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Abstract The Lindelöf degree and extent were studied in Buhagiar et al. (Cent Eur J
Math 12(8):1249–1264, 2014) in relation to lexicographic products of linearly ordered
spaces. In this paper we consider the behaviour of other important cardinal functions,
such as spread, density, weight and character, in such lexicographic products. Namely,
we study the relation between a particular cardinal function on a lexicographic product
of linearly ordered spaces and that cardinal function on each factor of the product.
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1 Introduction

The lexicographic product X = Lα<μXα of a collection {Xα : α < μ} , μ > 1, of
linearly ordered sets is an unexpectedly useful and ubiquitous set theoretic structure.
When each linearly ordered set is given the order topology, it is important to study
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Fig. 1 Cardinal functions in LOTS

the behaviour of topological properties when lexicographic products are taken. Such
investigations were done, for example, by Faber [3]. In this paper, the behaviour
of some cardinal functions is investigated when lexicographic products of linearly
ordered spaces are taken.

A linearly ordered topological space (abbreviated LOTS) is a triple (X, λ(�),�),
where (X,�) is a linearly ordered set (abbreviated LOS) and λ(�) is the usual interval
topology defined by � [7,8].

An ordered pair (A, B) of disjoint subsets of a LOS X is said to be a jump if (i)
X = A∪ B, (ii) x < y whenever x ∈ A and y ∈ B, and (iii) A has a maximal element
a, and B has a minimal element b. Thus a < b and ]a, b[ = ∅. For a LOTS X we
will let

JX = |set of jumps in X | + ℵ0.

We use standard notation for the cardinal functions on a topological space X . Namely,

k(X) cardinality, �(X) Lindelöf degree,

w(X) weight, h�(X) hereditary Lindelöf degree,

nw(X) net weight, e(X) extent,

d(X) density, χ(X) character,

hd(X) hereditary density, ψ(X) pseudo-character,

s(X) spread, t (X) tightness.

c(X) cellularity,

As usual, we require all cardinal functions to take only infinite cardinals as values.
The reader is referred to [4–6] for a thorough study of cardinal functions. Figure 1
shows the relations between the above cardinal functions in LOTS (see [2, p. 222]).

The behaviour of the cardinal functions � and e in lexicographic products of LOTS
was studied in [1], in this paper we study the behaviour of the other cardinal functions.

If X is a LOS and for some x ∈ X we write x = 0, then this would mean that
X has a minimal element denoted by 0. Analogously, x = 1 means that x is the
maximal element of X denoted by 1. In particular, when we consider the two-point
LOS or LOTS {0, 1} we understand that 0 < 1. In the rest of the paper we assume
that |X | � 2 for any LOS X .
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Some cardinal functions in lexicographic products of LOTS 1507

2 Spread, density, weight and character of the lexicographic product of
two LOTS

In this section we consider the lexicographic product X ·Y of two LOTS X and Y .

Lemma 2.1 (a) s(Y ) � s(X ·Y ), d(Y ) � d(X ·Y ), w(Y ) � w(X ·Y ) and χ(Y ) �
χ(X ·Y ).

(b) If |Y | > 2, then k(X) � s(X ·Y ) � d(X ·Y ) � w(X ·Y ).

Proof (a) For x ∈ X , the subspace x L ..= {x}·Y of X ·Y is order-isomorphic to Y ,
the order topology of X ·Y induces on x L the order topology of x L . The inequalities
s(Y ) = s(x L) � s(X ·Y ), w(Y ) = w(x L) � w(X ·Y ) and χ(Y ) = χ(x L) �
χ(X ·Y ) thus follow. The inequality d(Y ) = d(x L) � d(X ·Y ) follows from the
equality d = hd.

(b) Since Ly
..= X ·{y}, for a non endpoint y ∈ Y , is a discrete subspace of X ·Y we

get |X | = |Ly | � s(X ·Y ). This implies k(X) � s(X ·Y ) � d(X ·Y ) � w(X ·Y ). ��

Theorem 2.2 s(X ·Y ) =
{
s(X) ·JX if Y = {0, 1},
k(X) ·s(Y ) if |Y | > 2.

Proof Suppose that Y = {0, 1}. If ]a, b[ = ∅, for a, b ∈ X with a < b, then
](a, 1), (b, 1)[ = {(b, 0)}, hence s(X ·Y ) � JX . Moreover, if D ⊆ X is discrete, then
the set D′ = {(a, 0) : a ∈ D, 0 	= a 	= 1} is a discrete set in X ·Y and s(X ·Y ) � s(X)

follows. Consequently, s(X ·Y ) � max{s(X), JX }. Conversely, consider a cellular
family C in X ·Y , one can assume that each I ∈ C is an open interval of the form
](x, y), (x ′, y′)[ with x < x ′. The image of C under the mapping ](x, y), (x ′, y′)[ 
→
]x, x ′[ is a collection of pairwise disjoint open intervals in X . Noting that ]x, x ′[ = ∅

defines a jump in X , one concludes that s(X ·Y ) = c(X ·Y ) � max{c(X), JX } =
max{s(X), JX }.

If |Y | > 2, the inequality s(X ·Y ) � k(X) ·s(Y ) follows from Lemma 2.1. Con-
versely, if D ⊆ X ·Y is discrete, then for any x ∈ X , Dx = {y : (x, y) ∈ D} is
discrete in Y , so that |Dx | � s(Y ). Consequently, |D| � k(X) ·s(Y ) and therefore,
s(X ·Y ) � k(X) ·s(Y ). ��
An analogous formula holds for the density.

Theorem 2.3 d(X ·Y ) =
{
d(X) ·JX if Y = {0, 1},
k(X) ·d(Y ) if |Y | > 2.

Proof If Y = {0, 1}, then d(X ·Y ) � s(X ·Y ) � JX follows from Theorem 2.2.
Suppose D ⊆ X ·Y is dense and |D| � d(X ·Y ). Then the set DX = {x :
(x, 0) or (x, 1)∈D} is a dense set in X . Consequently, d(X ·Y ) � d(X) and there-
fore, d(X ·Y ) � max{d(X), JX }. Conversely, suppose D ⊆ X is a dense subset of X
satisfying |D| � d(X). Let S = {(x, 0) : x ∈ D}. Then P = S ∪ {(al, 1), (ar, 0) :
al < ar in X, ]al, ar [ = ∅} is dense in X ·Y , adding to P any possible isolated end
points. Note that |P| � d(X) ·JX so that d(X ·Y ) � d(X) ·JX follows.
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1508 D. Buhagiar et al.

If |Y | > 2, the inequality d(X ·Y ) � k(X) ·d(Y ) follows fromLemma 2.1. Suppose
D ⊆ Y is dense in Y with |D| � d(Y ), one can assume that 0, 1 ∈ D if they exist in
Y . Then D′ = {(x, y) : x ∈ X, y ∈ D} is dense in X ·Y and d(X ·Y ) � k(X) ·d(Y )

follows. ��
We next consider the weight.

Theorem 2.4 w(X ·Y ) = k(X) ·w(Y ).

Proof Suppose Y = {0, 1} and let B be a base of open intervals in X ·Y with |B| �
w(X ·Y ). For any x ∈ X choose I (x) ∈ Bwith (x, 0) ∈ I (x) and (x, 1) /∈ I (x). Since
X � x 
→ I (x) is injective, the inequality w(X ·Y ) � k(X) follows. On the other
hand w(X ·Y ) � k(X ·Y ) = k(X) and therefore, w(X ·Y ) = k(X) = k(X) ·w(Y ).

If |Y | > 2, the inequality w(X ·Y ) � k(X) ·w(Y ) follows from Lemma 2.1. The
inequality w(X ·Y ) � k(X) ·w(Y ) easily follows if Y does not have endpoints. Now
suppose 0 ∈ Y . Given x ∈ X , a neighbourhood base for (x, 0) must have cardinality
� w(X) ·w(Y ) � k(X) ·w(Y ) so that the collection of neighbourhood bases for
(x, 0), for all x ∈ X , must have cardinality � k(X) ·w(Y ). Similarly for the case that
1 ∈ Y . Consequently, after considering a neighbourhood base for points (x, y) with
y /∈ {0, 1}, it follows that w(X ·Y ) � k(X) ·w(Y ). ��
We end this section by consideringχ(X ·Y ). For a LOS X , wewill denote the topology
generated by sets of the form [a, b[, a, b ∈ X , and {1} (if 1 ∈ X ) by τr, and similarly,
the topology generated by sets of the form ]a, b], a, b ∈ X , and {0} (if 0 ∈ X ) by τl.
We will write χr(x) to mean the character of x ∈ (X, τr) and χr(X) for the character
of (X, τr). Similarly for χl(x) and χl(X). If one needs to specify that the character
of x is taken in X , then one writes χ(x, X) (similarly χr(x, X) and χl(x, X)). Recall
that as shown in Fig. 1, the character of a LOTS is equal to its pseudo-character. One
can also note that for any x ∈ X , χ(x, X) = max{χr(x, X), χl(x, X)}.
Proposition 2.5 For two LOTS X and Y ,

χr(X ·Y ) =
{

χr(Y ) if 1 /∈ Y,

χr(X) ·χr(Y ) if 1 ∈ Y,

χl(X ·Y ) =
{

χl(Y ) if 0 /∈ Y,

χl(X) ·χl(Y ) if 0 ∈ Y,

χ(X ·Y ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

χ(Y ) if 0, 1 /∈ Y,

χr(X) ·χ(Y ) if 0 /∈ Y, 1 ∈ Y,

χl(X) ·χ(Y ) if 0 ∈ Y, 1 /∈ Y,

χ(X) ·χ(Y ) if 0, 1 ∈ Y.

Proof For (x, y) ∈ X ·Y we have

χr((x, y), X ·Y ) =
{

χr(y,Y ) if y 	= 1,

χr(x, X) if y = 1.
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Some cardinal functions in lexicographic products of LOTS 1509

Taking the supremum over all (x, y) ∈ X ·Y we get the formula for χr(X ·Y ). Dually
we get the formula for χl(X ·Y ), while χ(X ·Y ) = max{χr(X ·Y ), χl(X ·Y )}. ��
Example 2.6 Let us look at the following examples:

1. Consider Z = R ·{0, 1}. Then s(Z) = ℵ0 (since s(R) = JR = ℵ0). But
s(Z ·{0, 1}) = max{s(Z), JZ } = max{ℵ0, 2ℵ0} = 2ℵ0 = c. Analogously,
d(Z) = ℵ0 and d(Z ·{0, 1}) = max{d(Z), JZ } = max{ℵ0, 2ℵ0} = 2ℵ0 = c. On
the other hand, if one takes Z = {0, 1}·[0, ω1[, then s(Z) = d(Z) = ℵ0 ·ℵ1 = ℵ1.

2. Let X = R and Y = {0, 1}. Then w(R ·{0, 1}) = |R| ·ℵ0 = 2ℵ0 = c.
3. If X = [0, ω2[ and Y = [0, 1[, then χ(X ·Y ) = ℵ1. However, if we take X =

[0, ω2[ and Y =]0, 1], then χ(X ·Y ) = ℵ0.

3 Spread, density, weight and character of the lexicographic product of
LOTS

In what follows, X = Lα<μXα is the lexicographic product of Xα , where Xα is a
LOS for every α < μ and μ is a limit ordinal.

Theorem 3.1 If X = Lα<μXα , then

s(X) = d(X) = w(X) = sup
α<μ

∣∣∣∣ ∏
γ<α

Xγ

∣∣∣∣.
Proof For every 0 < α < μ we have X = Lγ<αXγ ·Lα�γ<μXγ , so that, by
Theorem 2.2, s(X) = |Lγ<αXγ | ·s(Lα�γ<μXγ ) � |Lγ<αXγ |. Hence s(X) �
supα<μ

∣∣∏
γ<α Xγ

∣∣.
Now let us look at the weight of X . We show that w(X) � supα<μ

∣∣∏
γ<α Xγ

∣∣
from which the result follows. Let z = (zα)α<μ ∈ X be defined as follows:

zα =
{
chosen arbitrarily ∈ Xα if Xα does not have 1,

1 otherwise.

For every γ < μ let Zγ = Lα�γ Xα ·Lγ<α<μ{zα} and let D = ⋃
γ<μ Zγ . Then

|Zγ | = ∣∣∏
α�γ Xα

∣∣ and therefore,

|D| =
∣∣∣∣ ⋃
γ<μ

Zγ

∣∣∣∣ � μ · sup
γ<μ

|Zγ | = sup
γ<μ

|Zγ | = sup
γ<μ

∣∣∣∣ ∏
α�γ

Xα

∣∣∣∣ = sup
γ<μ

∣∣∣∣ ∏
α<γ

Xα

∣∣∣∣.
Weshow that for every x ∈ X and every c < x , there exists a ∈ D such that c � a < x .
Let x = (xα)α<μ and c = (cα)α<μ. Let α0 be the first index such that cα0 < xα0 . If
cα = 1 for all α > α0, then let a = c ∈ D, otherwise there exists some δ > α0 such
that cδ < y for some y ∈ Xδ , and we define a = (aα)α<μ ∈ D by
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1510 D. Buhagiar et al.

aα =

⎧⎪⎨
⎪⎩
cα if α < δ,

y if α = δ,

zα if α > δ.

Dually, there exists a subset D′ ⊆ X with |D′| � supγ<μ

∣∣∏
α<γ Xα

∣∣ such that for
every x ∈ X and every d > x , there exists b ∈ D′ such that d � b > x . Consequently,
there exists a base of cardinality supγ<μ

∣∣∏
α<γ Xα

∣∣ as required to show. ��
We are left with the calculation of the character χ(X) of a lexicographic product
X = Lα<μXα , where μ is a limit ordinal. We first calculate χr(x, X) for x ∈ X and
then χr(X). By duality we obtain χl(x, X) and χl(X). Finally, we get χ(x, X) and
χ(X) as a maximum of χr and χl.

For x = (xα)α<μ ∈ X , let

A1(x) = {α < μ : xα 	= 1},
μ1(x) = inf {γ < μ : xα = 1 for all γ � α < μ}.

[We use the following convention: μ1(x) = μ when {γ < μ : xα = 1 for all γ �
α < μ} = ∅. In other words, inf ∅ = μ, which is true when A1(x) is cofinal in μ. If
A1(x) is not cofinal in μ then μ1(x) = min{γ < μ : xα = 1 for all γ � α < μ}.]
Lemma 3.2 For x = (xα)α<μ ∈ X we have

χr(x, X) =
{
cf (μ1(x)) if μ1(x) is a limit ordinal (or 0),

χr(xβ, Xβ) if μ1(x) = β + 1.

Proof Case I: A1(x) is cofinal in μ. In this case we show that χr(x, X) = cf (μ).
Choose zα > xα for everyα ∈ A1(x) and let yγ = (yγ

α )α<μ ∈ X , for everyγ ∈ A1(x),
be defined by:

yγ
α =

{
xα if α 	= γ,

zγ if α = γ.

Take any A ⊆ A1(x)with |A| = cf (μ), then yγ > x for every γ ∈ A and infγ∈A yγ =
x . Hence χr(x, X) � |A| = cf (μ). To prove the converse, suppose χr(x, X) < cf (μ).
There exists a set B with |B| < cf (μ) and elements bβ = (bβ

α)α<μ ∈ X with bβ > x

for all β ∈ B such that infβ∈B bβ = x . Let αβ = min{α < μ : bβ
α 	= xα}, then

|{αβ : β ∈ B}| � |B| < cf (μ). Therefore, there exists ξ < μ such that αβ < ξ for
all β ∈ B. Take any γ ∈ A1(x) with γ > ξ . Then x < yγ < bβ for all β ∈ B, so that
infβ∈B bβ � yγ > x , a contradiction.

Case II: A1(x) is not cofinal inμ. If xα = 1 for allα < μ then x is the greatest element
of X , hence χr(x, X) = 1. Otherwise, χr(x, X) = χr((xα)α<μ1(x), Lα<μ1(x)Xα),
see the proof of Proposition 2.5 for X = Lα<μ1(x)Xα ·Lμ1(x)�α<μXα . If μ1(x) is
a limit ordinal, then χr((xα)α<μ1(x), Lα<μ1(x)Xα) = cf (μ1(x)) by Case I above.
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Some cardinal functions in lexicographic products of LOTS 1511

Otherwise, let β < μ satisfy β + 1 = μ1(x). Then Lα<μ1(x)Xα = Lα<βXα ·Xβ and
by Proposition 2.5 one obtains

χr
(
(xα)α<μ1(x), Lα<μ1(x)Xα

) = χr(xβ, Xβ). ��
For our next corollary we let

μ1 = inf {γ < μ : 1 ∈ Xα for all γ � α < μ}.

Hence, using the above convention, μ1 = μ if and only if A1 = {α < μ : 1 /∈ Xα}
is cofinal in μ. For an ordinal α, let us denote by α− the immediate predecessor of α

if it exists; otherwise, if α is a limit ordinal (or 0) we let α− = α. Moreover, in line
with our interest in infinite cardinals, we let sup∅ = ℵ0 (instead of sup∅ = 0).

Corollary 3.3 For X = Lα<μXα we have

χr(X) = sup
μ−
1 �σ<μ

χr(Xσ ) · sup
μ1�σ�μ

cf (σ ).

To calculate χl(x, X) and χl(X) for x = (xα)α<μ ∈ X , let

μ0(x) = inf {γ < μ : xα = 0 for all γ � α < μ}.

As above we use the convention: μ0(x) = μ when {γ < μ : xα = 0 for all γ � α <

μ} = ∅. By duality we have the following two results:

Lemma 3.4 For x = (xα)α<μ ∈ X we have

χl(x, X) =
{
cf (μ0(x)) if μ0(x) is a limit ordinal (or 0),

χl(xβ, Xβ) if μ0(x) = β + 1.

Also, if we let μ0 = inf {γ < μ : 0 ∈ Xα for all γ � α < μ}, we have the following
corollary.

Corollary 3.5 For X = Lα<μXα we have

χl(X) = sup
μ−
0 �σ<μ

χl(Xσ ) · sup
μ0�σ�μ

cf (σ ).

Using Lemmas 3.2 and 3.4 we can calculate χ(x, X) by the formula

χ(x, X) = max{χl(x, X), χr(x, X)}.

Finally, by Corollaries 3.3 and 3.5 and the formula χ(X) = max{χl(X), χr(X)}, we
have the following result for the character of a lexicographic product.
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1512 D. Buhagiar et al.

Theorem 3.6 If X = Lα<μXα , then

χ(X) = sup
μ−
0 �σ<μ

χl(Xσ ) · sup
μ−
1 �σ<μ

χr(Xσ ) · sup
δ�σ�μ

cf (σ ),

where δ = min{μ0, μ1}.
Remark 3.7 A particular case of Theorem 3.6 is when δ = μ0 = μ1, then

χ(X) = sup
δ−�σ<μ

χ(Xσ ) · sup
δ�σ�μ

cf (σ ).

Example 3.8 Let us look at the following examples.

1. Suppose Xα = [0, ω3[ for all α < ω1 and let X = Lα<ω1Xα . Then χ(X) = ℵ2.
2. Suppose Xα = ]ω0, 0] + [0, ω3] for all α < ω1 and let X = Lα<ω1Xα . Then

χ(X) = ℵ1.
3. Let Y = ]ω3, 0] + [0, ω3[ and Z = [0, ω2[. If X = Lα<ω1Xα , where Xα = Y

for all α < ω0 and Xα = Z for all ω0 � α < ω1, then χ(X) = ℵ1. However if,
X = Lα<ω1Xα , where Xα = Y for all α � ω0 and Xα = Z for all ω0 < α < ω1,
then χ(X) = ℵ2.

4. Let Xα = [0, ω3[ for all α < ωω, α 	= ωn for all n < ω0, and Xα = ]ω0, 0] +
[0, ω3] for all α < ωω, α = ωn for some n < ω0. If X = Lα<ωω Xα , then
χ(X) = cf (ωω) = ℵ0.

We end this section by noting that the results of Sect. 2 and of this section give us a
way of calculating φ(X), where X = Lα<μXα , μ = λ + 1 is a successor ordinal and
φ is any of the considered cardinal functions.

One needs to look into the following four cases to calculate the spread and use
Theorems 2.2 and 3.1:

(1) |Xλ| > 2: s(X) = ∣∣∏
α<λ Xα

∣∣ ·s(Xλ);
(2a) |Xλ| = 2, λ is a limit ordinal: s(X) = supα<λ

∣∣∏
γ<α Xγ

∣∣ ·JLα<λXα
=

supα<λ

∣∣∏
γ<α Xγ

∣∣, because
JLα<λXα

�
∑

α<λ

∣∣∏
γ<α Xγ

∣∣ � supα<λ

∣∣∏
γ<α Xγ

∣∣;
(2b) (i) |Xλ| = 2, λ = ν + 1 with |Xν | > 2;
(2b) (ii) |Xλ| = 2, λ = ν + 1 with |Xν | = 2:
In both cases s(X) = ∣∣∏

α<ν Xα

∣∣ ·s(Xν ·Xλ) = ∣∣∏
α<ν Xα

∣∣ ·s(Xν) ·JXν .
In (2b) (ii), in general if |Xν | � ℵ0, we can simplify to obtain s(X) = k(X) =∣∣∏

α<μ Xα

∣∣.
Analogous formulas apply for d(X). If we want to calculate the weight of X we use
Theorem 2.4 to conclude

w(X) =
∣∣∣∣ ∏
α<λ

Xα

∣∣∣∣ ·w(Xλ).

Finally, one uses Proposition 2.5 to calculate the character of X . As above, let μ =
λ + 1 = λ0 + n, 1 � n < ω0, be a successor ordinal, where λ0 is a limit ordinal. Let
N1 = {k ∈ {0, . . . , n − 1} : 1 /∈ Xλ0+k} and let
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Some cardinal functions in lexicographic products of LOTS 1513

n1 =
{
max N1 if N1 	= ∅,

−1 otherwise.

Analogously define n0 ∈ {−1, 0, . . . , n − 1}. Put Z−1 = Lα<λ0Xα and Zk = Xλ0+k

for k ∈ {0, . . . , n − 1}. Note that χr(Z−1), χl(Z−1) and χ(Z−1) can be calculated by
Corollaries 3.3, 3.5 and Theorem 3.6, respectively. Then

χ(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−1∏
k=n1

χ(Zk) if n0 = n1,

n1−1∏
k=n0

χl(Zk) ·
n−1∏
k=n1

χ(Zk) if n0 < n1,

n0−1∏
k=n1

χr(Zk) ·
n−1∏
k=n0

χ(Zk) if n0 > n1.

Example 3.9 Let us look at a simple example. Suppose Xα = [0, ω3] for all α < ω1
and let X = Lα<ω1Xα .

1. Let Xω1 = [0, ω3] and let Y = X ·Xω1 = Lα�ω1Xα . Then

s(Y ) = k(X) ·s([0, ω3]) = ℵℵ1
3 ·ℵ3 = ℵℵ1

3 = 2ℵ1 ·ℵ3

d(Y ) = k(X) ·d([0, ω3]) = ℵℵ1
3 ·ℵ3 = ℵℵ1

3 = 2ℵ1 ·ℵ3

w(Y ) = k(X) ·w([0, ω3]) = ℵℵ1
3 ·ℵ3 = ℵℵ1

3 = 2ℵ1 ·ℵ3

χ(Y ) = χ(X) ·χ([0, ω3]) = ℵ3 ·ℵ3 = ℵ3.

2. Let Xω1 = {0, 1} and let Y = X ·Xω1 = Lα<ω1Xα ·{0, 1}. Then

s(Y ) = s(X) ·JX = sup
α<ω1

∣∣∣∣ ∏
γ<α

Xγ

∣∣∣∣ ·JX = ℵℵ0
3 = 2ℵ0 ·ℵ3,

d(Y ) = d(X) ·JX = sup
α<ω1

∣∣∣∣ ∏
γ<α

Xγ

∣∣∣∣ ·JX = 2ℵ0 ·ℵ3,

w(Y ) = k(X) ·w({0, 1}) = ℵℵ1
3 ·ℵ0 = ℵℵ1

3 = 2ℵ1 ·ℵ3,

χ(Y ) = χ(X) ·χ({0, 1}) = ℵ3 ·ℵ0 = ℵ3.
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