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1 Introduction

Let {p1, . . . , p5} be a set of five points in general position in P
3, and {Ct } be the family

of twisted cubic curves through the fixed five points. Consider another point p ∈ P
3

general with respect to p1, . . . , p5 and define

X ..= {
q ∈ P

3 : there exists t such that q ∈ Ct and pq is tangent to Ct at q
}
,

pq stands for the line joining p and q. This variety turns out to be an irreducible curve,
and was studied by Humbert in [9]. In [1] Baker considered the curve of contact of a
Weddle surface with one of its tangent cones at a node (for the definition of Weddle
curve and its basic properties see [14], see also [5], specially Remark 8.6.2).

The aim of this note is to present several results obtained byWilliamL. Edge regard-
ing the geometry of Humbert’s curves and certain generalization that he introduced
and to prove some related results. We work over an algebraically closed field of char-
acteristic different form 2. The material discussed here by no means covers the total
contribution of Edge to the study of Humbert’s curves and its generalizations, it was a
constant topic in his work and even one of his last articles [8], written at his retirement
in Nazareth House, was devoted to the study of a particular case of Humbert’s curve.
Here we focus our attention on two papers [6] and [7].

In the first of these papers Edge proved the equivalence of the constructions by
Humbert and Baker and introduced another equivalent construction that was the core
of his treatment: the several geometric realizations of Humbert’s curve can be obtained
by projecting a canonical genus 5 curve that is a complete intersection of three diagonal
quadrics. In this sense, the Edge approach to Humbert’s curve can be considered as
a part of the theory of intersection of quadrics as further developed in [2,12,13]. He
proved many interesting properties of these curves, including a characterization of its
Weierstrass points and a natural isogenous decomposition of its Jacobian as a sum
of five elliptic curves (this being noticed before by Humbert and Baker). In Sect. 2
we present these results, the section is principally of an expository nature and the
statement and the idea of the proof of Theorem 2.2 is taken from [14], where some of
Edge’s results are also reproduced.

In Sect. 3 we focus on the paper [7], in which Edge introduced a generalization of
Humbert’s curve by considering curves X ⊂ P

n that can be expressed as complete
intersections of diagonal quadrics, we propose to call these curves Humbert–Edge’s
curves of type n. We prove that the diagonality of the quadrics equations defining X
is equivalent to X admitting a certain abelian group of order 2n. Strangely enough, in
his discussion, Edge did not include a proof that having this group action implies the
diagonality of the quadrics. We also provide in Proposition 3.5 a partial equivariant
decomposition of the Jacobian variety of X with respect to the action of the above
mentioned group. Finally, in Sect. 4 we slightly generalize an Edge’s construction
providing a family of special Humbert–Edge’s curves with a larger, non-abelian group
of automorphisms.

It should be noted that in [3] the authors rediscovered these curves and some of its
basic properties and called them generalized Humbert’s curves, they seemed not to be
aware of the Edge’s work [7].
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990 J.B. Frías-Medina, A.G. Zamora

2 The classical Humbert’s curve

LetC be a plane, irreducible, degree 6 curve with five nodes, say n1, . . . , n5, in general
position. Thus, C has geometric genus 5. Let � be the conic passing through the five
nodes. Thus, � must intersect C in two remaining points p, q. The linear system
3L − ∑5

i=1 ni of cubics passing through the five nodes defines an immersion φ of P
2

intoP
4, whose image is a degree 4Del Pezzo surface. This can be defined as a complete

intersection of two diagonal quadrics [5, Theorem 8.6.2] and the image X of C is cut
out on S by a further quadric hypersurface. In this way, we obtain the canonical curve
X as a complete intersection of three quadrics in P

4. The birational inverse from X to
C is obtained by projecting X from the chord p′q ′, with p′, q ′ denoting, respectively,
the images of p and q under φ.

In [6] Edge identified Humbert’s curve as one of these projections in the particular
case when the canonical curve X is the intersection of three diagonal quadrics.

We briefly recall the basic facts concerning intersections of quadrics (see [2,12,
13]). Let X ⊂ P

n be an irreducible, non-singular complete intersection of quadrics
Q0, . . . , Qn−2. Thus, X can be interpreted as the base locus of the (n −2)-dimensio-
nal linear system λ0Q0 + · · · + λn−2Qn−2 = 0. Denote by � ⊂ PH0(Pn,OPn (2))
the corresponding (n −2)-subspace. The discriminant hypersurface� ⊂ � is defined
by

� ..=
{
det

(n−2∑

l=0

λla
(l)
i j

)
= 0

}
,

if Ql = ∑
i� j a(l)

i j xi xj . This is a degree n+1 hypersurface parameterizing the singular
quadrics in �.

We have a filtration

� ⊃ � = �(1) ⊇ · · · ⊇ �(n−2),

where �(l) = Sing(�(l−1)), l = 2, . . . , n − 2. Moreover,

�(l)− �(l−1) = {Q ∈ � : rank Q = n + 1 − l },

see [13] for a proof.
In general� could be reducible. A hyperplane appears as an irreducible component

of � if and only if an (n −1)-dimensional linear system �′ ⊂ � exists formed by
singular quadrics.

Definition 2.1 (Edge, [6]) Let X be a non-hyperelliptic curve of genus 5 (identified
with its canonical model X ⊂ P

4). We say that X is a Humbert’s curve if there exists
a projective system of coordinates in P

4 and diagonal quadrics

Qi =
4∑

j=0

ai j x2j, i = 0, 1, 2,
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such that X is the base locus of the net � = {λ0Q0 + λ1Q1 + λ2Q2 = 0}.
In [6] Edge proved that the nodal Humbert’s plane sextic can be obtained as an image
of the projection of X from a chord and the cuspidal one as an image of the projection
of X from a tangent. Edge’s study is based on the fact that X admits an automorphism
subgroup generated by the involutions:

σi (x0 : . . . :xi : . . . :x4) = (x0 : . . . : − xi : . . . :x4), i = 0, . . . , 4.

The fundamental properties of X are summarized in the following theorem.

Theorem 2.2 Let X ⊂ P
4 be a canonical curve. The following statements are equiv-

alent:

(i) X is a Humbert’s curve.
(ii) X admits five involutions σ0, . . . , σ4 such that [σi , σj ] = 1, σ0 · · · σ4 = 1, and

Ei
..= X/〈σi 〉 are elliptic curves.

(iii) X admits 10 even and effective theta-characteristics.
(iv) The discriminant curve of �, � ⊂ P

2, is a product of five lines.

That (i) implies (ii) and (iii) was proved (in a rather scattered way) in [6]. Even though
the other implications were not explicitly formulated, it is possible that Edge was
aware of these equivalences. As formulated here this result and an indication of its
proof appear in [14]. We include a proof for the reader’s convenience.

Proof We start with a non-trigonal canonical curve X ⊂ P
4 which is a complete

intersection of three diagonal quadrics Q0, Q1, Q2,

Qj =
4∑

i=0

ai j x2i .

Note that in order for X to be non-degenerated and non-singular the determinant of
any 3×3 minor of the matrix (ai j ) must be different from 0. Denote by {e0, . . . , e4}
the standard frame of reference in P

4, i.e., ei = (0 : . . . :1: . . . :0) with 1 on the i-th
position. Note that ei /∈ X for i = 0, . . . , 4.

Let Hi
..= Z(xi ) and denote X.Hi = pi1 + · · · + pi8, i.e., pi j , j = 1, . . . , 8,

are the points of intersection of X with the hyperplane xi = 0. Note that, on X ,
pi1 + · · · + pi8 ∼ K X .

(i)⇒ (ii). Fix, for instance i = 0. Let p ∈ X and consider the line l p joining e0 and p.
An easy computation shows that there exists another point q ∈ X ∩ lp. Explicitly in
coordinates, if p = (b0 : . . . :b4), then q = (−b0 : . . . :b4). Let us call this involution
σ0 and consider the quotient E0 = X/〈σ0〉. The ramification points of this quotient
are precisely {p01, . . . , p08}. Thus, it follows from the Riemann–Hurwitz formula that
E0 is an elliptic curve. Analogous considerations apply for i = 1, . . . , 4.

(ii)⇒ (iii). Consider the subgroup generated by two involutions, say 〈σ0, σ1〉, we
obtain

f : X
4:1−−→ X/〈σ0, σ1〉  P

1.
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992 J.B. Frías-Medina, A.G. Zamora

This covering is simply ramified in the 16 points {p01, . . . , p08, p11, . . . , p18}. Thus,

K X ∼ f ∗KP1 + p01 + · · · + p08 + p11 + · · · + p18 ∼ f ∗KP1 + 2K X .

Therefore, K X ∼ − f ∗KP1 and we obtain that f ∗OP1(1) is a theta-characteristic of
X . Since h0(X, f ∗OP1(1)) = 2 we obtain the desired theta-characteristics.

(iii)⇒ (iv). Theta-characteristics of dimension at least 2 are in a 1:1 correspondence
with rank 3 quadrics containing X (see, for instance [13, Section 4]). Taking into
account our previous remark on �(l) we see that the existence of the 10 theta-
characteristics implies that the plane quintic � has 10 singular points. This implies
that � is a product of five lines.

(iv)⇒ (i). As X is a genus 5 canonical curve it must be contained in the base locus of
a net � of quadrics. We are assuming that the discriminant � of this net is a product
of five lines. We can choose coordinates in such a way that ei /∈ X and the pencil of
quadrics in � containing ei is formed by rank 4 quadrics, from this the diagonal form
for the Qi is deduced. ��
The following corollary was also central in Edge’s investigation of Humbert’s curves.

Corollary 2.3 Let X be a Humbert’s curve. The set of Weierstrass points of X is
formed by the 40 intersections of X with the hyperplanes Hi , that is the set
{pi j }0�i�4, 1� j�8 defined in the proof of Theorem 2.2. Each of these points has
weight 3 and gap sequence {1, 2, 3, 5, 7}.
Proof Recall that given a projective curve X of genus g, a general point p ∈ X
satisfies h0(X,OX (lp)) = 1 for l = 1, . . . , g. Points failing to fulfil this condition are
theWeierstrass points. For any point p ∈ X the gap sequence is defined by {l1, . . . , lg}
such that h0(X,OX (li p)) = h0(X,OX ((li − 1)p)). Thus, p is a Weierstrass point if
and only if its gap sequence is not {1, 2, . . . , g}. The weight of a Weierstrass point
is defined as the sum

∑g
i=1(li − i) and the sum of the weights of all the Weierstrass

points equals g(g − 1)(g + 1) (for a complete discussion, see for instance [11]).
Returning to our particular case, consider the quotient σi : X → Ei . Let pi j ∈ X

be as defined in the proof of Theorem 2.2. Since in the elliptic curve Ei ,

h0(Ei ,OEi (lσi (pi j ))) = l

for all l � 1, we have a non-constant meromorphic function on Ei having exactly a
pole of order 2 at σi (pi j ) and two non-constant linearly independent meromorphic
functions having exactly a pole of order 3 at σi (pi j ). Composing these functions with
σi , we deduce that

h0(X,OX (4pi j )) = 2 and h0(X,OX (6pi j )) = 3.

From this we obtain the desired gap sequence. Since each of these 40 points has weight
3, they form the totality of Weierstrass points. ��
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Some remarks on Humbert–Edge’s curves 993

Another important feature of Humbert’s curve is that its Jacobian is isogenous to a
product of the five elliptic curves given by the pull-back of the quotients X → Ei :

Proposition 2.4 Let X be a Humbert’s curve and πi : X → Ei be the quotient by the
involution σi . Then,

J X = π∗
0 E0 + · · · + π∗

4 E4.

Proof The proof is elementary. Given L ∈ J X , we can write

L = σ ∗
0 · · · σ ∗

4 L ⊗(σ ∗
1 · · · σ ∗

4 L)⊗(σ ∗
1 · · · σ ∗

4 L)−1⊗(σ ∗
2 σ ∗

3 σ ∗
4 L−1)⊗ · · · ⊗ L−1.

In this way, for any L ∈ J X , L2 ∈ π∗
0 E0 + · · ·+π∗

4 E4. Since J X is a divisible group
the result follows. ��

3 Intersection of quadrics and Humbert–Edge’s curves

In [7] Edge considered the following situation: let Xn ⊂ P
n be a non-singular, irre-

ducible complete intersection of n − 1 diagonal quadrics Q0, . . . , Qn−2:

Qi =
n∑

j=0

ai j x2j , i = 0, . . . , n − 2.

In [3] such a curve is called a generalized Humbert’s curve. Taking into account the
quoted paper [7] we think it is more appropriate to call it a Humbert–Edge’s curve.

Definition 3.1 An irreducible, non-degenerated and non-singular curve Xn ⊂ P
n,

n � 2, is a Humbert–Edge’s curve (HE curve for short) of type n if it is the complete
intersection of n − 1 diagonal quadrics Q0, . . . , Qn−2.

The basic properties of an HE curve Xn are as follows.

Lemma 3.2 Let Xn be an HE curve. Then:

(i) deg Xn = 2n−1.
(ii) The canonical sheaf of Xn is

OXn (K Xn )  OXn (n − 3),

in particular gXn − 1= 2n−2(n − 3).
(iii) Every (n −3)-minor of the matrix (ai j ) is non-degenerated.
(iv) The linear involutions of P

n sending xi into −xi induce involutions σi on Xn.
These together generate a subgroup of Aut(Xn) isomorphic to (Z/2Z)n with
relation σ0 · · · σn = 1.

(v) The quotient of Xn by each involution σi is geometrically interpreted as projection
with center ei onto the hyperplane Hi = Z(xi ) and this quotient is an HE curve
of type n − 1.
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994 J.B. Frías-Medina, A.G. Zamora

All these properties are stated in [7] and rediscovered in [3]. The cases n = 2, 3
correspond to a plane conic and an elliptic space quartic curve, respectively, the case
n = 4 is the classical Humbert’s curve, as presented by Edge.

Definition 3.3 Let Xn be a non-singular, irreducible, projective curve of genus
2n−2 ·(n − 3) + 1. We say that a group E acting on Xn is an HE group if it is
isomorphic to (Z/2Z)n and generators σ0, . . . , σn of E exist such that σ0 · · · σn = 1
and the fixed set of each σi is of cardinality 2n−1 and disjoint from the fixed set of σj

if i �= j .

The following theorem is not explicitly stated in [7], but probably was implicitly
assumed.

Theorem 3.4 An irreducible and non-singular curve of genus2n−2(n−3)+1, X ⊂ P
n

is an HE curve of type n if and only if it admits an action of an HE group. Moreover,
in this case the generators σi are the restriction to Xn of the involutions xi �→ −xi .

This fact was proved over C in [3], using the theory of uniformization and Klenian
groups. We give here an algebraic proof valid over any algebraically closed field of
characteristic different from 2.

Proof We make an induction on n (the result being trivial for n = 2 and previously
proved for n = 4). Assume that a non-singular projective curve Xn of genus 2n−2·
(n −3)+1 admits an HE group as a subgroup of Aut(Xn). Then, the quotient Xn−1

..=
Xn/〈σn〉 admits a group of automorphisms generated by σ 0, . . . , σ n−1 satisfying
σ 0 · · · σ n−1 = 1. Thus, by induction Xn−1 is an HE curve of type n − 1. Thus, it is
expressed as the complete intersection of n − 2 diagonal quadrics {Q1, . . . , Qn−2} in
P

n−1.
In order to recover the 2:1 coveringπn : Xn → Xn−1 wemust consider the ramified

covering associatedwith the divisor E = q1+· · ·+q2n−1 , where qi are the ramification
values of πn . We have

πn∗OXn = OXn−1⊕OXn−1(−η),

with 2η = E . Let Di = ∑2n−2

j=1 pi j be the divisor given by Xn−1.Hi (equivalently
{pi j }j is the set of fixed points of σ i ). Then, Di ∼ η and thus

πn∗OXn (π
∗
n Di ) = OXn−1(Di )⊕OXn−1 .

In this way |π∗
n Di | defines a diagram

Xn
|π∗

n Di |

πn

P
n

pn

Xn−1
|Di |

P
n−1,

with pn the projection of Xn with center en onto Hn .

123



Some remarks on Humbert–Edge’s curves 995

Hence, the equations of Xn ⊂ P
n are given by Qi

..= p∗
n Qi and the extra equation

defining the 2 :1 covering, namely:

x2n = p∗
ns,

s ∈ PH0(OXn−1(E)) = PH0(OXn−1(2D)). As s is invariant under the action of the
HE group induced on Xn−1, we see that s can be written as a diagonal quadric in the
projective coordinates of P

n−1. ��
It is not clear to us if the Jacobian of an HE curve X can be written as a sum of
elliptic curves. However, a partial decomposition exists: let πi

..= X → X/〈σi 〉 be the
quotient and A ⊂ J X be the abelian subvariety defined as

A ..=
n∑

i=0

π∗
i J (X/〈σi 〉).

Moreover, let J X− be the abelian subvariety

{L ∈ J X : σi L = L−1, i = 0, . . . , n}.

Then we have:

Proposition 3.5 Let J X be the Jacobian variety of an HE curve. Then

(i) J X = A + J X− and A and J X− are complementary, in the sense that its
intersection is finite.

(ii) J X− = {L : σiσj L = L for all i, j ∈ {0, . . . , n}}.
Proof Given an abelian subvariety B ⊂ J X , define

Bi
..= {L ∈ B : σi L = L},

and, for any I ⊂ {0, . . . , n}

B I ..= {L ∈ B : σi L = L for all i ∈ I }.

We clearly have

J X = J X0 + J X {0}
1 + J X {0,1}

2 + · · · + J X {0,1,...,n−1}
n + J X−.

Next, look at the representation of the HE group E in T0X . As E is abelian a basis
exists such that all the matrices representing elements of E are diagonal and with
eigenvalues 1 or −1. Write, for each σ ∈ E

T0X = V +
σ ⊕V −

σ ,

with V +
σ (respectively V −

σ ) denoting the eigenspace associated with 1 (resp. −1).
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996 J.B. Frías-Medina, A.G. Zamora

Then, we see that T0 J X− = ⋂
V −

σi
and T0A = ∑

V +
σi
. Moreover,

V +
σi σj

= V −
σi

∩ V −
σj

.

The proposition follows from these considerations. ��
Remark 3.6 The dimension of some of the spaces appearing in the previous decom-
position can be explicitly computed. For instance, if n is even, then the argument in the
proof of Proposition 2.4 provides J X− = 0. It must also be noticed that the obtained
decomposition gives a partial solution to the computation of the E-equivariant decom-
position in the sense of [10]. Since E induces on J X− the group {± 1} the E-simplicity
of J X− is equivalent to its simplicity as abelian variety.

4 Specializations with larger automorphism group

Recall that by definition, if Xn is an HE curve of type n there exist n − 1 diagonal
quadrics,

Qi =
n∑

j=0

ai j x2j , i = 0, . . . , n − 2,

such that Xn is the complete intersection of these quadrics. Also, an HE curve admits
naturally n + 1 involutions σi : xi �→ −xi for i = 0, . . . , n. Denote the HE group
generated by the involutions σi by E = 〈σ0, . . . , σn〉.

Edge found in [7] a convenient representation for an HE curve given as above. In
fact, for each j = 0, . . . , n, regard the coefficients ai j as the homogeneous coordinates
of a point pj = (a0 j :a1 j : . . . :a(n−2) j ) in the projective spaceP

n−2, thus,we haven+1
points. Using the fact that there is a unique rational normal curve C ⊂ P

n−2 through
the n + 1 points p0, . . . , pn in general position and changing the coordinates of P

n−2,
one may assume that C is given in the standard parametric form and consequently,
pj = (1:aj :a2

j : . . . :an−2
j ) for every j = 0, . . . , n. Therefore, we can assume that an

HE curve Xn is defined by diagonal quadrics with the form

Qi =
n∑

j=0

ai
j x2j , i = 0, . . . , n − 2.

A direct consequence of this representation noted by Edge is that Xn has only n − 2
moduli.

On the other hand, Edge specialized an HE curve (denoted by �n in his paper)
to obtain another curve which has a larger automorphism group and fewer moduli.
Edge’s idea was to modify the diagonal quadrics that define the HE curve in such
a way that the curve defined by these new quadrics is preserved under the original
automorphism group E and under a specific automorphism of finite order. Indeed,
he presented three such curves: �′

n ⊂ P
2p+1 admitting an automorphism of order

2, �′′
n ⊂ P

3s−1 admitting an automorphism of order 3 and �n ⊂ P
n admitting an

automorphism of order n + 1. The diagonal quadrics that define such curves enabled
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Some remarks on Humbert–Edge’s curves 997

Edge to conclude that the curve �′
n has p + 1 moduli, �′′

n has s moduli and �n has no
moduli (see [7, Sections II.8, II.13 and III.17]).

Following the procedure used by Edge, we generalize this process to construct
curves admitting the HE group E and other specific automorphism of finite order with
fewer moduli. Consider an HE curve Xmt−1 ⊂ P

mt−1 defined by the diagonal quadrics
Qi = ∑mt−1

j=0 ai
j x2j , where m and t are positive integers. Fix a primitive m th root ξ of

unity. Let Hm,t be the curve defined as the intersection of the diagonal quadrics

�i =
t−1∑

j=0

ai
j

(
x2j + ξ i x2j+t + ξ2i x2j+2t +· · ·+ ξ (m−1) i x2j+(m−1) t

)
, i = 0, . . . , mt −3.

Definition 4.1 Given an HE curve Xmt−1 ⊂ P
mt−1, a specialization of Xmt−1 is the

curve Hm,t given by the intersection of the mt − 2 diagonal quadrics �0, . . . , �mt−3.

The next result presents some properties of the specialization Hm,t of an HE curve
Xmt−1.

Proposition 4.2 The following assertions hold:

(i) The genus gHm,t of Hm,t satisfies gHm,t − 1 = 2mt−3(mt − 4).
(ii) Hm,t has t − 3 moduli if t > 3 and has no moduli if t � 3.
(iii) Hm,t admits the action of a group Ê of order m2mt−1 which contains the HE

group E, isomorphic to E �〈τm,t 〉 where τm,t is an automorphism of order m.

Proof (i) holds since Hm,t is a specialization of Xmt−1 and (ii) follows immediately
from the equations that define Hm,t .

(iii) Note that by construction�i is invariant under E for every i = 0, . . . , mt −3. On
the other hand, consider the automorphism τm,t of P

mt−1 induced by the following
permutation consisting of t m-cycles:

(x0xt x2t . . . x(m−1) t ) · · · (xj xj+t . . . xj+(m−1) t ) · · · (xt−1x2t−1 . . . xmt−1).

Hm,t is invariant under τm,t . Indeed, for each i = 0, . . . , mt − 3,

τm,t (�i ) =
t−1∑

j=0

ai
jτm,t

(
x2j + ξ i x2j+t + ξ2i x2j+2t + · · · + ξ (m−1) i x2j+(m−1) t

)

=
t−1∑

j=0

ai
j

(
x2j+t + ξ i x2j+2t + ξ2i x2j+3t

+ · · · + ξ (m−2) i x2j+(m−1) t + ξ (m−1) i x2j
)

= ξ (m−1) i�i .
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998 J.B. Frías-Medina, A.G. Zamora

Define the group Ê as the group spanned by E and τm,t . This group is non-abelian,
for example, if p = (a0 :a1 : . . . :amt−1) ∈ Hm,t , then

σ0τm,t (p) = (−at :at+1 : . . . :a2t−1 : . . . :a(m−1) t

:a(m−1) t+1 : . . . :amt−1 :a0 :a1 : . . . :at−1
)
,

while

τm,tσ0(p) = (
at :at+1 : . . . :a2t−1 : . . . :a(m−1) t

:a(m−1) t+1 : . . . :amt−1 : − a0 :a1 : . . . :at−1
)
.

In Ê , we have the original relations between the elements of E and also there are
new relations coming from the elements τm,t and σiτm,t . The relations in Ê are the
following:

σ 2
i = 1,

σiσj = σjσi ,

σ0σ1 · · · σmt−1 = 1,

τm
m,t = 1,

σiτm,t = τm,tσi+t (mod mt). (1)

The relation (1) implies that E is a normal subgroup of Ê . In addition, the fact that Ê
is the product of the subgroups E and 〈τm,t 〉 and E ∩ 〈τm,t 〉 = {1} imply that Ê is the
semidirect product of E by 〈τm,t 〉, i.e., Ê = E �〈τm,t 〉. So, the order of Ê is equal to
m2mt−1. ��
Remark 4.3 There exist Humbert’s curves admitting larger automorphisms groups
than the mentioned before. For example, the automorphism group of the Humbert’s
curve given by the equations

x20 + x21 + x22 + x23 + x24 = 0,

x20 + ζ5x21 + ζ 2
5 x22 + ζ 3

5 x23 + ζ 4
5 x24 = 0,

ζ 4
5 x20 + ζ 3

5 x21 + ζ 2
5 x22 + ζ5x23 + x24 = 0,

where ζ5 is a primitive fifth root of unity, has order 160. This curve was recently
considered by Cheltsov and Shramov in the context of the study of groups of rigid
transformations of P

3, [4, Remark 4.18].
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