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Abstract Weprove that every toric quiver flag variety Y is isomorphic to a finemoduli
space of cyclic modules over the algebra End(T ) for some tilting bundle T on Y . This
generalises the well-known fact that Pn can be recovered from the endomorphism
algebra of

⊕
0�i�nOPn (i).
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1 Introduction

Nakajima [8, Section 3] introduced certain framed moduli spaces associated to a
quiver, and the first author showed that these ‘quiver flag varieties’ admit a tilting
bundle [3], generalising the construction of Beilinson [1] and Kapranov [6]. Here we
extend this link further in the toric case by showing that every toric quiver flag variety
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can be reconstructed as a fine moduli space of cyclic modules over the endomorphism
algebra of the tilting bundle.

Before stating the main result we recall the construction and basic geometric prop-
erties of quiver flag varieties, also known as ‘framed quiver moduli’; references for
this material include Nakajima [8, Section 3], Reineke [9] and Craw [3]. Let k be
an algebraically closed field of characteristic zero and let Q be a finite, connected,
acyclic quiver with a unique source.Write Q0 = {0, 1, . . . , �} for the vertex set, where
0 is the source, and Q1 for the arrow set, where for each a ∈ Q1 we write h(a) and
t(a) for the head and tail of a respectively. Fix a dimension vector r = (ri ) ∈ N

�+1

satisfying r0 = 1. The group G ..= ∏�
i=0 GL(ri ) acts by conjugation on the space

Rep(Q, r) = ⊕
a∈Q1

Hom(krt(a),krh(a) ) of representations of Q of dimension vector
r , and we define the quiver flag variety associated to the pair (Q, r) to be the GIT
quotient

Y ..= Rep(Q, r)//χG

for the special choice of linearisation χ ..= (−∑�
i=1 ri , 1, . . . , 1

) ∈ G∨. This GIT
quotient is non-empty if and only if the inequality

ri � si ..=
∑

a∈Q1
h(a)=i

r t(a) (1)

holds for each i > 0, in which case Y is a smooth Mori Dream Space of dimension∑�
i=1 ri (si − ri ). In fact, Y can be obtained from a tower of Grassmann-bundles

Y ..= Y� −→ Y�−1 −→ · · · −→ Y1 −→ Y0 = Spec k, (2)

where at each stage, Yi is isomorphic to the Grassmannian of rank ri quotients of a
fixed locally-free sheaf of rank si on Yi−1; see [3, Theorem 3.3]. Hereafter we assume
that the inequality (1) is strict for each i > 0 to avoid degeneracy in the tower.

Quiver flag varieties naturally carry a collection of vector bundles W1, . . . ,W�

that determine many of their algebraic invariants. Indeed, for i > 0, the Grassmann-
bundle Yi over Yi−1 carries a tautological quotient bundle Vi of rank ri , and we
writeWi

..= π∗
i (Vi ) for the globally-generated bundle of rank ri on Y obtained as the

pullback under themorphismπi : Y → Yi in the tower. It follows from the construction
that the invertible sheaves det(W1), . . . , det(W�) provide an integral basis for the
Picard group of Y . More generally, the results of Beilinson [1] and Kapranov [6]
extend to all quiver flag varieties as follows. Let Young(k, l) denote the set of Young
diagrams with no more than k columns and l rows. Recall that for any vector bundle
W of rank r and for λ ∈ Young(k, l), we obtain a vector bundle S

λW whose fibre
over each point is the irreducible GL(r)-module of highest weight λ.
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Reconstructing toric quiver flag varieties from a tilting bundle 187

Theorem 1.1 ([3]) The vector bundle on Y given by

E ..=
⊕

1�i��
λi∈Young(si−ri ,ri )

S
λ1W1⊗ · · · ⊗S

λ�W� (3)

is a tilting bundle. In particular, the bounded derived category of coherent sheaves on
Y is equivalent to the bounded derived category of finite-dimensional modules over
A ..= EndOY (E).

This result answered affirmatively the question of Nakajima [8, Problem 3.10].
We now describe ourmain result.Work of Bergman and Proudfoot [2, Theorem 2.4]

compares any smooth projective variety admitting a tilting bundle to a fine moduli
space of modules over the endomorphism algebra. To define the relevant moduli space
for the tilting bundle E from (3), list the indecomposable summands as E0, E1, . . . , En

with E0 ∼= OY , and consider the dimension vector v ..= (vj ) ∈ N
n+1 satisfying

vj
..= rk(Ej ) for all 0 � j � n. For a special choice of ‘0-generated’ stability condition

θ (see Sect. 2), we consider the fine moduli spaceM(A, v, θ) of isomorphism classes
of θ -stable A-modules of dimension vector v that was constructed by King [7] using
GIT. Since each bundle Ej is globally-generated, an observation of Craw et al. [4,
Theorem 1.1] induces a universal morphism

fE : Y → M(A, v, θ), (4)

and in our case this is a closed immersion. In fact, [2, Theorem 2.4] implies that fE
identifies Y with a connected component of M(A, v, θ), because Y is smooth, E is a
tilting bundle, and our stability condition θ is ‘great’.

Our main result concerns the special case when ri = 1 for all 1 � i � �, in which
case G is an algebraic torus and therefore Y is a toric variety; we call Y a toric quiver
flag variety. The toric fan � can be described directly in this case (see [5, p. 1517]),
and Y is a tower of projective space bundles via (2). We can say the following:

Theorem 1.2 Let Y be a toric quiver flag variety. Themorphism fE : Y → M(A, v, θ)

from (4) is an isomorphism.

As a result, toric quiver flag varieties provide a new class of examples where the
programme of Bergman and Proudfoot [2] can be carried out in full, enabling one to
reconstruct the variety from the tilting bundle. The special case where Y is isomorphic
to projective space recovers the well-known result that Pn can be reconstructed from
the tilting bundle

⊕
0�i�nOPn (i) of Beilinson [1]. Theorem 1.2 therefore provides

further evidence that toric quiver flag varieties provide good multigraded analogues
of projective space.

2 The reduction step

Our assumption gives 1 = ri = rk(Wi ) for 1 � i � �, so the tilting bundle from (3)
is simply the direct sum of line bundles
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188 A. Craw, J. Green

E =
⊕

1�i��
0�mi<si

W
⊗m1
1 ⊗ · · · ⊗W

⊗m�

� (5)

on Y . Set n + 1 ..= ∏
1�i�� si , and list the indecomposable summands from (5) as

E0, . . . , En with E0 ∼= OY . Consider the endomorphism algebra A ..= EndOY (E) and
the dimension vector v ..= (1, . . . , 1) ∈ Z

n+1.
The moduli space that features in Theorem 1.2 is an example of those constructed

originally by King [7]. To introduce our choice of stability condition, first set θ ′ =
(−n, 1, 1, . . . , 1) ∈ Hom(Zn+1,Q). An A-module M = ⊕

0� j�n Mj of dimension
vector v is θ ′-stable iff M is generated as an A-module by any nonzero element of
M0; any such stability condition is called 0-generated. Since v is primitive and since
every θ ′-semistable A-module of dimension vector v is θ ′-stable (see, for example, [5,
Proof of Proposition 3.8]), King [7, Proposition 5.3] constructs the fine moduli space
M(A, v, θ ′) of isomorphism classes of θ ′-stable A-modules of dimension vector v as a
GIT quotient. In particular,M(A, v, θ ′) comes with an ample bundle O(1). Let k � 1
denote the smallest positive integer such thatO(k) is very ample. Then θ ..= kθ ′ is also
a 0-generated stability condition, and we consider the fine moduli space M(A, v, θ)

of θ -stable A-modules of dimension vector v; this moduli space is the ‘multigraded
linear series’ of E in the sense of [4, Definition 2.5].

Since each indecomposable summand of E from (5) is globally-generated, we
deduce from [4, Theorem 2.6] that the universal property of M(A, v, θ) gives a mor-
phism

fE : Y → M(A, v, θ)

and, moreover, fE is a closed immersion because the line bundle
⊗

0� j�n Ej is very
ample. This puts us in the situation studied by Craw and Smith [5], where it is possible
to give an explicit GIT quotient description for both the moduli spaceM(A, v, θ) and
the image of the universal morphism fE . Theorem 1.2 will follow once we prove that
these two GIT quotients coincide.

To describe M(A, v, θ) as a GIT quotient, we first present the algebra A =
EndOY (E) using the bound quiver of sections (Q′, R) as follows. The quiver Q′ has
vertex set Q′

0 = {0, 1, . . . , n} and an arrow from vertex i to j for each irreducible,
torus-invariant section of Ej⊗E−1

i , i.e., the corresponding homomorphism from Ei

to Ej does not factor through some Ek with k 	= i, j . To each arrow a ∈ Q′
1 we

associate the corresponding torus-invariant ‘labeling divisor’ div(a) ∈ N
�(1), where

�(1) denotes the set of rays of the fan of Y . The two-sided ideal

R ..= (
p − q ∈ kQ′ | p, q share the same head, tail and labeling divisor

)

in kQ′ satisfies A ∼= kQ′/R (see [5, Proposition 3.3]). Denote the coordinate ring of

A
Q′
1

k
by k[ya], where a ranges over Q′

1. The ideal R in the noncommutative ring kQ′
determines an ideal in k[ya] given by
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Reconstructing toric quiver flag varieties from a tilting bundle 189

IR ..=
⎛

⎝
∏

a∈supp(p)

ya −
∏

a∈supp(q)

ya ∈ k[ya]
∣
∣
∣
p, q share the same head,
tail and labeling divisor

⎞

⎠ , (6)

where the support of a path supp(p) is simply the set of arrows that make up the
path. This ideal is homogeneous with respect to the action of T ..= ∏

0� j�nGL(1)
by conjugation. It now follows directly from the definition of King [7] that

M(A, v, θ) ..= V(IR)//θ T ..= Proj
⊕

k�0

(k[ya]/IR)kθ , (7)

where (k[ya]/IR)kθ denotes the kθ -graded piece. In fact, [5, Proposition 3.8] implies
thatM(A, v, θ) is the geometric quotient ofV(IR)\V(BQ′) by the action of T , where

BQ′ ..=
n⋂

j=1

(
ya ∈ k[ya] | h(a) = j

)
(8)

is the irrelevant ideal in k[ya] that cuts out the θ -unstable locus in A
Q′
1

k
.

Our task is to compare (7) with the GIT quotient description of the image of fE . For
this, define a map π : ZQ′

1 → Z
Q′
0⊕Z

�(1) by setting π(χa) = (χh(a) −χt(a), div(a)),
where χa for a ∈ Q′

1 and χi for i ∈ Q′
0 denote the characteristic functions. The

T -homogeneous ideal

IQ′ ..= (
yu − yv ∈ k[ya] | u − v ∈ ker(π)

)
(9)

contains IR from (6), and [5, Proposition 4.3] establishes that the image of the universal
morphism fE is isomorphic to the geometric quotient ofV(IQ′)\V(BQ′) by the action
of T .

Proposition 2.1 Suppose that the T -orbit of every closed point of V(IR)\V(BQ′)
contains a closed point of V(IQ′)\V(BQ′). Then Theorem 1.2 holds.

Proof The inclusion V(IQ′) ⊆ V(IR) always holds, and the assumption ensures that
V(IR)//θ T ⊆ V(IQ′)//θ T , so the closed immersion fE is surjective. �
In Sect. 4 we prove that the assumption of Proposition 2.1 holds for every toric quiver
flag variety Y . To illustrate the strategy, we recall the following well-known construc-
tion of Pn using Beilinson’s tilting bundle.

Example 2.2 For the acyclic quiver Q with vertex set Q0 = {0, 1} and n + 1 arrows
from 0 to 1, the toric quiver flag variety Y is isomorphic to P

n and the quiver of
sections Q′ for the tilting bundle

⊕
0�i�nOPn (i) is shown in Fig. 1; note that Q is a

subquiver of Q′. For each 1 � m � n and each ray ρ ∈ �(1) in the fan ofPn defining a
torus-invariant divisor Dρ , let amρ denote the arrow with head atm and labeling divisor
div(amρ ) = Dρ . Writing ymρ ∈ k[ya] for the variable associated to the arrow amρ , we
have

IR = (
ym+1
σ ymρ − ym+1

ρ ymσ ∈ k[ya]
∣
∣ 1 � m � n − 1; ρ, σ ∈ �(1)

)
. (10)
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0 1 n − 1 n

n + 1 n + 1

· · ·
Fig. 1 The tilting quiver of Pn

We claim that a point (wm
ρ ) ∈ V(IR)\V(BQ′) ⊂ A

n(n+1)
k

lies in the same T -orbit as
the point (vmρ ) with components vmρ

..= w1
ρ for all 1 � m � n and ρ ∈ �(1). Clearly

(vmρ ) ∈ V(IQ′)\V(BQ′), so the claim and Proposition 2.1 show that Theorem 1.2
holds for Pn.

To prove the claim, note that since (wm
ρ ) /∈ V(BQ′), the T -action allows us to

assume that for all 1 � m � n there exists ρ(m) ∈ �(1) such that wm
ρ(m) = 1. Then

v1ρ(1) = 1, and (10) implies that w2
ρ(1)v

1
ρ = w2

ρ for all ρ ∈ �(1). The case ρ = ρ(2)

gives w2
ρ(1) = (v1ρ(2))

−1 = (w1
ρ(2))

−1, so

w2
ρ = v1ρ(w1

ρ(2))
−1 = w1

ρ(w1
ρ(2))

−1 for all ρ ∈ �(1).

Let the one-dimensional subgroup k× ⊂ T scale by w1
ρ(2) at vertex 2 to obtain a point

in the same T -orbit as (wm
ρ )whose components agree with those of (vmρ ) form = 1, 2.

Repeating at each successive vertex shows that (vmρ ) and (wm
ρ ) lie in the same T -orbit

as claimed.

3 The tilting quiver

Before establishing that the assumption of Proposition 2.1 holds for every toric quiver
flag variety, we describe the tilting quiver Q′ in detail (see Example 3.3).

For the vertex set Q′
0, recall that the line bundles W1, . . . ,W� provide an integral

basis for Pic(Y ) ∼= Z
�. Since Q′

0 is defined by the summandsW⊗m1
1 ⊗ · · · ⊗W

⊗m�

� of
the tilting bundle E from (5), it is convenient to realise Q′

0 as the set of lattice points of
a cuboid in Z�⊗ZR of dimension � with side lengths s1 − 1, . . . , s� − 1. We label the
vertex forW⊗m1

1 ⊗ · · · ⊗W
⊗m�

� by the corresponding lattice point (m1, . . . ,m�) ∈ Z
�,

giving

Q′
0 = {(m1, . . . ,m�) ∈ Z

� | 0 � mi < si }.

We introduce a total order on Q′
0: for k = (k1, . . . , k�), m = (m1, . . . ,m�) ∈ Q′

0,
write k < m if ki < mi for the largest index i satisfying ki 	= mi .

For the arrow set Q′
1, note first that Q is the quiver of sections of {OY ,W1, . . . ,W�},

so the arrows in Q correspond precisely to the torus-invariant prime divisors in Y [5,
Remark 3.9]. For ρ ∈ �(1) we write aρ ∈ Q1 for the arrow corresponding to the
divisor of zeros Dρ of a torus-invariant section of Wh(aρ)⊗W−1

t(aρ). Each aρ may be

regarded as an arrow in Q′, so wemay identify Q with a complete subquiver of Q′ that
we call the base quiver in Q′. More generally, translating each aρ around the cuboid
described in the preceding paragraph (so that the head and tail lie in Q′

0) produces
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Reconstructing toric quiver flag varieties from a tilting bundle 191

arrows in Q′ that we denote amρ ∈ Q′
1 for m = h(amρ ) and Dρ = div(amρ ). In fact, we

have the following:

Lemma 3.1 Every arrow a ∈ Q′
1 is of the form a = amρ , where m = h(a) and

Dρ = div(a).

Proof For a ∈ Q′
1, write h(a) = m = (m1, . . . ,m�) and t(a) = m′ = (m′

1, . . . ,m
′
�),

so div(a) is the divisor of zeros of a section of
⊗

1�i��W
⊗(mi−m′

i )

i . In terms of prime
divisors, we have

div(a) =
∑

ρ∈�(1)

λρDρ for λρ ∈ N.

Let 1 � k � � be the largest value such that λρ 	= 0 for some ρ ∈ �(1) satisfying
k = h(aρ) ∈ Q0. Note that 0 � m′

k < mk , and moreover, j ..= t(aρ) < k. Since
div(a) is irreducible, translating aρ so that the tail is at vertexm′ forces the head to lie
outside the cuboid, giving m′

j = 0 or m′
k = sk − 1; similarly, translating aρ so that the

head is at m forces the tail to lie outside the cuboid, giving mj = sj − 1 or mk = 0.
Since 0 � m′

k < mk , both m′
j = 0 and mj = sj − 1 must hold, so m′

j < mj . As a
result, there must exist σ ∈ �(1) satisfying λσ 	= 0 for j = h(aσ ). If we set i ..= t(aσ )

and repeat the argument above, we deduce that m′
i < mi . Continuing in this way, we

eventually find τ ∈ �(1) such that λτ 	= 0 with h(aτ ) = 1 and t(aτ ) = 0. But then
0 = m′

1 < m1 = s1 − 1, so we can place a translation of aτ with head at m and tail
in the cuboid (or tail at m′ and head in the cuboid). This shows div(a) is reducible, a
contradiction. �
Remark 3.2 Since Q is the quiver of sections of {OY ,W1, . . . ,W�}, the vertices of
the base quiver are the vertices e0, e1, . . . , e� ∈ Q′

0 ⊂ Z
�, where ei denotes the i th

standard basis vector for i > 0, and where e0 ..= (0, . . . , 0).

The next example illustrates how the base quiver sits inside Q′.
Example 3.3 The quiver Q shown in Fig. 2, (a) defines the toric quiver flag variety
Y = PZ (O(1, 0)⊕O(0, 1)) where Z = PP2(O⊕O(1)); the colours of the arrows
indicate the distinct labeling divisors. We have s1 = 3 and s2 = s3 = 2, so the tilting
quiver Q′ has 12 vertices shown in Fig. 2, (b) using the ordering described above.
Note that the base quiver is the complete subquiver of Q′ whose vertices are shown in
bold in Fig. 2 (b). The colour of each arrow of Q′ is determined by its unique translate
arrow from the base quiver.

4 Proof of Theorem 1.2

In light of Lemma 3.1, each point of A
Q′
1

k
is a tuple (wm

ρ ) where wm
ρ ∈ k for ρ ∈ �(1)

and for all relevant m ∈ Q′
0. Motivated by Example 2.2, we associate to (wm

ρ ) ∈ A
Q′
1

k

an auxiliary point (vmρ ) ∈ V(IQ′) ⊆ A
Q′
1

k
whose components satisfy

vmρ
..= wρ for ρ ∈ �(1) and all relevant m ∈ Q′

0, (11)
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(b)(a)

Fig. 2 Quivers for Y : (a) original quiver Q; (b) tilting quiver Q′

where for ρ ∈ �(1) we write wρ ∈ k for the component of the point (wm
ρ ) corre-

sponding to the unique arrow aρ in the base quiver satisfying div(aρ) = Dρ .

Lemma 4.1 If (wm
ρ ) /∈ V(BQ′), then (vmρ ) /∈ V(BQ′).

Proof Fix m = (m1, . . . ,m�) ∈ Q′
0 and let 1 � j � � be minimal such that mj 	= 0.

Then for all ρ satisfying h(aρ) = j ∈ Q0, the arrow amρ obtained by translating aρ

until the head lies at m is an arrow of Q′. At least one of the values {wρ | h(aρ) = j}
is nonzero by assumption, and hence for this value of ρ we have vmρ = wρ 	= 0 as
required. �
We now establish notation for the proof of Theorem 1.2. For any k = (k1, . . . , k�) ∈
Q′

0, let (Q′(k), R(k)) denote the bound quiver of sections of the line bundles
W

⊗m1
1 ⊗ · · · ⊗W

⊗m�

� on Y with (m1, . . . ,m�) � k . Explicitly, Q′(k) is the complete
subquiver of Q′ with vertex set Q′(k)0 ..= {m ∈ Q′

0 | m � k}, and the ideal of
relations R(k) ..= kQ′(k) ∩ R satisfies

kQ′(k)
R(k)

∼= End

⎛

⎝
⊕

(m1,...,m�)�k

W
⊗m1
1 ⊗ · · · ⊗W

⊗m�

�

⎞

⎠ .

As in Sect. 2, the coordinate ring k[ymρ |ρ ∈�(1), m� k ] of the affine space AQ′(k)1
k

contains ideals IR(k), BQ′(k) and IQ′(k) defined as in Eqs. (6), (8) and (9) respectively,
each of which is homogeneous with respect to the action of T (k) ..= ∏

0�i�k GL(1)
by conjugation. The projection onto the coordinates indexed by arrows amρ satisfying
m � k, denoted

πk : AQ′
1

k
→ A

Q′(k)1
k

, (12)

is equivariant with respect to the actions of T and T (k). Notice that πk(V(IR)) ⊆
V(IR(k)), πk(V(BQ′)) ⊆ V(BQ′(k)) and πk(V(IQ′)) ⊆ V(IQ′(k)).

Proof of Theorem 1.2 Fix a pointw = (wm
ρ ) ∈ V(IR)\V(BQ′) and the corresponding

point v = (vmρ ) ∈ V(IQ′)\V(BQ′) whose components are defined in equation (11).
Since w /∈ V(BQ′), the action of T enables us to assume that for all m ∈ Q′

0 there
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Reconstructing toric quiver flag varieties from a tilting bundle 193

exists ρ(m) ∈ �(1) such that wm
ρ(m) = 1. In particular, vmρ(m) = 1 for all relevant

m ∈ Q′
0. Now, for 0 � k � (s1 − 1, . . . , s� − 1), the morphism πk from (12) sends

the points w and v to

πk(w) ∈ V(IR(k))\V(BQ′(k)) and πk(v) ∈ V(IQ′(k))\V(BQ′(k))

respectively. We claim that πk(v) lies in the T (k)-orbit of πk(w). Given the claim, the
special case k = (s1 − 1, . . . , s� − 1) shows that the point v lies in the T -orbit of the
point w, so Theorem 1.2 follows immediately from Proposition 2.1.

We prove the claim by induction on the vertex k = (k1, . . . , k�) using the total
order on Q′

0 from Sect. 3. The case k = e0 is immediate, and for (1, 0, . . . , 0) �
k � (s1 − 1, 0, . . . , 0) the claim follows from Example 2.2; hereafter we assume that
� � 2. Suppose the claim holds for all m < k, so we may assume that wm

ρ = wρ for
all m < k. It is enough to show for all ρ ∈ �(1), that wρ(k) 	= 0 and

wk
ρ = wρ(wρ(k))

−1, (13)

because then we may let the one-dimensional subgroup k
× ⊂ T (k) scale by wρ(k) at

vertex k. Before establishing the claim (13), we introduce some notation that we use
in the proof.

Notation 4.2 (a) Recall from Sect. 3 that vertices of the tilting quiver Q′ are elements
k = (k1, . . . , k�) in the lattice Z

�, so ki ∈ Z for 1 � i � �. Note also (see
Remark 3.2) that the standard basis vectors e1, . . . , e� ofZ� denote certain vertices
of Q′. This notation is standard and we hope that no confusion arises in what
follows.

(b) It is convenient to distinguish certain elements of Q0 and Z
�.

• First we distinguish certain elements of the vertex set Q0 = {0, 1, . . . , �} of
the original quiver. For the ray ρ(k) appearing in (13), define 0 � α < β � �

by

α ..= t(aρ(k)) and β ..= h(aρ(k)),

where aρ(k) is the arrow in the original quiver Q satisfying div(aρ(k)) = Dρ(k).
Also, let 1 � δ � � beminimal such that the induction vertex k = (k1, . . . , k�)

satisfies kδ 	= 0, and define 0 � γ < δ by setting

γ ..= t(aρ(eδ)).

Minimality of δ implies that either γ = 0 or kγ = 0 and, moreover, that δ � β.
• Next we introduce certain elements of Z�. For any ray ρ ∈ �(1), define

d(ρ) ..= eh(aρ) − et(aρ) ∈ Z
�,
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194 A. Craw, J. Green

k − d(ρ1)− d(ρ2) k − d(ρ2)

k − d(ρ1) k

ρ1

ρ1

ρ2

ρ2

Fig. 3 Paths of length 2 in Q

where aρ is the arrow in the original quiver satisfying div(aρ) = Dρ (recall
that e0 ..= 0). In particular, by the previous bullet point we have

d(ρ(k)) = eβ − eα and d(ρ(eδ)) = eδ − eγ .

We now return to the proof of the claim (13), treating the cases δ < β and δ = β

separately.

Case 1: Suppose first that δ < β. In this case we proceed in three steps:

Step 1: Show that equation (13) holds for ρ = ρ(eδ) when γ = α = 0 or γ 	= α.
We use generators of the ideal IR(k) corresponding to pairs of paths in Q′(k) with
head at k. Consider paths of length two as in Fig. 3, where for now we substitute ρ(k)
and ρ(eδ) in place of ρ1 and ρ2. In this case, we claim that each vertex in Fig. 3 lies
in the quiver Q′(k). Indeed, akρ(k) ∈ Q′(k)1, so its head k and tail k − eβ + eα lie in
Q′(k)0; this implies kβ > 0 and either α = 0 or kα < sα − 1. Also, kδ > 0 and either
γ = 0 or kγ = 0, so k − d(ρ(eδ)) is equal to k − eδ + eγ , which lies in the quiver
Q′(k). For the fourth vertex in Fig. 3, either:

(i) γ = α = 0, giving eγ = eα = 0, and the inequalities kβ, kδ > 0 imply that the
fourth vertex k − eβ − eδ lies in Q′(k)0 as claimed; or

(ii) γ 	= α, and since γ < δ < β, the fourth vertex k − eβ + eα − eδ + eγ lies in
Q′(k)0 because kβ, kδ > 0, either α = 0 or kα < sα − 1 and either γ = 0 or
kγ = 0.

Figure 3 therefore determines a binomial in IR(k) which implies that

w
k−d(ρ(k))
ρ(eδ)

wk
ρ(k) = w

k−d(ρ(eδ))
ρ(k) wk

ρ(eδ)
.

Our induction assumption gives wm
ρ = wρ for all m < k, and since wρ(eδ) = 1 =

wk
ρ(k), we have 1 = wρ(k)w

k
ρ(eδ)

. In particular, wρ(k) 	= 0 and

wk
ρ(eδ)

= (wρ(k))
−1

which establishes equation (13) for ρ = ρ(eδ) when γ = α = 0 or γ 	= α.

Step 2: Show that equation (13) holds for ρ = ρ(eδ) when γ = α 	= 0. Since
kα = kγ = 0, the method from Step 1 applies verbatim unless sγ = 2. In this case,
define 0 � ε < γ by

ε ..= t(aρ(eγ )),
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k − 3
i=1 d(ρi) k − d(ρ2)− d(ρ3) k − d(ρ2)

k − d(ρ1)− d(ρ3) k − d(ρ1) k

ρ1 ρ3

ρ2
ρ2

ρ3 ρ1

Fig. 4 Certain paths of length 3 in Q

giving d(ρ(eγ )) = eγ − eε. Consider paths of length three as in Fig. 4, where for
now we substitute ρ(k), ρ(eδ) and ρ(eγ ) in place of ρ1, ρ2 and ρ3. Again, we claim
that each vertex in Fig. 4 lies in the quiver Q′(k); the proof is similar to that from
Step 1 (here, minimality of δ implies ε = 0 or kε = 0, and we use the inequalities
ε < γ < δ < β). Thus we obtain a binomial in IR(k) which, applying the inductive
assumption wm

ρ = wρ for all m < k, gives

wρ(eδ)wρ(eγ )w
k
ρ(k) = wρ(k)wρ(eγ )w

k
ρ(eδ)

.

Since wρ(eδ) = wρ(eγ ) = wk
ρ(k) = 1, we have wρ(k) 	= 0 and wk

ρ(eδ)
= (wρ(k))

−1

which implies that equation (13) holds for ρ = ρ(eδ).

Step 3: Show that equation (13) holds for all ρ ∈ �(1). Consider any arrow akρ in
Q′ with head at k. The vertices

λ ..= t(aρ) and μ ..= h(aρ)

satisfy d(ρ) = eμ − eλ with 0 � λ < μ � �. We proceed using the approach from
Steps 1–2:

(i) Ifμ 	= β, thenwe substituteρ andρ(k0) in place ofρ1 andρ2 in Fig. 3 as in Step 1,
unless λ = α 	= 0 and sα = 2 in which case we substitute ρ(eα) in place of ρ3 in
Fig. 4 as in Step 2. In either case, we obtain an equation relating components of
wk which, after applying the inductive hypothesis if necessary, becomes

wρ(k)w
k
ρ = wρwk

ρ(k).

Steps 1 and 2 established wρ(k) 	= 0, and wk
ρ(k) = 1, so equation (13) holds.

(ii) Otherwise, μ = β. Substitute ρ(eδ) and ρ in place of ρ1 and ρ2 in Fig. 3 as in
Step 1, unless λ = γ 	= 0 and sγ = 2 in which case we substitute ρ(eγ ) in place
of ρ3 in Fig. 4 as in Step 2. As in part (i) above, we obtain an equation which
simplifies to

wk
ρ = wρwk

ρ(eδ)
.

Steps 1 and 2 established wk
ρ(eδ)

= (wρ(k))
−1, so equation (13) follows.

This completes the proof of equation (13) in Case 1.
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Case 2: Suppose instead that δ = β. If kδ > 1 then the proof is identical to Case 1. If on
the other hand kδ = 1, then the vertex k−d(ρ(eδ))−d(ρ(k)) = k−2eδ +eγ +eα that
plays a key role in Case 1 does not lie in Q′(k)0. In the special case that k = eδ , making
k a vertex of the base quiver, then we have wk

ρ = wρ for all relevant ρ ∈ �(1) and
there is nothing to prove. If k 	= eδ , we introduce another useful vertex of the original
quiver: let ξ be minimal such that δ < ξ � � and kξ 	= 0, and define 0 � η < ξ by
setting

η ..= t(aρ(eξ ))

giving d(ρ(eξ )) = eξ − eη. We treat the cases η 	= δ and η = δ separately.

Subcase 2A: If η 	= δ(=β), then either η = 0 or kη = 0, so k − d(ρ(eξ )) =
k − eξ + eη is a vertex of Q′(k)0. We may now proceed just as in Case 1 except that
ρ(eξ ) replaces ρ(eδ) throughout (so ξ and η replace δ and γ respectively).

Subcase 2B: Suppose instead that η = δ(=β). We have already reduced to the case
kδ = 1. If sδ > 2 then once again, k − d(ρ(eξ )) = k − eξ + eδ is a vertex of Q′(k)0
and we proceed as in Case 1 with ρ(eξ ) replacing ρ(eδ) throughout. If sδ = 2, then
we proceed as follows:

Step 1: Show that wρ(k) 	= 0. If γ 	= α or γ = α = 0, then we use Fig. 4 with
ρ1 = ρ(k), ρ2 = ρ(eδ) and ρ3 = ρ(eξ ) to obtain the equation

1 = wρ(eδ)wρ(eξ )w
k
ρ(k) = wρ(k)wρ(eξ )w

k
ρ(eδ)

which giveswρ(k) 	= 0. Otherwise, γ = α 	= 0, giving d(ρ(k)) = eδ−eγ = d(ρ(eδ)).
It may be that ρ(k) = ρ(eδ), in which case wρ(k) = wρ(eδ) = 1 and hence wρ(k) 	= 0
as required. If ρ(k) 	= ρ(eδ), then consider the pair of paths of length four as in Fig. 5,
where we substitute ρ(k), ρ(eδ), ρ(eξ ) and ρ(eγ ) in place of ρ1, . . . , ρ4 (in fact, both
paths pass through the same set of vertices in this case).
We obtain the equation

1 = wρ(eδ)wρ(eγ )wρ(eξ )w
k
ρ(k) = wρ(k)wρ(eγ )wρ(eξ )w

k
ρ(eδ)

which gives wρ(k) 	= 0 and completes Step 1.

Step 2: Show that equation (13) holds for all ρ ∈ �(1). For any akρ ∈ Q′
1, the

vertices

λ ..= t(aρ) and μ ..= h(aρ)

satisfy d(ρ) = eμ − eλ with 0 � λ < μ � �.

(i) If μ > δ, use Fig. 3 with ρ1 = ρ(k) and ρ2 = ρ, unless λ = α 	= 0 and sα = 2
in which case use Fig. 4 with the addition of ρ3 = ρ(eα). Either way, we obtain
the equation wρ(k)w

k
ρ = wρwk

ρ(k) which, since wρ(k) 	= 0 by Step 1, gives (13).
(ii) If μ = δ, use Fig. 4 with ρ1 = ρ(k), ρ2 = ρ and ρ3 = ρ(eξ ) unless λ = α 	= 0

and sα = 2 in which case use Fig. 5 with the addition of ρ4 = ρ(eα). Either way,
we obtain wρ(k)w

k
ρ = wρwk

ρ(k) which, since wρ(k) 	= 0 by Step 1, gives (13).
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k − 4
t=1 d(ρt) k − 4

t=2 d(ρt) k − d(ρ2)− d(ρ3)

k − t=2 d(ρt) k − d(ρ1)− d(ρ3) k − d(ρ1)

k − d(ρ2)

k

ρ1 ρ4

ρ2

ρ4 ρ3

ρ2

ρ3

ρ1

Fig. 5 Certain paths of length 4 in Q

This concludes the proof in Case 2, and completes the proof of Theorem 1.2. �
Remark 4.3 Our approach relies on the explicit description of the image of the mor-
phism fE in Theorem 1.2 as the GIT quotient V(IQ′)//θT , see [5, Theorem 1.1]. We
do not at present have a similar description in the non-toric setting.

Example 4.4 We conclude with an example to illustrate the proof of Theorem 1.2.
Let Q and Q′ be the quivers in Fig. 2, so � = 3. Suppose k = (0, 1, 1) ∈ Q′

0, so
δ = 2. The three arrows with head at k have tails at (1, 1, 0) (light blue), (0, 0, 1) (red)
and (1, 0, 1) (blue), and we label the corresponding rays ρ1, ρ2 and ρ3 respectively.
We now illustrate in two different situations why wρ(k) 	= 0 and why the equation
wk

ρ = wρ(wρ(k))
−1 from (13) holds for ρ = ρ1, ρ2, ρ3.

(0, 0, 0) (1, 0, 0)

(0, 1, 0)

(0, 0, 1)

(2, 0, 0)

(1, 1, 0)

(1, 0, 1)

(0, 1, 1)

(2, 1, 0)

(2, 0, 1)

(1, 1, 1) (2, 1, 1)

(a) Suppose that ρ(k) = ρ1. Then β = 3 and α = 1 (see Fig. 2, (a)), and wk
ρ1

= 1.
Suppose ρ(eδ) = ρ(e2) = ρ2 so that γ = 0 and wρ2 = 1. This is an example
of Case 1 as δ < β, and since γ = 0 we require only Step 1. In this case Fig. 3
becomes

(1, 0, 1()0 , 1, 0)

(0, 0, 0()1 , 1, 1)

ρ2

ρ2

ρ1

ρ1
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and the relation gives the equation wρ2w
k
ρ1

= wρ1w
k
ρ2
. Moreover, wρ2 = 1 = wk

ρ1

implies wρ1 	= 0 and wk
ρ2

= (wρ1)
−1 which establishes (13) for ρ = ρ1, ρ2. The

remaining arrow akρ3 with head at k requires Step 3, and in this case for ρ = ρ3
we have μ = 2 and λ = 1. Since μ 	= β and sα = s1 	= 2, we require Step 3 (i) to
deduce wρ3w

k
ρ1

= wρ1w
k
ρ3
. This implies wk

ρ3
= wρ3(wρ1)

−1, establishing (13) for
ρ = ρ3.

(b) Suppose ρ(k) = ρ3, so β = 2, α = 1 and wk
ρ3

= 1. Suppose that ρ(e2) = ρ2,
so γ = 0 and wρ2 = 1. Since δ = β and kδ = k2 = 1, this is an example of
Case 2. Since k 	= e2, we compute ξ = 3. Write ρ4 for the label of the pink
arrow with head at (0, 0, 1) and tail at (0, 1, 0), and suppose ρ(e3) = ρ4. Then
η = t(aρ4) = 2 and wρ4 = 1. Since η = δ and sδ = 2, we require Subcase 2B.
Following Step 1, since γ = 0 we use Fig. 4 as shown below. This yields the
equation wρ2wρ4w

k
ρ3

= wρ3wρ4w
k
ρ2

which simplifies

(1, 0, 0()0 , 1, 0()0 , 0, 1)

(1, 1, 1()0 , 0, 1) k

ρ3 ρ4

ρ2
ρ2

ρ4 ρ3

to 1 = wρ3w
k
ρ2
, giving wρ3 	= 0 as required. Step 2 of Subcase 2B establishes

(13) for ρ = ρ1, ρ2, ρ3: we already know this for ρ = ρ3 by assumption; the
case ρ = ρ2 is provided by Step 1 since wk

ρ2
= (wρ3)

−1; and the case ρ = ρ1
is a simple application of Step 2 (i), where we apply Fig. 3 to the rectangle with
vertices (2, 0, 0), (1, 1, 0), (1, 0, 1), k and arrows labelled ρ1 and ρ3.
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