero. The main part of the absolute is its subset consisting
of the nondegenerate measures. The set of degenerate ergodic central measures will
be called the degenerate part of the absolute.

Abranching graph is a graph inwhich the set of paths leading from the distinguished
vertex to every vertex v is nonempty (in this case, one says that v is reachable from the
distinguished vertex) and all these paths have the same length. On the set of vertices
of a branching graph there is a natural grading by the distance to the distinguished
vertex. It turns out that in the theory of absolute, graphs of this special form are
most general in the following sense. To a graph � with distinguished vertex v0 we
canonically associate the corresponding dynamic graph Dv0(�), which is a branching
graph constructed in the following way. The nth level of Dv0(�) is a copy of the set of
vertices of � connected with v0 by paths of length n. There are exactly k edges leading
from a vertex v1 to a vertex v2 in Dv0(�) if and only if the level of v2 is greater by
one than the level of v1, and there are exactly k edges leading from the vertex w1 of �

corresponding to v1 to the vertex w2 of � corresponding to v2. Every branching graph
is isomorphic to its dynamic graph. The spaces of paths starting at the distinguished
point coincide for a graph and its dynamic graph. The absolute of a graph coincides
with the absolute of its dynamic graph.

123



1480 A.M. Vershik, A.V. Malyutin

The construction of a branching graph has a counterpart at the level of groups
and semigroups. A branching monoid is a monoid (semigroup with identity element)
whose Cayley graph (with respect to some system of generators) is a branching graph.
A semigroup is called a branching semigroup if it is a branching monoid or can be
obtained from a branching monoid by removing the identity element. The following
property is characteristic for branching semigroups: if G is a branching semigroup
with respect to a system of generators S, then for every element of G, all words over
the alphabet S representing this element have the same length (in other words, relations
in this case identify only words of equal length). In a branching semigroup there is a
canonical set of generators, which consists exactly of all irreducible elements of the
semigroup. Systems of generators built from this canonical set (a system of generators
may contain repeated elements, i.e., include elementswithmultiplicities)will be called
admissible. The Cayley graph of a branching monoid is a branching graph only for an
admissible system of generators. To a semigroupG with a fixed system of generators S
we canonically associate a branching monoid DS(G) defined as follows: the system of
generators of DS(G) is a copy of S, and the set of relations is the subset of the full set
of relations for (G, S) consisting of the relations that identify words of equal length.

3 The absolute of commutative groups and semigroups

As one can easily see, the random process corresponding to a central measure (on an
arbitrary graph of the form described above) is Markovian. For Markov chains on the
Cayley graph of a semigroup, we introduce the notion of independent identically dis-
tributed increments: aMarkov chain is said to have independent identically distributed
increments if its transition probabilities at all edges marked by the same generator are
equal.2 For commutative semigroups, the following key theorem holds, which is a
far-reaching generalization of de Finetti’s theorem.

Theorem 3.1 For every finitely generated commutative semigroup with an arbitrary
finite system of generators, the set of ergodic central measures (i.e., the absolute) coin-
cides with the set of central measures that give rise toMarkov chains with independent
identically distributed increments.

Thus the absolute is in a bijective correspondence with the set of measures on the
set of generators that determine Markov chains with the above centrality property. An
explicit condition that distinguishes these measures is given in Theorem 3.2.

Proof For brevity, measures that give rise to Markov chains with independent iden-
tically distributed increments will be called measures with i.i.d. increments. Let P
be a finite path (starting at the distinguished point) in the Cayley graph of the given
semigroup (with respect to the given system of generators). The left translation in the
semigroup determines a homeomorphism between the subcompactum PP of infinite
paths that begin with P and the compactum of all infinite paths (starting at the dis-

2 In the paper “Markov processes in asymptotic combinatorics and their transfers” in preparation, by the
first author, a more general notion of transfer is introduced; it is a transformation on the path space of a
graph with the meaning of a shift of increments. The notion of a Markov chain with independent identically
distributed increments can be rephrased as that of a Bernoulli transfer.
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tinguished vertex), as well as an isomorphism φ∗ between the spaces of measures on
these compacta.3 If ν is an ergodic central measure and ν(PP ) > 0, denote by νP the
corresponding conditional measure on PP . Then the measure φ∗(νP ) is also central
(since a = b implies ca = cb). As one can easily see, since the semigroup is com-
mutative, the central measure ν dominates the (finite central) measure ν(PP ) ·φ∗(νP ).
By ergodicity, it follows that ν = φ∗(νP ). This proves that ν is a measure with i.i.d.
increments. On the other hand, if all ergodic central measures have i.i.d. increments,
then every central measure with i.i.d. increments is ergodic, since noncoinciding mea-
sures with i.i.d. increments are mutually singular (the problem reduces to the mutual
singularity of noncoinciding Bernoulli measures). ��

3.1 Explicit computation of the absolute

Theorem 3.1 provides a recipe for describing the absolute, and below we carry out its
computation.

For an arbitrary semigroupGwith afixedfinite systemof generators S, the set IS(G)

ofmeasureswith i.i.d. increments canbe identified in anaturalwaywith the simplex�S

of probability distributions on S: to a distribution μ on S we associate the measure
in IS(G) for which the probability of the increment by s ∈ S is equal to μ(s). A
distribution on S forwhich the correspondingmeasure in IS(G) is central will be called
precentral. By Theorem 3.1, in the case of a commutative semigroup, the absolute
coincides with the intersection of the (|S|−1)-dimensional simplex IS(G) ∼= �S (in
general, it is not convex in the space of measures on the compactum of paths) with the
infinite-dimensional simplex �S(G) of central measures:

AS(G) = �S(G) ∩ IS(G).

Thus Theorem 3.1 reduces the problem of describing the absoluteAS(G) of a commu-
tative semigroup to the problem of describing the set σS(G) of precentral distributions
in �S . The (pre)centrality condition splits into a set of necessary conditions for pairs
of finite paths of equal length leading to the same vertex of the Cayley graph. The
following proposition immediately follows from the definition of centrality.

Theorem 3.2 A probability distribution μ = {μ(s); s ∈ S} on a finite system of
generators S of a commutative semigroup G is precentral if and only if for every pair
of vectors (ms)s∈S and (ns)s∈S from N

S
0 such that

3 Examples of noncancellative semigroups are interesting, but they are partly beyond the context we are
interested in. In particular, the Cayley graph of such a semigroup is inhomogeneous: a pair of edges marked
by s1 and s2 may have the same initial vertices and the same final vertices at one segment of the graph,
and the same initial vertices but different final vertices at another segment of the graph. In the context of
this proof, it is worth mentioning that in the case of a noncancellative semigroup, the tail filtrations (for
the theory of filtrations, see [11]) on the subcompactum PP and on the compactum of all paths are not
necessarily isomorphic.
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1482 A.M. Vershik, A.V. Malyutin

∑

s∈S
ms =

∑

s∈S
ns in N0 and

∑

s∈S
ms ·s =

∑

s∈S
ns ·s in G, (1)

the following equation holds:

∏

s∈S
(μ(s))ms =

∏

s∈S
(μ(s))ns. (2)

In other words, the set σS(G) of precentral distributions corresponding to the absolute
coincides with the set of distributions on S that are solutions of equations (2) for all
coefficients satisfying (1).

Theorem 3.2 allows one to obtain a description of the absolute of a commutative
semigroup from the set of defining relations. Conditions (2) are called the centrality
equations and are of the main interest in the study of the topology of the absolute.
When describing the absolute in the context of Theorem 3.2, it is convenient to take
into account the following considerations.

1. The pairs of vectors satisfying condition (1) for givenG and S form a semigroup (we
denote it by Rc

S(G); this semigroup describes the relations in the branching monoid
DS(G)). To verify the precentrality, it suffices to verify condition (2) for an arbitrary
set of generators of the semigroup Rc

S(G).

2. The pairs of vectors fromN
S
0 consisting of two equal

4 vectors form a subsemigroup
in Rc

S(G) (we denote it by R0). Equations (2) corresponding to elements from R0 are
trivial, i.e., they are identities, so in order to verify the precentrality, it suffices to take
an arbitrary set of vectors from Rc

S(G) that yields a generating set being combined
with R0. In other words, in order to describe the absolute, it suffices to take the system
of equations (2) for a set of noncommutative relations that is defining for the branching
monoid DS(G) modulo the commutativity relations.

Examples 1. The absolute of the commutative semigroup freely generated by a set of
generators S is represented by the simplex�S , since vectors (ms)s∈S and (ns)s∈S from
N

S
0 satisfy condition (1) only if they coincide, and in this case equation (2) becomes

an identity. At the level of branching monoids, this fact manifests itself as the absence
of noncommutative relations.

2. Let G = Z and S = {+1,−1}. In this case, as in Example 1, vectors (ms)s∈S
and (ns)s∈S satisfy condition (1) only if they coincide, so the absolute A{+1,−1}(Z)

is homeomorphic to the one-dimensional simplex. At the level of branching monoids,
the explanation is that the branchingmonoid for (Z, {+1,−1}) is the free monoid with
two generators.

3. Let G = Z
2 and S = {(+1, 0), (−1, 0), (0,+1), (0,−1)}. The semigroup Rc

S(G)

is generated by the subsemigroup R0 and the pair ((1, 1, 0, 0), (0, 0, 1, 1)). This pair
gives rise to the equation x1x2 = x3x4 in R

4. The absolute is represented by the
intersection of the set of solutions of this equation with the simplex

4 The same vector in N
S
0 can represent different paths of equal length leading to the same vertex.
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{
x ∈ R

4 :
∑

xi = 1, xi � 0
}
.

It is homeomorphic to the closed disk of dimension 2 (see Theorem 4.1).

4. Let G = Z
d and S be the standard symmetric system of generators. This is a

generalization of the previous example. In this case, the system of equations is as
follows:

x1x2 = x3x4 = · · · = x2d−1x2d .

5. For G = Z and S = {0,+6,−1}, the centrality relation takes the form x71 = x2x63 .

6. LetG be the commutative semigroupwith three generators a, b, c and the additional
noncommutative relation a + b = a + c. Then G is a branching semigroup, so the
set σS(G) is determined by the equation μ(a)μ(b) = μ(a)μ(c) corresponding to the
relation a + b = a + c. The absolute is homeomorphic to the tripod ⊥.

7. If G is the commutative semigroup with generators a, b, c and the additional non-
commutative relations a + b = 2c and a + c = 2b, then the absolute is disconnected,
it consists of two points.

Proposition 3.3 The absolute of the quotient semigroup of a commutative semigroup
by a finite subgroup coincides with the absolute of the semigroup.

Proof Assume that there is a semigroup epimorphism G1 → G2 and we consider
the system of generators S in G2 inherited from G1. If a pair of vectors (ms)s∈S
and (ns)s∈S from N

S
0 satisfies condition (1) for G1, then it also satisfies condition (1)

forG2, sincewe dealwith a homomorphism.Conversely, if an epimorhpismG1 → G2
corresponds to taking the quotient by a finite subgroup and a pair of vectors (ms)s∈S
and (ns)s∈S satisfies condition (1) for G2, then there is a positive integer k such that
the pair of vectors (k ·ms)s∈S and (k ·ns)s∈S satisfies condition (1) for G1. In view of
Theorem 3.2, it follows that the sets σS(G1) and σS(G2) of precentral distributions are
described by equivalent systems of equations, and Theorem 3.1 implies the desired
assertion. ��
Comments 1. The idea of shifting used in the proof of Theorem 3.1 appeared in the
probability literature of the 1960s in connection with harmonic functions; see [3,
Theorem 5], [7, Lemma 1], and also [14, Lemma 25.2].

2. Already for nilpotent groups, Theorem 3.1 does not hold for an arbitrary ergodic
central measure.

4 The topology of the absolute of commutative (semi)groups

As we have already mentioned, the set of all central measures is a simplex, and the
absolute is itsChoquet boundary.Ameaningful question iswhat topology is inducedon
the absolute by theweak topology in the space ofmeasures on the compactum of paths.
In this section, we study the topology of the absolute of commutative (semi)groups.
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1484 A.M. Vershik, A.V. Malyutin

From Theorems 3.1 and 3.2 we derive (the proofs are given below) the following
theorems on the topological structure of the absolute. The most important result is
as follows: in the case of groups and cancellative semigroups, the main part of the
absolute is the interior of a disk, and the degenerate part is the boundary of this disk.

Theorem 4.1 (on the topology of the absolute of commutative groups) The absolute of
a finitely generated commutative group with respect to any finite system of semigroup
generators is homeomorphic to the closed disk of dimension equal to the rank of the
group. The main part of the absolute corresponds to the interior of the disk.

Theorem 4.1 extends to cancellative semigroups.

Theorem 4.2 (generalization for cancellative commutative semigroups) The absolute
of a finitely generated cancellative commutative semigroup G (with respect to any
finite system of generators S) is homeomorphic to the closed disk whose dimension
either coincides with the rank of the group of fractions5of G, or is one less than this
rank if G is a branching semigroup and S is an admissible system of generators. The
main part of the absolute corresponds to the interior of the disk.

In the case of a noncancellative commutative semigroup, the absolute can have a more
complex structure (see Example 4 above). However, it is still compact, and the main
part has the same form.

Theorem 4.3 (generalization for noncancellative commutative semigroups) The abso-
lute of an arbitrary finitely generated commutative semigroup (with respect to any finite
system of generators) is compact,6and its main part is homeomorphic to the open disk
whose dimension is determined by the rule described in Theorem 4.2.

Proof of Theorems 4.1–4.3 Let G be a commutative semigroup with a finite system
of generators S. Theorems 3.1 and 3.2 reduce the problem of describing the abso-
lute AS(G) to that of describing the set σS(G) of solutions of equations (2) in the
simplex �S of probability distributions on S.

A proof that the absolute is compact. For arbitrary pair of vectors (ms)s∈S and (ns)s∈S
fromN

S
0 , the subset of solutions of equation (2) in�S is compact, since�S is compact

and the expressions in both sides of (2) are continuous on �S as functions of μ.
Therefore, the set σS(G) (and hence the absoluteAS(G)) is compact as an intersection
of compact subsets.

The centrality equations. If vectors (ms)s∈S and (ns)s∈S fromN
S
0 satisfy the condition∑

s∈S ms ·s = ∑
s∈S ns ·s in G, then the vector (ms −ns)s∈S from Z

S will be called a
reduced relation vector for (G, S). If, in addition, the equation

∑
s∈S ms = ∑

s∈S ns
holds, then the reduced relation vector (ms−ns)s∈S will be called central, equation (2)
will be called a centrality equation, and the equation (in the variables μ(s))

∏

s∈S
(μ(s))ms−min {ms ,ns } =

∏

s∈S
(μ(s))ns−min {ms ,ns } (3)

5 The group of fractions of a semigroup G is the group with the same generators as that of G in which the
relations are all corollaries of the relations in G.
6 In the literature, a simplex whose Choquet boundary is closed is called a Bauer simplex.

123



The absolute of finitely generated groups: I. Commutative (semi)groups 1485

will be called a reduced centrality equation.7 Denote by σ S(G) the set of distributions
from�S that are solutions of all reduced centrality equations of the pair (G, S). Then
the following holds.

(i)The setσ S(G)is contained inσS(G), sinceσS(G) coincideswith the set of solutions
of the centrality equations lying in �S , and every centrality equation (2) can be
obtained from the corresponding reduced equation (3) by multiplying both sides of
the latter by

∏
s∈S(μ(s))min {ms ,ns }.

(ii) If G is a cancellative semigroup, then σ S(G) = σS(G), since in such a semigroup
every reduced centrality equation is, obviously, a centrality equation, so σS(G) is
contained in σ S(G) (and σ S(G) is contained in σS(G) by (i)).

(iii)The intersectionσS(G)∩int(�S) coincideswith the intersection of the setsσ S(G)

and int(�S), both in the case of a cancellative semigroup and in the general case,
since in int(�S) the conditionμ(s) > 0 holds for all s ∈ S, and a centrality equation
in int(�S) has the same set of solutions as the corresponding reduced centrality
equation.

Now observe that the set RS(G) of reduced relation vectors for (G, S) is, obvi-
ously, a subgroup in ZS, and the subset Rc

S(G) of all central reduced relation vectors
either coincides with RS(G), or is a subgroup in RS(G) of corank 1.8

It follows that the sets Rc
S(G) and σ S(G) satisfy the conditions of Proposition 5.1

(in the notation of this proposition, σ S(G) = �Rc
S(G)

), which implies that the set

σ S(G) is homeomorphic to the closed disk of dimension |S| − 1 − rank(Rc
S(G))

(hereafter, rank stands for the rank of a commutative group), and, moreover, the
interior of the disk σ S(G) lies in int(�S), while the boundary of σ S(G) lies in the
boundary ∂�S .

To complete the proof of Theorems 4.1–4.3, it remains to observe that under
the bijection AS(G) ∼= σS(G), the main part of the absolute is represented by the
intersection σS(G) ∩ int(�S), the rank of the group of fractions of the semigroup G
is equal to |S| − rank(RS(G)), and the rank of the group RS(G) coincides with
the rank of Rc

S(G) if and only if (these groups coincide, so) (G, S) is a branching
semigroup with an admissible system of generators. ��

5 A proposition on linear spaces

Let S be a finite set, �S be the simplex of probability distributions on S, RS be the
space of real functions on S, V0 ⊂ R

S be the subset of functions with values summing
to zero. We identify �S with the subset of nonnegative functions in R

S with values
summing to one. Given a vector κ = (ks)s∈S from V0, denote by λκ the subset in �S

consisting of all distributions μ satisfying the condition

7 In the general case of a noncancellative semigroup, a reduced centrality equation is not necessarily a
centrality equation.
8 If the group of fractions of a semigroup is torsion-free, then the subgroups RS(G) and Rc

S(G) are linear

subspaces in ZS.

123



1486 A.M. Vershik, A.V. Malyutin

∏

s∈S
ks>0

(μ(s))ks =
∏

r∈S
kr<0

(μ(r))|kr |. (4)

Given a subset9 K in V0, put

�K
..=

⋂

κ∈K
λκ.

By VK we denote the linear hull of K , and dim(V ) stands for the dimension of
a space V . We also denote by int(M) and ∂M the interior and the boundary of a
multidimensional polyhedron M (irrespective of the ambient space).

The purpose of this section is to prove the following proposition.

Proposition 5.1 If a subset K of a hyperplane V0 is a linear subspace or a semigroup
of vectors with integer coordinates, then the set �K is homeomorphic to the closed
disk of dimension |S| − 1 − dim(VK ); moreover, the interior of �K lies in int(�S),
and the boundary of �K lies in ∂�S.

We split the proof of Proposition 5.1 into a series of claims.

Claim 5.2 For every subset K in V0, the intersection of the set �K with the interior
int(�S) of the simplex �S is homeomorphic to the open disk of dimension |S| − 1 −
dim(VK ).

Proof Observe that the maps

exp : V0 → int(�S) and log : int(�S) → V0

given by the formulas

exp((vs)s∈S) =
(

evs

∑
s∈S evs

)

s∈S
and

log((ps)s∈S) =
(
log ps −

∑

s∈S
log ps

)

s∈S

are mutually inverse diffeomorphisms between V0 and int(�S). Taking the logarithms
of both sides of (4),we see that themaps expand logprovide a diffeomorphismbetween
the set�K ∩int(�S) and the orthogonal complement to VK in V0. It remains to observe
that this complement has dimension

dim(V0) − dim(VK ) = |S| − 1 − dim(VK ). ��

9 If we extend the above definitions to subsets K not in V0, then part of the assertions stated below remains
valid. However, here we do not consider generalizations; we are mainly interested in the simplex �S and
the space V0, as the vector space associated with the affine hull of �S ; these spaces are embedded into the
auxiliary space RS only for convenience.
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Claim 5.3 For every subset K in V0, the set �K is compact.

Proof For every vector κ = (ks)s∈S , the set λκ is compact, since �S is compact and
the expressions in both sides of (4) are continuous on�S as functions ofμ. Therefore,
�K is compact as an intersection of compact sets. ��
Claim 5.4 If vectors κ and κ ′ in V0 are collinear, then λκ = λκ ′ .

Proof Follows from the definition of λκ for κ and κ ′ from V0. ��
Claim 5.5 If K is a subgroup in V0 that contains only vectors with integer coordinates,
then �K = �VK .

Proof First, observe that if K is a group of vectors with integer coordinates, then in VK

every vector with rational coordinates is proportional to a vector from K . In view of
Claim 5.4, it follows that every distribution μ from �K belongs also to λκ if κ is a
vector in VK with rational coordinates.

Second, it is clear that for every fixed distribution μ ∈ �S , both sides of (4),
regarded as functions of a vector (ks)s∈S , are continuous on each connected component
of each stratum of the form

R
S
m

..= {
(ks)s∈S ∈ R

S : card{s ∈ S : ks = 0} = m
}
.

Finally, for every m ∈ N0, the vectors with rational coordinates are dense in the
stratum VK ∩RS

m (this follows from the fact that the intersection of two linear subspaces
spanned by vectors with integer coordinates is also spanned by vectors with integer
coordinates; this fact becomes obvious if one regards the intersection as the orthogonal
complement to the sum of the orthogonal complements to the original subspaces and
observes that the property of being spanned by vectors with integer coordinates is
preserved under taking orthogonal complements and sums). ��
Claim 5.6 If an affine line L in R

S intersects the simplex �S by an interval I with
endpoints a and b, then the set λa−b intersects L at a single point, and this point lies
in the interior of I .

Proof For the vector κ = a − b, condition (4) takes the form

∏

s∈S
as−bs>0

(μ(s))as−bs =
∏

r∈S
br−ar>0

(μ(r))br−ar. (5)

Asμmoves along the interval I from a to b, the function FL(μ) given by the left-hand
side of (5) decreases, while the function FR(μ) given by the right-hand side of (5)
increases. Since I is cut out of �S by a straight line, there is q ∈ S with aq = 0
and bq > 0 and there is r ∈ S with ar > 0 and br = 0 such that FL(b) = 0 and
FR(a) = 0. This immediately implies the desired assertion. ��
Claim 5.7 If K is a linear subspace in V0, then taking the quotient ρ : RS → R

S/K
yields a homeomorphism between the set �K and the convex polyhedron ρ(�S);
moreover, the intersection �K ∩ ∂�S is homeomorphic to the boundary ∂(ρ(�S)).
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We split the proof of Claim 5.7 into several parts.

Claim 5.8 Under the conditions of Claim 5.7, the restriction of ρ to �K is injective.

Proof Aiming at a contradiction, assume that in �K there are distinct points x and y
with ρ(x) = ρ(y). Then the vector x − y lies in K , so {x, y} ⊂ �K ⊂ λx−y , which
contradicts Claim 5.6 if we choose L to be the affine line passing through the points x
and y (see also Claim 5.4). ��
Claim 5.9 Under the conditions of Claim 5.7, the map ρ sends the set �K ∩ ∂�S to
the boundary ∂(ρ(�S)) of the polyhedron ρ(�S).

Proof Aiming at a contradiction, assume that in�K ∩∂�S there is a point bwith ρ(b)
in int(ρ(�S)). Observe that the interior of the polyhedron ρ(�S) is covered by the
interior of the polyhedron �S (and, moreover, ρ(int(�S)) = int(ρ(�S))). Therefore,
in int(�S) there is a point y with ρ(y) = ρ(b). Then the vector b − y lies in K .
By Claim 5.6, the point b does not lie in λb−y , since it is an endpoint of the interval
cut out of �S by the straight line passing through b and y (see also Claim 5.4). This
contradicts the assumption that b lies in �K . ��
Claim 5.10 Under the conditions of Claim 5.7, the image Q ..= ρ(�K ∩ int(�S))

coincides with the interior int(ρ(�S)) of the polyhedron ρ(�S).

Proof We have proved that the restriction of ρ to �K is injective (Claim 5.8), and the
set�K ∩int(�S) is homeomorphic to the open disk of dimension |S|−1−dim(K ) (see
Claim 5.2), which coincides with the dimension of the polyhedron ρ(�S). As is well
known, the image of a continuous embedding of a Euclidean space into itself is open
(Brouwer’s invariance of domain theorem). It follows that the set Q is contained in
int(ρ(�S)) and open in ρ(�S). Therefore, if Q did not cover the domain int(ρ(�S)),
then there would be a point x in this domain that does not belong to Q but belongs to
the closure of Q. Since �K is compact, this would mean that in �K ∩ ∂�S there is a
point b with ρ(b) = x . However, this contradicts Claim 5.9. ��
Completing the proof of Claim 5.7 Since �K is compact (see Claim 5.3), it follows
from Claim 5.10 that ρ(�K ) = ρ(�S). Since the restriction of ρ to �K is injective
(see Claim 5.8), it follows that ρ yields a bijection between�K and ρ(�S). It remains
to observe that, as one can easily see, a continuous bijection of a metric compact
space is a homeomorphism. Thus ρ yields a homeomorhism between �K and ρ(�S),
and, in view of Claim 5.10, a homeomoprhism between the spheres �K ∩ ∂�S and
∂(ρ(�S)). ��
Completing the proof of Proposition 5.1 Claim 5.5 reduces the situation to the case
of a linear subspace. In this case, the existence of a homeomorphism follows from
Claim 5.7, and the refinement on the dimension, from Claim 5.2. ��
Remark 5.11 If a subset K of the space V0 consists of vectors with integer coordinates
but is not a subgroup, then the set �K is not necessarily homeomorphic to a disk. For
instance, for S = {1, 2, 3}, we have

�{(1,1,−2),(1,−2,1)} = {(1/3, 1/3, 1/3), (1, 0, 0)}.
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6 Characters

The theory of the absolute of commutative groups and semigroups has an interesting
reformulation in terms of characters of semigroups. Here by a character we mean
a homomorphism to the multiplicative semigroup R0+ of nonnegative real numbers.
For a general theory of characters, see [2,5,6].

Let G be an arbitrary commutative semigroup with a finite system of generators S
and DS(G) be the branching monoid for the pair (G, S). Every central measure ν

of the pair (G, S) gives rise to the functional fν on the monoid DS(G) whose value
at an element of DS(G) is equal to the measure of a path leading to this element.
Clearly, under this correspondence, functions corresponding to central measures with
i.i.d. increments are exactly characters of the monoid DS(G) whose values on the
generators from S sum to 1 (such characters will be called normalized, or probability
characters). In these terms, Theorem 3.1 takes the following form.

Corollary 6.1 In a commutative semigroup G with an arbitrary finite system of gen-
erators S, the above correspondence ν → fν is a bijection of the set of ergodic
central measures (i.e., the absolute) onto the set of normalized R0+-characters on the
branching monoid DS(G).

Proof If ν is ergodic, then the functional fν is a normalized R0+-character, since
the increments are i.i.d. (Theorem 3.1). Conversely, if a functional f on DS(G) is a
normalizedR0+-character, then the restriction of f to S gives a precentral distribution,
so f = fν for the ergodic central measure ν corresponding to this distribution. ��
A character is called trivial if it vanishes at all elements of the semigroup except the
identity element. As one can easily see, the set of nontrivial R0+-characters forms a
fiber bundle over the set of normalized R0+-characters with fiber (0,+∞). Thus
the problem of describing the absolute of commutative semigroups is essentially
equivalent to the problem of describing the set of R0+-charactes of commutative
branching monoids. Correspondingly, assertions about the absolute of commutative
semigroups can be translated into assertions about characters of branching semigroups.
For instance, Theorem 4.2 gives the following.

Corollary 6.2 For a commutative cancellative branching semigroup, the space of non-
trivialR0+-characters endowed with the weak topology is homeomorphic to the direct
product of a closed disk of certain dimension and an open interval.

In the case of commutative and nilpotent groups, there is a correspondence between
the R+-characters (positive real characters) of the group and the main part of the
absolute. This correspondence is known, it has been studied from the point of view of
eigenfunctions of Laplacians. We discuss it in more detail in [13].
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