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Abstract After recalling basic definitions and constructions for a finite groupG action
on a k-linear category we give a concise proof of the following theorem of Elagin: if
C = 〈A,B〉 is a semiorthogonal decomposition of a triangulated category which is
preserved by the action of G, and CG is triangulated, then there is a semiorthogonal
decomposition CG = 〈AG,BG〉. We also prove that any G-action on C is weakly
equivalent to a strict G-action which is the analog of the Coherence theorem for
monoidal categories.

Keywords Group actions on categories · Derived categories of coherent sheaves ·
Elagin’s theorem
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1 Introduction

1.1 The setting of finite groups acting on categories is a well-studied ground, see
e.g. [2–5,9] and references therein. A useful way to define the action is to require for
every g ∈ G an autoequivalence ρg : C → C together with a choice of isomorphisms
ρgρh � ρgh satisfying a cocycle condition, see 2.1. One would then study the category
of equivariant objects CG, see 2.4.

1.2Themain goal of this paper is to give a direct proof of Elagin’s theorem [3,4] stating
that if C = 〈A,B〉 is a semi-orthogonal decomposition of triangulated categories and
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414 E. Shinder

G is a finite group acting on C by triangulated autoequivalences in such a way that the
category of equivariant objects CG is triangulated and preservingA and B, then there
is a semi-orthogonal decomposition CG = 〈AG,BG〉, see Theorem 6.2.

1.3 In our proof we construct the functors CG → AG and CG → AG adjoint to
the inclusion functors. The key step in the proof is to show that if � : A → C is
a G-equivariant functor which admits a left or right adjoint functor �, then � is
automatically equivariant: see Proposition 3.9.

1.4 We also prove that every G-action is G-weakly equivalent to a strict G-action,
that is to an action satisfying ρgρh = ρgh , see Theorem 5.4. This is analogous to the
Coherence Theorem for monoidal categories: every monoidal category is equivalent
to a strict monoidal category, see e.g. [7, 1.2.15].

1.5 In order to formulate and prove these facts we need to develop the language of
G-functors, G-natural transformations and so on. Perhaps relevant definitions and
constructions are well known to experts but we include these for completeness as we
could not find the reference that fits our purpose.

1.6 All categories, functors, etc are k-linear where char(k) = 0. Groups acting on
categories are finite and we denote by 1 ∈ G the neutral element of the group.

We use the symbol “◦” to denote vertical composition of natural transformations
of functors, the other types of compositions are denoted by concatenation.

2 G-categories and equivariant objects

2.1 Definition By a G-action on C we mean the following data [4, Definition 3.1]:

• For each element g ∈ G an autoequivalence ρg : C → C.
• For each pair g, h ∈ G an isomorphism of functors

φg,h : ρgρh ∼= ρgh .

The datamust satisfy the following associativity axiom: for all g, h, k ∈ G the diagram
of functors C → C is commutative:

ρgρhρk

φg,hρk

ρgφh,k
ρgρhk

φg,hk

ρghρk
φgh,k

ρghk .

2.2 It follows from the definition that there is an isomorphism of functors

φ1 : ρ1 � id
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obtained by post-composing φ1,1 : ρ1ρ1 → ρ1 with ρ−1
1 . That is we have

φ1,1 = ρ1φ1.

Furthermore one can show that φ1 satisfies [5, 2.1.1 (e)]:

φg,1 = ρgφ1 : ρgρ1 → ρg, φ1,g = φ1ρg : ρ1ρg → ρg

so that the definition 2.1 coincides with that of [5, 2.1].
On the other hand if one asks for φ1 to be the identity transformation, one gets a

slightly stronger definition of a G-descent datum of [8, Definition 1.1].

2.3Using the language of monoidal functors [7, Definition 1.2.10], one can give a very
concise definition of a group acting on a category. For that consider G as a monoidal
category: G is discrete as a category and its monoidal structure is defined by

g⊗h = gh, idg⊗ idh = idgh .

Now a G-action on C amounts to the same thing as an action of monoidal category G
on C [7, Example 1.2.12], i.e. a weak monoidal functor

ρ : G → [C,C]

where on the right is the category of functors C → C with monoidal structure given
by composing functors.

2.4 Definition One defines the category of G equivariant objectsCG [4,5] as follows:
objects of CG are linearized objects, i.e. objects c ∈ C equipped with isomorphisms

θg : c → ρg(c), g ∈ G,

satisfying the condition that the following diagrams are commutative:

c

θgh

θg
ρg(c)

ρgθh

ρgh(c) ρg(ρh(c)).
φg,h(c)

Morphisms of equivariant objects consist of thosemorphisms of the underlying objects
in C which commute with all θg , g ∈ G.
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3 G-functors and G-natural transformations

3.1 Definition Given two categories C,D with G-actions and a functor � : C → D,
� is called a right lax G-functor if there are given natural transformations

δg : ρg� → �ρg

such that the two natural transformations ρgρh� → �ρgh coincide:

ρgh�

δgh

ρgρh�

φg,h�

ρgδh

�ρgh

ρg�ρh
δgρh

�ρgρh

�φg,h

This commutative diagram is called the pentagon axiom. Similarly � is called a left
lax G-functor if there are given natural transformations

δg : �ρg → ρg�

satisfying the dual pentagon axiom. A right (or left) lax G-functor � is called a weak
G-functor if all δg are isomorphisms.

The following lemma is a useful criterion for a weak G-functor.

3.2 Lemma Let � be a right (or left) lax G-functor. The following conditions are
equivalent:

(i) The natural transformation δ1 : ρ1� → �ρ1 is an isomorphism.
(ii) � satisfies the identity element axiom:

�φ1◦δ1 = φ1� : ρ1� → �.

(iii) � is a weak G-functor.

Proof Implications (iii)⇒ (i), (ii)⇒ (i) are obvious. Let us prove that (i)⇒ (iii). Con-
sider the case of the right lax G-functor. Applying the pentagon axiom to the pair
(g−1, g) gives

δg−1ρg◦ρg−1δg = �φ−1
g−1,g

◦δ1◦φg−1,g�.

Since the natural transformation on the right-hand side is an isomorphism (note that
δ1 is an isomorphism by the identity element axiom) and ρg, ρg−1 are equivalences, it
follows that δg−1 is left invertible and δg is right invertible. Thus we see that all δg are
isomorphisms.
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Now we prove (i)⇒ (ii). Consider the natural transformation

ε = �φ1◦δ1◦φ−1
1 � : � → �.

We are given that ε is an isomorphism and we need to prove that ε is in fact an identity.
We use Lemma 3.3 applied to the trivial group H = {1} and the composition

(C, id)
(id, φ1)−−−−→ (C, ρ1)

(�, δ1)−−−−→ (D, ρ1)
(id, φ−1

1 )−−−−−→ (D, id)

which gives a laxG-functor (C, id)
(�,ε)−−−→ (D, id). The pentagon axiom for this functor

yields

ε2 = ε

and we deduce that ε = id. ��

3.3 Lemma If (�, δ�) : C → D, (�, δ�) : D → E are right/left/weak G-functors,
then their composition (��,�δ�◦δ��) is a right/left/weak G-functor.

For the proof one needs to check that the composition satisfies the pentagon and/or
the identity element axioms; this is a straightforward check.

3.4 Lemma A weak G-functor � : C → D induces a functor on the categories of
equivariant objects �G : CG → DG such that the following diagram is commutative:

CG �G

DG

C
�

D.

Proof For (c, θ) ∈ CG we define linearization on �(c) as a composition of isomor-
phisms

�(c) → �ρg(c) → ρg�(c)

of �θg with δg . It is now a standard check that �(c) becomes an equivariant object
and that �G is a functor. ��
3.5 Definition A natural transformation between two weak G-functors μ : �1 →
�2 : C → D is called a G-natural transformation if for every g ∈ G the following
diagram commutes:

ρg�1

δ1,g

ρgμ
ρg�2

δ2,g

�1ρg
μρg

�2ρg.
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3.6 Lemma AG-natural transformationμ between twoweak G-functors�1,�2 : C
→ D induces a natural transformation μG : �G

1 → �G
2 .

Proof To prove that μ descends to a natural transformation μG : �G
1 → �G

2 we
check that for every (c, θ) ∈ CG the morphism μ : �1(c) → �2(c) commutes with
linearizations:

ρg�1(c)

δ1 �

ρgμ(c)
ρg�2(c)

δ2 �

�1ρg(c)
μρg(c)

�2ρg(c)

�1(c)

�1θg

μ(c)
�2(c).

�2θg

The transformation μG is natural since the original transformation μ is natural and
the forgetful functor CG → C is faithful. ��

3.7 Definition Two weak G-functors � : C → D, � : D → C are called G-adjoint
if they are adjoint and the unit ε : id → �� and counit η : �� → id of the adjunction
are G-natural transformations.

3.8 Lemma A G-adjoint pair of functors �,� induces an adjoint pair �G, �G

between the categories of equivariant objects.

Proof From 3.6 it follows that we have natural transformations εG : id → �G�G,
ηG : �G�G → id. The condition for � and � to be adjoint is that two compositions

�η◦ε� : � → ��� → �

and

η�◦�ε : � → ��� → �

are identities. Since the forgetful functor CG → C is faithful, the same holds for
�G, �G. ��

3.9 Proposition A left or right adjoint � to a weak G-functor � can be made into
a weak G-functor in such a way that � and � become G-adjoint.

Proof Let � be the left adjoint to � : C → D. We construct the structure of a left lax
G-functor on � using the structure of a right lax G-functor on �.

Let ε : id → �� and η : �� → id be the unit and the counit of the adjunction.
Given a right laxG-structure δg : ρg� → �ρg on�, we define the left laxG-structure
δ′
g : �ρg → ρg� on � as a mate of δg with respect to the adjunction [6, Proposition
2.1], [7, pp. 185–186], i.e.

δ′
g = ηρg� ◦�δg� ◦�ρgε : �ρg → �ρg�� → ��ρg� → ρg�.
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The pentagon axiom can be expressed as an equality of certain compositions in the
double category of [6, p. 86], hence is preserved under taking mates by [6, Proposition
2.2]. Checking the identity axiom for δ′

1 is straightforward.
Nowby 3.2,� becomes aweakG-functor. The proof for right adjoints is analogous.
We now need to prove that the unit and counit transformations ε, η are G-natural.

We do the proof for the unit ε.We need to check that the following diagram commutes:

ρgid

=

ε
ρg��

δ��,g

idρg
ε

��ρg.

Here δ�� is defined using 3.3. Unraveling the definitions we are left with checking the
diagram (where we use simplified notation for the natural transformations to denote
the obvious compositions)

ρg
ε

ε

ρg��
δg

�
ε

�ρg�
=

ε

�ρg�

��ρg
ε

��ρg��
δg

� ���ρg�

η

which is easily seen to commute. ��

3.10 Corollary Let � : C → D be a weak G-functor. Then the following conditions
are equivalent:

(a) � is an equivalence of categories
(b) There exists a weak G-functor � : D → C and G-natural isomorphisms� ◦� �

idC, �◦� � idD.

In this case we will call � a weak G-equivalence.

Proof We only need to prove (a)⇒ (b) as the opposite implication is trivial. Let
� : D → C be the quasi-inverse functor to �. In particular � and � are adjoint
(both ways) so that by 3.9 � has a structure of a weak G-functor with compositions
G-isomorphic to identity functors. ��

4 Example: G-actions on the category of vector spaces

4.1 In this section we review a well-known example of how equivalence classes of
G-actions on the category of k-vector spaces correspond bijectively to cohomology
classes H2(G, k∗).

4.2 Let C = Vectk be the category of k-vector spaces, and let ρ be the G-action
on Vectk . As every autoequivalence of C is isomorphic to the identity functor, let us
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420 E. Shinder

assume ρg = id for every g ∈ G. In this setup the data of theG-action ρ defined in 2.1
is equivalent to specifying a cocycle φ ∈ Z2(G, k∗).

4.3 Consider two G-actions on Vectk given by cocycles φ, φ′ ∈ Z2(G, k∗). For the
G-actions to be equivalent there needs to exist a weak G-functor

� : (Vectk, φ) → (Vectk, φ
′)

which is an equivalence of categories. Then the pentagon axiom 3.1 requires existence
of an element δ = (δg)g∈G ∈ Z1(G, k∗) such that φ′

g,h = δgδhδ
−1
gh φg,h for all g, h.

ThusG-categories (Vectk, φ) and (Vectk, φ′) are equivalent if and only if [φ] = [φ′] ∈
H2(G, k∗).

4.4 The category of equivariant objects (Vectk, φ)G is the category of φ-twisted G-
representations with objects given by vector spaces V together with isomorphism
θg : V → V satisfying θgh = φ(g, h)θgθh and G-equivariant morphisms. In particu-
lar, if φ is the trivial cocycle, so that G-action on Vectk is trivial, VectGk is the category
of G-representations.

5 Strictifying G-actions

5.1 Let 
(G) denote the category with one object for every element g ∈ G with
Hom(g, g) = k and Hom(g, h) = 0 for g �= h.

5.2 Let C be a category with a G-action. Consider the category of weak G-functors
and G-natural transformations from 
(G) to C

C′ = HomG(
(G),C).

We endow C′ with the strict G-action induced by the G-action on 
(G).

5.3 Explicitly the objects of C′ consist of families (cg ∈ C)g∈G together with isomor-
phisms δh,g : ρhcg � chg satisfying the cocycle condition that two ways of getting an
isomorphism ρkρhcg � ckhg coincide. The morphisms from (cg)g∈G to (dg)g∈G are
morphisms fg : cg → dg satisfying the condition that the two natural ways of forming
a morphism ρhcg → dhg coincide.

5.4 Theorem The functor � : C′ → C sending (cg)g∈G to c1 is a weak G-
equivalence. Hence, every G-action is weakly equivalent to a strict G-action.

Proof We need to check that � has a structure of a weak G-functor and that � is fully
faithful and essentially surjective.

The structure of a weak G-functor on � is in fact simply given by the structure
maps δh,g . That is we have functorial isomorphisms

ρg�(c) = ρg(c1)
δg,1−−→ cg = �ρg(c)

and the pentagon axiom follows from the cocycle condition on δ.
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To check that � is essentially surjective, one checks that for any c ∈ C the family
(ρg(c)) has a structure of an object from C. Furthermore, one can see that any object
(cg)g∈G is isomorphic to (ρg(c1))g∈G .

Thus to check that � is fully faithful, we may take two objects (cg)g∈G = (ρg(c1))
and (dg)g∈G = (ρg(d1)) and a morphism fg : cg → dg between them. It is then easy
to see that fg = ρ( f1) and that conversely for any f1 : c1 → d1, the collection ρg( f1)
defines a morphism between c and d. ��

6 Elagin’s theorem

6.1 If C is a triangulated category and G acts by triangulated autoequivalences, then
CG is endowed with a shift functor and a set of distinguished triangles: these are
the triangles that are distinguished after applying the forgetful functor CG → C.
Furthermore under some mild technical assumptions this gives CG the structure of a
triangulated category [4, Theorem 6.9], for instance existence of a dg-enhancement
of C is a sufficient condition for CG to be triangulated [4, Corollary 6.10].

6.2 Theorem Let C = 〈A,B〉 be a semi-orthogonal decomposition of triangulated
categories. Let G act on C by triangulated autoequivalences which preserve A and
B. Assume that the equivariant category CG is triangulated with respect to triangles
coming from C. Then AG,BG ⊂ CG are triangulated and there is a semi-orthogonal
decomposition

CG = 〈AG,BG〉.

Proof The existence of an adjoint pair between C and CG [4, Lemma 3.7] implies that

BG = ⊥AG andAG = BG⊥
. In particular,AG andBG are triangulated subcategories

of CG.
Now in order to establish the semi-orthogonal decomposition CG = 〈AG,BG〉 it

suffices to show that the embedding iG : AG → CG has a left adjoint [1, 1.5]. This
holds true by 3.9, 3.8: the functor i : A → C is (strictly) G-equivariant, hence its left
adjoint p : C → A induces an adjoint pG to the embedding iG : AG → CG. ��
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