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Abstract Wepresent an approach leading to Finsler geometrywithout differential cal-
culus of tensors. Several natural examples of such singular Finsler spaces are studied.
One class of such examples contains BusemannG-spaces with non-positive curvature.
Starting with a singular version of the axiomatics, some simplest properties known in
the smooth Finsler geometry are interpreted.
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1 Introduction

The preface of Busemann’s Geometry of Geodesics [6] contains the following sen-
tence: “… the term Finsler Space means to many not only a type of space, but also
a definite approach: The space is considered as a set of linear elements to which
euclidean metrics are attached. … In spite of the great success of Finsler’s thesis, the
later development of this aspect lacks simple geometric facts to the extent that their
existence in non-Riemannian geometry has been doubted.”
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768 P. Andreev

Busemann considers Finsler geometry as a geometry of G-spaces which satisfy
appropriate axioms. The first Busemann version of axiomatics leading to G-spaces
was made in [7]. Unfortunately, the topology of general G-spaces is still myste-
rious: it is unknown whether every G-space is a topological manifold and even
whether it is finite-dimensional. Positive answers to these questions exist only in spe-
cial cases. Consequently, speaking about axioms of generalized non-smooth Finsler
geometry, one should adjust Busemann’s axioms and take into account the current
realities.

The object of the present paper is Finsler spaces in standard and non-standard
singular approaches. First let us recall the standard definition. Here standardmeans the
modern definition in terms of differential geometry ofmanifolds (see, for example, [10]
or [9]).

Let Mn be a C∞-manifold and T Mn its tangent bundle. A function F : T M →
[0,+∞) is called Finsler metric if it has the following properties:

(a) F is C∞ on T M \{0} where {0} is the null-section of T M ;
(b) F is positively homogeneous on vectors: F(x, λy) = λF(x, y) for all λ > 0 and

all y ∈ TxM ;
(c) in every point x ∈ Mn and for every vector y ∈ TxM \{0} the quadratic form

gy(u, v) = 1

2

∂2

∂s∂t
(F2(x, y+su+ tv))|s=t=0 (1)

is positive definite.

Condition (c) means that F2(x, ·) is a strongly convex function of the variable y for
any fixed x ∈ Mn.

We want to get rid of the C∞-smoothness condition here. In particular, we speak
about manifolds with non-necessarily smooth norms in the tangent spaces. Such a
weakening of the definition leads to obstructions for the application of the differential
calculus of tensors. Our purpose is to show that Finsler geometry in general has a right
to existence without differentiation of tensors.

In particular, we present a version of the axiomatics for such non-smooth Finsler
geometry. It is preceded by the introduction of necessary notions and by several exam-
ples to illustrate the possibility of such a geometry and its methods.

The work was inspired by the author’s recent results on the geometry of Busemann
G-spaces with non-positive curvature, showing that such a space is a topological
manifold having a tangent space at every point. It occurs that the tangent space has
a structure of a normed space with strictly convex norm. The metric of the space
is the length metric and one can pick a class of curves with velocity. The velocity
of the curve γ : [a, b] → X in the space X at the point γ (t0), t0 ∈ [a, b], is a
tangent vector v = dγ (t0) ∈ Tγ (t0)X which can be obtained as a limit of secants to
γ . If γ has velocity v(t) at all points with continuous norm ‖v(t)‖, then its length
is

L(γ ) =
∫ b

a
‖v(t)‖ dt, (2)
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Foundations of singular Finsler geometry 769

In particular, if γ is a naturally parameterized geodesic segment, then it has unit
velocity at all points and

L(γ ) =
∫ b

a
dt = b − a.

2 Directed segments in metric spaces

Let (X, d) be a metric space. The closed ball with center x0 ∈ X and radius r > 0 is
denoted by B(x0, r), the corresponding open ball U (p, r) and the sphere S(p, r).

We also consider non-reversiblemetrics forwhich the symmetry property d(y, x) =
d(x, y) may fail. The triangle inequality for the the non-reversible metric d must be
written strongly in the form

d(x, y) � d(x, z) + d(z, y)

for all points x, y, z ∈ X . Hence the closed ball with center x0 ∈ X and radius r has
two different interpretations:

B+(x0, r) = {x ∈ X : d(x0, x) � r },

and

B−(x0, r) = {x ∈ X : d(x, x0) � r }.

Corresponding open balls are

U+(x0, r) = {x ∈ X : d(x0, x) < r }

and

U−(x0, r) = {x ∈ X : d(x, x0) < r }.

If the metric is reversible, both balls B+(x0, r) and B−(x0, r) coincide with B(x0, r)
at all points and for all r > 0.

Both systems of open ballsU+ andU− generate topologies on the set X as follows.
We say that a subset U ⊂ X is positively (correspondingly, negatively) open if for
any point x ∈ U there exists r > 0 such that U+(x, r) ⊂ U (correspondingly
U−(x, r) ⊂ U ). The verification of the topology axioms for the family of positively
(negatively) open subsets is standard (it is based on the evident argument: if r1 < r2
then U±(x, r1) ⊂ U±(x, r2)). We will denote the two topologies by τ+ and τ−. In
general such topologies may be different.
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770 P. Andreev

Example 2.1 Consider X = R with the metric

d(s, t) =
{
s − t if s � t,

1 + t − s if s < t.

It is easy to check that d is a metric. The open balls of this metric are the following:

U+(x0, r) =
{

(x0 − r, x0] if r � 1,

(x0 − r, x0 + r − 1) otherwise,

and

U−(x0, r) =
{

[x0, x0 + r) if r � 1

(x0 − r + 1, x0 + r) otherwise,

Evidently, the topologies τ+ and τ− are different: semiintervals of type (s, t] are open
in the first one and they are not open in the second one.

The map γ : [a, b] → X from the numerical segment [a, b] ⊂ R to the metric space
X is called positively isometric if for any s, t ∈ [a, b] such that s < t the following
equality holds:

d(γ (s), γ (t)) = t − s.

The map γ is called isometric if for any s, t ∈ [a, b]

d(γ (s), γ (t)) = |t − s|.

The directed segment [xy〉 in the space (X, d) is the image of the numerical segment
[a, b] ⊂ R under the positively isometric map γ : [a, b] → X such that γ (a) = x
and γ (b) = y. The point x is the beginning of the directed segment [xy〉, the point y
is its endpoint. The directed segment [xy〉 is called segment and is denoted [xy] if γ

is isometric. The points x and y are called ends of the segment [xy]. Every segment
[xy] ⊂ X leads to a pair of directed segments [xy〉 and [yx〉. On the other hand, the
directed segments [xy〉 and [yx〉 may be essentially different as point sets when the
metric d is asymmetric and d(x, y) �= d(y, x).

An equivalent definition of the directed segment [xy〉 ⊂ X and the segment [xy]
uses the notion of length. Let γ : [a, b] → X be a map. Given a subdivision

a = t0 < t1 < · · · < tn = b

of the numerical segment [a, b], the corresponding positive variation of the length is

V+(γ, T ) =
n∑

i=1

d(γ (ti−1), γ (ti ))
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Foundations of singular Finsler geometry 771

and its negative variation is

V−(γ, T ) =
n−1∑
i=0

d(γ (ti+1), γ (ti )).

We say that γ represents a positively rectifiable curve in X if the set

V+(γ ) = {V+(γ, T ) : T is a subdivision of [a, b]} (3)

is bounded. The positive length of a positively rectifiable curve γ is by definition

L+(γ ) = sup
T

V+(γ, T ).

The map γ represents a rectifiable curve with length L(γ ) if it is both positively
rectifiable and metrically invertible:

d(γ (s), γ (t)) = d(γ (t), γ (s))

for all pairs s, t ∈ [a, b]. The image γ ([a, b]) is a directed segment [xy〉 where
x = γ (a) and y = γ (b) if and only if γ represents a positively rectifiable curve and
L+(γ ) = d(x, y). Correspondingly, the segment [xy] is an image of the rectifiable
curve γ with length L(γ ) = d(x, y) = d(y, x).

Definition 2.2 The space (X, d) is called geodesic if for any ordered pair of different
points (x, y) ∈ X×X there exists a directed segment [xy〉.
For a better understanding of the above definitions, let us consider some examples.

Example 2.3 LetV n be a linear space.Weconsider its elements as vectors and as points
at the same time. The linear segment [xy] is a part of the straight line bounded by x and
y, the endpoints of [xy]. TheMinkowski space is a finite-dimensional linear space V n

equipped with a norm. In general, the norm ‖x‖ is not necessarily symmetric, strictly
convex or smooth. Identifying every vector x with its endpoint in the corresponding
affine space An when the origin o ∈ An is fixed and identified with the null-vector θ ,
one gets a metric d on An with

d(x, y) = ‖y − x‖.

The possible asymmetry of the norm leads tometric asymmetry: the equality d(x, y) =
d(y, x) fails in general. Modern Finsler geometry allows non-symmetric metrics, so
asymmetry is admissible.

The possible non-smoothness of the norm contradicts in general the standard
smoothness assumption in modern Finsler geometry. The possible non-strongness
of the convexity also contradicts it: the positive definiteness of the form (1) fails.
This condition may be false even if the norm is smooth and strictly convex: when
the Gauss–Kroneker curvature (calculated in the sense of the Euclidean metric in the
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772 P. Andreev

space An) of the boundary sphere S+(o, 1) of the ball B+(o, 1) vanishes in some point
x with ‖x‖ = 1.

If the norm in Minkowski space is non-strictly convex, we have non-uniqueness
of directed segments. Precisely, if S+(o, 1) contains a pair of different points x, y ∈
S+(o, 1) with ‖x + y‖ = 2, then any two points u, v ∈ An such that

−→uv = (v − u) ↑↑ (x + y)

are connected by infinitely many non-linear directed segments [uv〉.
Example 2.4 (Funk metrics) Let � be a bounded convex domain in the affine space
An. Given two distinct points x, y ∈ �, the point z ∈ ∂� for which y lies between x
and z is uniquely defined. The Funk distance d(x, y) is

dF(x, y) = ln
|x − z|
|y − z| . (4)

The linear segment [xy] is the directed segment in the sense of the Funk metric dF.
Such a directed segment is unique for any two x, y ∈ � if � is strictly convex. If
not, the boundary ∂� contains linear segments, and the directed segment [xy〉 is not
unique if z is an interior point of the linear segment lying in ∂�.

Example 2.5 Let f : [0,+∞) → [0,+∞) be a non-constant concavemonotone non-
decreasing function with f (0) = 0. Concavity means that

f

(
s + t

2

)
� f (s) + f (t)

2

for all pairs s, t ∈ [0,+∞) and monotone non-decreasing means that the inequality
0 � s < t implies f (s) � f (t). It iswell known that the function d f (s, t) = f (|s−t |)
is a reversible metric on R. It follows that the function

d f−(s, t) =
{
t − s, if s � t,

d f (s, t) otherwise

is also a metric on R but it is not reversible if f is not the identity function f (t) = t .
All translations Th : R → R of the type Th(x) = x + h are isometries of the metric
space (R, d f−) independently on the choice of the function f . If s < t then the point
s may be connected with t by a directed segment with length L+ = t − s. The reverse
directed segment is possible only if f is linear ( f (x) = k ·x for some k > 0) on the
numerical segment [0, t − s]. In the last case, the length L− of the reverse segment is
L− = k ·(t − s).

If f (x) � C ·x p in the interval [0, ε) for some ε,C > 0 and 0 < p < 1 then for
any s, t ∈ R, s < t , there is no rectifiable path from t to s.

Consider the unit circle S1 ⊂ C as a factor group of (R,+) by the action of Z on
R by (2πk)-translations: x 
→ T2πk(x) = x + 2πk. The metric d f − generates a new
metric d f,S on S

1. Denote
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Foundations of singular Finsler geometry 773

[t] = {t + 2πk : k ∈ Z}

and consider the class [t] as a point e(t+2πk) · i ∈ S
1. Then we have for [s] and [t] two

quantities:

d+([s], [t]) = min{t − s + 2πk : k ∈ Z, t − s + 2πk � 0}

and

d−([s], [t]) = min{ f (s − t − 2πk) : k ∈ Z, t − s + 2πk < 0}.

The metric d f,S is defined as the minimum

d f,S([s], [t]) = min{d+([s], [t]), d−([s], [t])}.

For example, consider the case f (x) = λx where λ > 1. Assume for convenience
that s < t < s + 2π . Then

d f,S([s], [t]) =
{
t − s, if t − s � λ ·(s − t + 2π),

λ ·(s − t + 2π) otherwise.

The point [s] is connected to [t] by a directed segment [[s][t]〉. Namely, if

t − s < λ ·(s − t + 2π)

and consequently

t − s <
2λπ

1 + λ
,

then [[s][t]〉 is the arc of the circle starting from [s] to [t] counterclockwise. If
2λπ

1 + λ
< t − s < 2π ,

then [[s][t]〉 is the clockwise arc [s] to [t]. If the equality

t − s = 2λπ

1 + λ

holds then both these arcs are directed segments. Speaking about the inverse directed
segment [[t][s]〉 we also have several essentially different situations.
• If t − s < 2π/(1 + λ), then the counterclockwise arc from [s] to [t] is a directed
segment [[s][t]〉 and its inverse arc is an inverse segment [[t][s]〉.

• If t − s = 2π/(1 + λ), then there is one more directed segment from [t] to [s]:
now both arcs of S1 from [t] to [s] are directed segments.
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774 P. Andreev

• If 2π/(1 + λ) < t − s < 2πλ/(1 + λ), then the directed segments [[s][t]〉 and
[[t][s]〉 are unique and different. Both are directed counterclockwise.

The two cases

t − s � 2πλ

1 + λ

reduce to the previous ones after redenoting [s] ↔ [t].
Remark 2.6 It is not difficult to extend the metric d f,S considered here to the metric
on C with prescribed properties of directed segments connecting points on S1.

The following example constructed by the same scheme as the previous one presents
a geodesic space with different topologies τ+ and τ−
Example 2.7 Let d be a metric on R from Example 2.1. Then the factorisation of R
by the action of Z by k-translations t 
→ t + k, k ∈ Z leads to a geodesic space with
different topologies τ+ and τ−. Neither (R/Z, τ+) nor (R/Z, τ+) is homeomorphic
to S1. The map [t] → [−t] is a homeomorphism (R/Z, τ+) → (R/Z, τ−).

3 The spaces of directions and the tangent cones in a geodesic space

Let (X, d) be a (not necessarily reversible) geodesic metric space. We do not suppose
uniqueness of [xy〉 nor coincidence of [xy〉 with [yx〉 as point sets here. Let o ∈ X be
an arbitrary point and [ox〉 and [oy〉 two directed segments starting from o.

Definition 3.1 We say that the directed segments [ox〉 and [oy〉 have the same joint
direction ato if the following holds. Letγx : [0, d(o, x)] → X be a positively isometric
map with image [ox〉 (natural parameterization of [ox〉) and γy : [0, d(o, y)] → X
the corresponding positively isometric map for [oy〉. Then

lim sup
t→0

d(γx (t), γy(t))

t
= lim sup

t→0

d(γy(t), γx (t))

t
= 0.

The binary relation “to have the same joint direction” is an equivalence relation on the
set of all directed segments starting at o. From now on, we omit the word “joint” and
use the term “the same direction” meaning namely this definition. Each equivalence
class is called a direction at o.

Assume that the set of segments starting at the point o ∈ X satisfies the following
condition: if

lim sup
t→0

d(γx (t), γy(t))

t
= 0,

then

lim sup
t→0

d(γy(t), γx (t))

t
= 0
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Foundations of singular Finsler geometry 775

for any two segments [ox〉 and [oy〉 with corresponding natural parameterizations γx
and γy . Then we say that the directions at the point o are defined independently of the
asymmetry. The geodesic space X is called a space with directions independent of the
asymmetry if this property holds at all points of X .

The following example explains the necessity of the independence condition.

Example 3.2 Denote by X the closed subset η �
√

ξ of the upper half-plane η > 0
of the plane with coordinates (ξ, η) bounded by the η-axis γ1 from the left and by
the semiparabola γ2 with equation η = √

ξ from the right. Consider the function
δ : X×X → R+ ∪ {+∞} defined as

δ((ξ1, η1), (ξ2, η2)) =
{

δ+((ξ1, η1), (ξ2, η2)) if ξ1 � ξ2,

δ−((ξ1, η1), (ξ2, η2)) otherwise.

Here δ+((ξ1, η1), (ξ2, η2)) is the length distance between the considered points gen-
erated in the set X from the standard Euclidean metric and

δ−((ξ1, η1), (ξ2, η2)) = η1 − √
ξ1 + η2 − √

ξ2 +
∫ ξ1

ξ2

√
1 + 1

4ξ
dξ.

Note that δ− becomes also the length metric symmetrized as δ−(u, v) when it is
defined or δ−(v, u) otherwise. In such symmetrization it represents the metric of a
non-separableR-tree. Hence δ is the lengthmetric on the set X and (X, δ) is a geodesic
space. Both boundary lines: the positive ray γ1 of the η-axis and the semiparabola γ2
from the right side of X are geodesic rays starting from the origin o. The metric δ

restricted to the boundary rays is reversible on each of them. We have

lim sup
t→0

d(γ1(t), γ2(t))

t
= 0

and

lim sup
t→0

d(γ2(t), γ1(t))

t
= 2.

The equivalence class of the segment [ox〉 defined as an image of the isometry γx
will be denoted by [γx ]. The following statement is well known for reversible metrics.
In fact, the non-reversibility has no influence on its proof.

Lemma 3.3 Let o ∈ X be a point with directions defined independently of the asym-
metry. Then the function � ([γx ], [γy]) defined as

� ([γx ], [γy]) = 2 lim sup
t→0

arcsin
d(γx (t), γy(t))

2t

is well defined and it is a metric on the set of directions at the point o.
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776 P. Andreev

The distance � is called the upper isosceles angle between the directions [γx ] and
[γy]. The metric � is not reversible in general. The upper angle between directions
can be defined in a more general way but we will not generalize the definition of upper
isosceles angle here because in most situations both quantities do not work as effective
tools for calculations.

The lower isosceles angle � is also well defined in a similar way, but it does not
lead to a metric in general.

Example 3.4 Consider 2-dimensional Minkowski space V 2 with the Randers norm
F = α + β where

α(dx1, dx2) =
√

(dx1)2 + (dx2)2

is the Euclidean norm and

β(dx1, dx2) = b1dx
1 + b2dx

2

is a linear form such that

√
(b1)2 + (b2)2 < 1.

After rotation of coordinates one can assume that for 0 < b < 1 the norm F gets the
form

F(dx1, dx2) =
√

(dx1)2 + (dx2)2 + b ·dx1.

The unit sphere S(o, 1) given by

F(x1, x2) = 1

after a transformation of its equation to the form

(√
1 − b2 ·x1 + b√

1 − b2

)2
+ (x2)2 = 1

1 − b2

can be parameterized by the angular parameter φ:

x1 = cosφ − b

1 − b2
, x2 = sin φ√

1 − b2
. (5)
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Foundations of singular Finsler geometry 777

The upper isosceles angle � is equal to the lower isosceles angle � and

� (φ,ψ) = � (φ,ψ)

= 2 arcsin

(
1

2
F

(
cosψ − cosφ

1 − b2
,
sinψ − sin φ√

1 − b2

))

= 2 arcsin

(√
(cosψ − cosφ)2 + (sinψ − sin φ)2(1 − b2)

2(1 − b2)
+ b(cosψ − cosφ)

2(1 − b2)

)

in the parametrization (5). The difference of the signs in the final items in the numerator
leads to the irreversibility of the metric � (φ,ψ).

Speaking about the tangent cone KpX to the geodesic space (X, d) one should take into
the account that its definition has the following alternative form. If X is an Alexandrov
space with bounded (from above or from below) curvature, then its space of directions
is a well-definedmetric space whosemetric is a lengthmetric generated from the angle
metric (see [4] for precise definitions and details). In this case the natural meaning of
the tangent cone is the Euclidean cone over the space of directions. Such an approach
does notwork for geodesic spaces in general. Fortunately, there exists anothermeaning
of the tangent cone which we use here.

From now on, all the metric spaces are topologically symmetric: the topologies τ+
and τ− coincide. Moreover, speaking about directions we mean that all directions are
defined independently of the asymmetry.

Definition 3.5 Let (X, d) be a metric space and A, B ⊂ X be two closed sets. The
Hausdorff distance Hd(A, B) in X is

Hd(A, B) = inf {ε > 0 : A ⊂ Nε(B) and B ⊂ Nε(A)}

where

Nε(C) = {x ∈ X : d(x, y), d(y, x) < ε for some y ∈ C }

denotes the symmetric ε-neighborhood of the set C .

Remark 3.6 Since the neighborhood Nε(C) is the intersection

N+,ε ∩ N−,ε(C)

where

N+,ε(C) = {x ∈ X : d(x, y) < ε for some y ∈ C }

is open in the topology τ+ and

N−,ε(C) = {x ∈ X : d(y, x) < ε for some y ∈ C }

is open in τ−, it is an open set in τ = τ±.
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778 P. Andreev

Remark 3.7 We allow here the value Hd(A, B) = +∞.

Remark 3.8 Note that the metric Hd on the family of closed subsets in X is reversible.

Definition 3.9 Let (X, dX ), (Y, dY ) be two metric spaces. The Gromov–Hausdorff
distance GHd(X,Y ) between them is by definition

GHd(X,Y ) = inf
Z , f,g

{Hd( f (X), g(Y ))}

where the infimum is taken among all metric spaces (Z , dZ ) and all isometric embed-
dings f : X → Z and g : Y → Z .

Definition 3.10 Let (Xt , dt ) be a one-parameter family of compact metric spaces. We
say that it converges when t → t0 in the sense of Gromov–Hausdorff to a compact
space (X, d), if GHd(X, Xt ) → 0. The value t0 is a real number or ±∞ here.

The version of Definition 3.10 in the non-compact proper case deals with pointed
spaces.

Definition 3.11 Let (Xt , dt , ot ) be a one-parameter family of proper metric spaces
with marked points ot correspondingly. We say that the space (X, d, o) is a Gromov–
Hausdorff limit of this family when t → t0 if for every r > 0 the ball B+(o, r) is a
Gromov–Hausdorff limit of dt -balls B+(ot , r).

In order to estimate the distances dGH it is convenient to use [4, Theorem 7.3.25].

Definition 3.12 ([4, Definition 7.3.17]) A correspondence ϕ between sets A and B is
by definition a subset of the Cartesian product A×B such that for every a ∈ A there
exists b ∈ B for which (a, b) ∈ ϕ, and conversely, for every b ∈ B there exists a ∈ A
for which (a, b) ∈ ϕ.

Theorem 3.13 For any two metric spaces X and Y

GHd(X,Y ) = inf
ϕ
dis(ϕ)

where

dis(ϕ) = sup
{|dX (x, x ′) − dY (y, y′)| : (x, y), (x ′, y′) ∈ ϕ

}

is the distortion of the correspondence ϕ between X and Y and the infimum is taken
among all such correspondences.

The proof of this theorem for the spaces with non-reversible metrics does not differ
from the symmetric case presented in [4].

Definition 3.14 Let (X, d) be a proper geodesic space, p ∈ X an arbitrary point. Con-
sider a family of spaces (X, dt ), t > 0, where dt = t ·d. The space KpX = (X∗, d∗) is
called the tangent cone to (X, d) at the point p if the pointed space (X∗, d∗, p∗) with
some marked point p∗ ∈ KpX is a Gromov–Hausdorff limit of the family (X, dt , p)
when t → +∞. The point p∗ is a vertex of the cone KpX . It is convenient to identify
p∗ with p and to consider p as a vertex of KpX .
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Foundations of singular Finsler geometry 779

The following natural example and the consideration after it partially explain the
motivation of the paper.

Example 3.15 Let X be a smooth surface in the affine space An equipped with a
strictly convex norm.We do not suppose the norm to be reversible, smooth or strongly
convex. By its own smoothness, the surface X has a well-defined family of smooth
curves and a tangent space TpX at every point p. This space inherits the norm from
the ambient space An. The length L(γ ) of a smooth curve γ in X calculated by the
formula (2) generates a length metric d on X . The topologies τ+ and τ− with respect
to the metric d coincide, the space (X, d) is proper in these topologies and it is a
geodesic space. It is obvious that the metric space (TpX, dp) is a tangent cone KpX
to the space (X, d) with vertex p, where the metric dp in TpX is induced from An.

Definition 3.16 We say that the family dt , t ∈ [a,+∞), of metrics on the set A
uniformly converges to the function d∗ : A× A → R if for any ε > 0 there exists
T > 0 such that

|dt (x, y) − d∗(x, y)| < ε (6)

for all x, y ∈ A and all t > T . The function d∗ is automatically non-negative and
satisfies the triangle inequality

d∗(x, y) � d∗(x, z) + d∗(z, y).

It is called a pseudometric if the equality d∗(x, y) = 0 implies d∗(y, x) = 0. Analo-
gously to the symmetric case, the pseudometric d∗ generates a metric space on the set
A/θ where θ is an equivalence relation on A such that aθb if and only if d∗(a, b) = 0.

Definition 3.17 We say that the metric space (X, d) satisfies the property of segments
prolongability at the point p ∈ X if there exists r > 0 such that every point x ∈
U+(p, r), x �= p, is an interior point of a directed segment [py〉 with d(p, y) = r . If
such r is detected, we say that (X, d) satisfies the r-prolongability of segments at p.

Let (X, d) be a proper geodesic space with τ+ = τ− and with the property of local
uniqueness of directed segments: for every point p ∈ X there exists a ball B+(p, r)
where any ordered pair of points x, y ∈ B+(p, r) defines a unique directed segment
[xy〉. In particular, for every x ∈ B+(p, r) the directed segment [px〉 is defined
uniquely. For x ∈ B+(p, r) and t � 1, denote by xt the point of the segment [px〉
such that

d(p, x) = t ·d(p, xt ).

Define the family of metrics dt (x, y) = t ·d(xt , yt ) on the ball B+(p, r).

Lemma 3.18 Let the space (X, d) satisfy the property of segments r-prolongability
at p ∈ X. Assume that the metrics dt are well defined on B+(p, r) and the family dt
converges uniformly to a pseudometric

d∗(x, y) = lim
t→+∞dt (x, y).
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Then the one-parameter family of pointed spaces (X, t ·d, p) has a limit in the sense
of Gromov–Hausdorff when t → +∞.

Proof First, let us define a metric space (Y, dY ) as follows. It follows from the con-
dition, that the function d∗ is a pseudometric on the set B+(p, r). We will denote
by B∗ the metric space generated from the pseudometric space (B+(p, r), d∗) as a
factor-space by the equivalence relation θ as in Definition 3.16. Consider the family
of spaces

t ·B∗ = (B(p, r)/θ, t ·d∗),

t > 0. It easily follows from the definition of the metrics dt that every space s ·B∗ is
isometric to the ball B+(p, sr) in t ·B∗ when s � t . Consequently, there is a well-
defined inductive limit

Y = lim−→(t ·B∗).

We will denote its metric by dY . Note that the segments r -prolongability at p implies
that the ball B∗ is foliated by directed segments [py〉 with d∗(p, y) = r . It follows
that Y consists of the rays which are infinite continuations of these segments and the
r -ball B+(p, r) in Y coincides with B∗. We claim that the pointed space (Y, dY , p) is
exactly the Gromov–Hausdorff limit of the family (X, t ·d, p).

Note that there is a similarity of balls: the ball B+(p, t ·r) of the space (X, t ·d)

is similar with the coefficient t to the ball B+(p, r) in (X, d). Consequently, to
prove (X, t ·d, p) −→

GH
(Y, dY , p), it is sufficient to prove the convergence of r -balls

(X, t ·d) ⊃ B+(p, r) −→
GH

B∗.
Given any ε > 0 denote T (ε) a number such such that inequality (6) holds for any

t � T (ε) and all pairs x, y ∈ B(p, r).
The composition of pseudometric projection pr : (B+(p, r), d∗) → (B∗, d∗) with

the identity map Id : (B+(p, r), dt ) → (B+(p, r), d∗) has the distortion estimated by

dis(pr◦Id) � ε

for every t � T (ε). Consequently, it follows from Theorem 3.13 that (B+(p, r), dt )
−→
GH

B∗.
Finally, it is clear that

Hd(B∗, B+(p, r)) = ε

and consequently,

GHd((B∗, d∗), (B+(p, r), dt )) � ε.

This proves the lemma. ��
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The following example demonstrates the essentiality of the condition of segments
prolongability at p.

Example 3.19 Consider a subset A of the plane with coordinates (ρ, φ) which we
assume to be Cartesian, bounded by the lines φ � 0, ρ � 0 and ρ � 1/(φ + 1).
Define a pseudometric dA on A by

dA((ρ1, φ1), (ρ2, φ2)) =
{√

ρ2
1 + ρ2

2 − 2ρ1ρ2 cos(φ2 − φ1) if |φ2 − φ1| � π,

ρ1 + ρ2 otherwise

and the metric space (A/θ, dA). Here θ is a pseudometric equivalence with the unique
non-trivial class defined by the equality ρ = 0.

Geometrically, the space A is isometric to a subspace of the Riemannian surface of
branching covering over the Euclidean plane with one singular point in the origin. Its
boundary projects to the union of the spiral ρ = 1/(φ + 1) in the polar coordinates
with the segment 0 � ρ � 1 of the axis φ = 0.

All the spaces (A, dt ) are isometric to each other, but the spaces (A, t ·d) do not
converge in the sense of Gromov–Hausdorff because the family of balls B(p, r) in
these spaces has no Gromov–Hausdorff limit.

4 Definition and examples

Let (X, d) be a metric space such that

• X is a geodesic space;
• the topologies τ+ and τ− coincide;
• the space (X, τ ) is a topological manifold;
• for any point p ∈ X the space of directions is defined independently of the asym-
metry, the tangent cone KpX is well defied and it has the structure of a normed
linear space with strictly convex norm.

Then the space X is called a singular Finsler space.

Example 4.1 Let (X, d) be a Busemann G-space with non-positive curvature. It is a
symmetric geodesic space by definition. Then it is proved in [1] that X is a topological
manifold and the tangent cone KpX is well defined at every point p ∈ X . Moreover,
it is shown in [2] that KpX has the structure of a normed space with strictly convex
norm. It follows that everyBusemannG-spacewith non-positive curvature is a singular
Finsler space.

Example 4.2 The Funk metric (4) leads to a regular Finsler space only if the bound-
ary ∂� is smooth and strongly convex. The Funk space defined with strictly convex
boundary surface ∂� is a singular Finsler space which can be non-smooth.

The following example should be viewed as a counterexample because not every
quasihyperbolic plane satisfies the definition of singular Finsler space.
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Example 4.3 Quasihyperbolic planes which were studied in [5] and [8] are deeply
connected with singular Finsler spaces: they lead to a new understanding of the defi-
nition of singular Finsler spaces and to some problems. First, we recall the definition
and properties of a quasihyperbolic plane.

Remark 4.4 One should not confuse this notion of quasihyperbolic plane with another
object introduced by B.A.Rozenfeld also known as a quasi-hyperbolic space.

Let

X = R×R+ = {(x, y) : y > 0}

be the upperEuclideanhalf-plane and� a groupwhich acts on X by the transformations
(x, y) 
→ (αx + β, αy), where α > 0, β ∈ R. The group � is generated by positive
homotheties (x, y) → (αx, αy) and x-parallel translations (x, y) → (x + β, y).

The metric space (X, d) with a �-invariant metric d is called a quasihyperbolic
plane if it is a Busemann G-space.

The following theorem of Gribanova gives a characterization of quasihyperbolic
planes in terms of the linear element. The overall formulation is taken from [3].

Theorem 4.5 Let (X, d) be a quasihyperbolic plane. Then the linear element in X
has the form

ds = F(dx, dy)

y
, (7)

where the function F(u, v) satisfies the conditions

• F(u, v) > 0 when (u, v) �= (0, 0);
• F(ku, kv) = k ·F(u, v) for all k � 0;
• F is convex;
• F is smooth in all points (u, v) except (0, 0);
• tangents for the curve F(u, v) = 1 parallel to the line v = 0 touch this curve in
a unique point.

Conversely, each line element of the form (7)with F satisfying these properties defines
a quasihyperbolic plane. The geodesics of the space (X, d) are the intersections of X
with

• the curves F∗(x − a, y) = k, k > 0, a ∈ R, where

F∗(x, y) = max
F(u,v)�1

(xv − yu)

is a function dual to F in coordinates turned over π/2, and
• the tangents to these curves in points of the x-axis.

For two distinct points there exists exactly one geodesic passing through them.

In some sense, the above example presents the class of metrics which is dual to the
singular Finsler metrics admitting the action of � on X . In general, a quasihyperbolic
plane is not necessarily a singular Finsler space and vice-versa. The stadium space
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described in [3] is a counterexample: the norm in its tangent space is not strictly convex.
Conversely, it follows from the smoothness condition that if the linear element of the
space X is strictly convex but not smooth, it is a singular Finsler space but not a
quasihyperbolic plane. In that case it admits branching of geodesics.

More examples of singular Finsler spaces arise as smooth submanifolds of a strictly
convex normed space as in Example 3.15.

5 Curves with velocity

Let (X, d)be a singular Finsler space, c : [a, b] → X a parameterization of a rectifiable
curve γ ⊂ X , a < s0 < b and p = c(s0). Let t > 0 and ωt : [0, 1] → X be
a parameterization of the directed segment from p to c(s0 + t) proportional to the
natural parameterization. It defines a vector wt in the tangent space TpX with length
‖wt‖ = d(p, c(s0 + t)). The vector

vt = 1

t
wt

is called the secant-directing vector of γ at the point p corresponding to the parameter
t . If the limit

v+ = lim
t→+0

vt ∈ TpX (8)

exists, then we say that the curve γ has an upcoming velocity in the positive direction
at the point p. The vector v+ represents this upcoming velocity. Similarly, for t < 0
the vector vt is defined by

vt = d(c(s0 + t), p)

|t | wt

where wt ∈ TpX is the unit vector in the direction of the continuation of the directed
segment [c(s0 + t)p〉 after the point p, and

v− = lim
t→−0

vt ∈ TpX (9)

represents the coming velocity from the negative direction at the point p if it exists.
If the vectors v+ and v− coincide, we say that γ has velocity presented by the

velocity vector v = v+ = v− at p. The proof of the following theorem is standard but
we review it here to avoid questions.

Theorem 5.1 Let γ be a curve in a singular Finsler space (X, d) represented by
a parameterization c : [a, b] → X such that the velocity vector v(s) exists for all
parameters s in [a, b] and such that the function ‖v(s)‖ is continuous. Then γ is
positively rectifiable with length

L+(γ ) =
∫ b

a
‖v(s)‖ ds. (10)
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Proof First, we show that the curve γ is positively rectifiable, that is, the length
variations (3) are bounded from above. Denote by

M = max
s∈[a,b] ‖v(s)‖

the maximal value of the norm of the vector v, which is reached at some tM ∈ [a, b]
since ‖v(s)‖ is continuous. It follows from the definition of the vector v(s) as a
common limit in (8) and (9) that for any s ∈ [a, b] there exists δ(s) > 0 such that if
0 < t < δ(s) then

d(c(s), c(s + t)) < 2M · t

and

d(c(s − t), c(s)) < 2M · t.

Consequently, applying the triangle inequality, we have

d(c(σ ), c(τ )) < 4M ·(τ − σ)

for any σ, τ ∈ (s − δ(s), s + δ(s)) where σ < τ .
Picking a finite subcovering

[a, b] ⊂
n⋃

i=1

(sj − δ(sj ), sj + δ(sj )),

we find the estimate

V+(γ, T ) � 4M ·(b − a)

of the length variation of γ for the subdivision T of the segment [a, b] such that
ti , ti+1 ∈ (sj −δ(sj ), s+δ(si )) for any two neighbour elements ti , ti+1 of T and some
j depending on i . An arbitrary subdivision T can be accomplished by additional points
to get the same estimate of the variation V+(γ, T ) (adding points can only enlarge the
value of V+(γ, T )). Hence, the set of positive length variations is bounded and γ is
positively rectifiable.

Denote by L+(γ ) the positive length of γ . Next we show that it is exactly of the
form (10). First, for any ε > 0 there exists δ1 > 0 such that for any subdivision T of
[a, b] with diameter � < δ1 the estimate holds

L+(γ ) − V+(γ, T ) <
ε

3
.
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Next, consider the function f (s, τ ) defined for s, s + τ ∈ [a, b] by

f (s, τ ) =

⎧⎪⎨
⎪⎩

d(c(s), c(s + τ))

τ
if τ �= 0,

lim
t→0

d(c(s), c(s + t))

t
if τ = 0.

It is continuous by the condition of Theorem 5.1 and by the definition of v. Hence it
is uniformly continuous and there exists δ2 such that if |τ | < δ2 then

∣∣ f (c(s), c(s + τ)) − ‖v(s)‖∣∣ <
ε

3(b − a)

or ∣∣d(c(s), c(s + τ)) − ‖v(s)‖·τ ∣∣ < τ
ε

3(b − a)
(11)

for all s ∈ [a, b]. For a subdivision T of [a, b] presented by numbers a = s0 <

s1 < · · · < sn−1 < sn , if the diameter � < δ2, the summing inequalities (11) by
i = 0, n − 1 taking τi = �si = si+1 − si gives

∣∣∣∣V+(γ, T ) −
n−1∑
i=0

‖v(si )‖·�si

∣∣∣∣ <
ε

3
.

Note that the second item under the modulus here is in fact the integral sum for the
integral

∫ b
a ‖v(t)‖ dt . The integral exists since the norm ‖v(t)‖ is continuous. Finally,

there exists δ3 > 0 such that

∣∣∣∣
n−1∑
i=0

‖v(si )‖·�si −
∫ b

a
‖v(t)‖ dt

∣∣∣∣ <
ε

3

for any subdivision T with diameter �(T ) < δ3. Taking δ = min{δ1, δ2, δ3} and an
arbitrary subdivision T with �(T ) < δ we obtain that

∣∣∣∣L+(γ ) −
∫ b

a
‖v‖ dt

∣∣∣∣ < ε

proving the theorem because of arbitrariness of ε > 0. ��

6 Some questions and problems

We conclude by a short list of questions which are close to the theory developed or
may have independent interest.

First, since the singular Finsler geometry is an extension of smooth Finsler geome-
try, it is natural to ask about the circle of its objects: what is kept in such an extension.
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Question 6.1 What objects of the smooth Finsler geometry admit a description with-
out differentiation and hence belong to the singular extension of Finsler geometry?

The first pretenders for singular Finsler geometry are standard measures: different
versions of angularmeasure, areas andvolumes.One can speak about different versions
of perpendicularity, of course, without symmetry. Note that Busemann studied these
values in the symmetric case of G-spaces. The class of singular Finsler spaces has
some differences from the class of Busemann G-spaces.

More problematic are Finsler linear connections and corresponding parallelisms.
It is hard to imagine what can be an analogue of the Levi-Civita connection. One
can try to approximate singular Finsler norms by smooth ones and use some limiting
procedure. As a consequence, the following question arises.

Question 6.2 How do the limiting versions of differential quantities depend on the
choice of approximation and limiting procedures?

Of course, the version of the extension of Finsler geometry to the singular case
described here is not unique. But the question is

Question 6.3 What other manners can be used to extend smooth Finsler geometry to
the non-smooth or to the non-strongly convex situation?

Recall that this paper was inspired by the theorem proved in [2]: the tangent cone for
a non-positively curved G-space has a structure of normed space with strictly convex
norm. The theorem is proved for the reversible case. The following series of problems
arises.

Problem 6.4 Let X be a non-positively curved Busemann G-space with non-
reversible metric. This means that all the axioms of G-space hold except that the
metric symmetry and the axiom of curvature non-positivity holds for the set of directed
segments.

(a) Is it true that the topologies τ+ and τ− coincide?
(b) Are the spaces of directions defined independently on the asymmetry?
(c) Is the pseudometric d∗ from Lemma 3.18 well defined and is it a metric?
(d) Is the tangent cone KpX homeomorphic to X and is it a normed space?

The following problem results: is the space X a singular Finsler space?

Some questions arise from the consideration of quasihyperbolic spaces. The known
researches deal with quasihyperbolic planes, that is, with reversible two-dimensional
quasihyperbolic spaces.Going to high dimensions and breaking the symmetry can gen-
erate extra obstructions for the description of quasihyperbolic geometry. The obvious
is the fact that a quasihyperbolic space is a singular Finsler space only if its norm is
strictly convex. The general problem is the following.

Problem 6.5 Let X = R
n×R+ be the (n+1)-dimensional open half-space. Consider

the metrics d on X generated by the linear elements of type

ds = F(dx, dy)
y
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where the function F(u, v) is convex and positively homogeneous: F(λu, λv) =
λF(u, v) for all pairs (u, v) ∈ R

n×R+ and all λ > 0.

(a) Find geodesics of the metric d in the general case.
(b) Is there any kind of duality between singular Finsler metrics and quasihyperbolic

metrics?

Note that these questions are unanswered for the non-reversible metrics even in the
two-dimensional case.

Acknowledgements I am very grateful to Athanase Papadopoulos for his invaluable help in preparing this
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