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Abstract Two linear forms, σnζ(5) + τnζ(3) + ϕn and σnζ(2) + τn/2, with suitable
rational coefficients σn, τn, ϕn , are presented. As a byproduct, we obtain an identity
between simple and double binomial sums, where the simple sum is the value of a
terminating well-poised Saalschützian 4F3 series. This complements a recent note
of the author on two linear forms: αn˜ζ (4) + βn˜ζ (2) + γn , based on an identity of
Paule–Schneider, and αnζ(2) + βn , coming from the Apéry–Beukers construction.

Keywords Zeta values · Binomial and binomial-harmonic identities

Mathematics Subject Classification 11J13 · 05A19 · 11B65 · 33C20

1 Main binomial and binomial-harmonic identities

Very well-poised hypergeometric series provide a clue in the study of diophantine
properties of the values of the Riemann zeta function ζ(s) at positive integers, see
e.g. [4,7,8], to quote only a few papers dealing with this important topic. Further
references can be found in the bibliography of [4].

In the recent paper [5], we observed that the linear forms

∞
∑

k=1

(

k + n

2

)

n!5
(k)5n+1

(−1)k = αn˜ζ (4) + βn˜ζ (2) + γn, αn, βn, γn ∈ Q,
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44 R. Marcovecchio

and

n!
∞
∑

k=1

(k − n)n

(k)2n+1

= Anζ(2) + Bn, An, Bn ∈ Q,

have two common coefficients, namely

An = αn and Bn = βn .

Here and in the sequel, (x)m = x (x + 1) · · · (x + m − 1) if m > 0 is an integer, and
(x)0 = 1. We denote by ζ(s) and˜ζ (s) the following:

ζ(s) =
∞
∑

k=1

1

ks
and ˜ζ (s) =

∞
∑

k=1

(−1)k

ks
= (21−s − 1)ζ(s).

The equality An = αn was noted earlier by Paule and Schneider [6], and is a special
case of [4, Proposition 1].

In the present paper we adapt the methods of [5] to the linear forms

∞
∑

k=1

(

k + n

2

)

n!6
(k)6n+1

= σnζ(5) + τnζ(3) + ϕn, σn, τn, ϕn ∈ Q,

and

∞
∑

k=1

(k − n)n (k + n + 1)n
(k)2n+1

= Snζ(2) + Tn, Sn, Tn ∈ Q.

It seems reasonable to expect that one can solve [9, Problem 1] by similar methods.
We assume that the reader is familiar with the background contained in [4, Section 2].
In particular, we have

σn = −
n

∑

j=0

d

d j

(

n

2
− j

)(

n

j

)6

=
n

∑

j=0

(

n

j

)6(

1 − 6

(

n

2
− j

)

(Hn− j − Hj )

)

, (1)

τn = − 1

3!
n

∑

j=0

d3

d j3

(

n

2
− j

)(

n

j

)6

= −
n

∑

j=0

(

n

j

)6(

36

(

n

2
− j

)

(Hn− j − Hj )
3
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+ 18

(

n

2
− j

)

(Hn− j − Hj )
(

H (2)
n− j + H (2)

j

)

+ 2

(

n

2
− j

)

(

H (3)
n− j − H (3)

j

)

− 18(Hn− j − Hj )
2 − 3

(

H (2)
n− j + H (2)

j

)

)

, (2)

Sn = (−1)n
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

, (3)

Tn = (−1)n
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

· (

H (2)
j + Hj

(

3(Hj − Hn− j ) + H2n− j − Hn+ j
))

. (4)

Throughout this paper,

H (k)
j = 1 + · · · + 1

j k
, H (k)

0 = 0, k = 1, 2, . . . ,

and the notation for the derivative d/d j is taken from [4, (7.2)].
The main result of the present paper is the following:

Theorem 1.1 We have

σn = Sn, (5)

τn = 2Tn . (6)

Despite the analogy between the equalities τn = 2Tn in (6) and βn = Bn in the
paper [5] quoted above, we currently miss a unified proof. However, both (5) and
(6), and similar observations in [5], are implicitely connected to the period structure
of some multiple integrals (see [3, Section 9.5]). In particular, the linear forms 	n

(respectively, 
n) in Sect. 2, and even more general linear forms, are equal to suitable
3-fold (respectively, 5-fold) multiple integrals over [0, 1]3 (respectively, over [0, 1]5),
and similar remarks hold for the linear forms in 1 and ζ(2) and in 1, ζ(2) and ζ(4)
in [5]. All the integrals alluded to above are period integrals on moduli spaces (see [3,
Section 1.3]).

In Sect. 2 we provide more details on the above linear forms and coefficients, and
in Sects. 3–4 we prove Theorem 1.1.

By combining (5) with another special case of [4, Proposition 1], we have

Theorem 1.2

n
∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

=
∑

0� j�k�n

(

n

j

)2(n

k

)2(n + k − j

n

)

. (7)

We give an independent proof of (7) in the last section of the present paper.
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46 R. Marcovecchio

2 Linear forms in 1, ζ(2) and in 1, ζ(3) and ζ(5)

The following series is a linear form in 1 and ζ(2) with rational coefficients:

	n =
∞
∑

k=1

(k − n)n (k + n + 1)n
(k)2n+1

= Snζ(2) + Tn, Sn, Tn ∈ Q.

It is worth noticing that 	n is a Saalschützian 4F3 well-poised hypergeometric series

	n = n!3(3n + 1)!
(2n + 1)!3 4F3

[

n+1, n+1, n+1, 3n+2
2n+2, 2n+2, 2n+2

]

.

Throughout the present paper we use identities between values of the function q+1Fq
with the argument z = 1, which is customary omitted.

We have

Sn =
n

∑

j=0

(k − n)n (k + n + 1)n (k + j)2

(k)2n+1

∣

∣

∣

∣

k=− j

= (−1)n
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

,

whence Sn is the right-hand side of (3) and, similarly, Tn is given as the right-hand
side of (4).

The next series is a linear form in 1, ζ(3) and ζ(5) with rational coefficients:


n =
∞
∑

j=0

(

k + n

2

)

n!6
(k)6n+1

= σnζ(5) + τnζ(3) + ϕn,

where

σn =
n

∑

j=0

d

dk

(

k + n

2

)

n!6(k + j)6

(k)6n+1

∣

∣

∣

∣

k=− j

=
n

∑

j=0

d

dε

(

n

2
+ ε − j

)

n!6
(ε − j)6j (1 + ε)6n− j

∣

∣

∣

∣

ε=0
.

By exchanging j with n − j , i.e. by inverting the order of summation, we have

σn =
n

∑

j=0

d

dε

(

− n

2
+ j + ε

)

n!6
(1 + ε)6j (1 − ε)6n− j

∣

∣

∣

∣

ε=0
.

Therefore σn equals the left-hand side of (1), and similarly τn is given by one of the
two equivalent sums in (2).
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On hypergeometric identities related to zeta values 47

3 Application of Whipple’s transformation

We apply the following transformation formula, due to Whipple (see [2, 4.3 (4)]):

7F6
[

a, a/2+1, b, c, d, e, −m
a/2, 1+a−b, 1+a−c, 1+a−d, 1+a−e, 1+a+m

]

= (1 + a)m (1 + a − d − e)m
(1 + a − d)m (1 + a − e)m

4F3
[

1+a−b−c, d, e, −m
1+a−b, 1+a−c, d+e−a−m

]

.
(8)

The coefficient σn can be written as

σn = d

dε

(

− n

2
+ ε

)

7F6
[ −n+2ε, −n/2+ε+1, −n+ε, −n+ε, −n+ε, −n+ε, −n

−n/2, 1+ε, 1+ε, 1+ε, 1+ε, 1+2ε

]∣

∣

∣

ε=0
.

By applying (8), we obtain

σn = d

dε

(

− n

2
+ ε

)

(1 − n + 2ε)n (n + 1)n
(1 + ε)2n

4F3
[

n+1, −n+ε, −n+ε, −n
1+ε, 1+ε, −2n

]∣

∣

∣

ε=0
.

Since
(

− n

2
+ ε

)

(1 − n + 2ε)n = ε(−n + 2ε)n, (9)

we have

σn = (−n)n (n + 1)n
(1)2n

4F3
[

n+1, −n, −n, −n
1, 1, −2n

]

= (−1)n
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

.

Therefore (5) is proved.
Leta, b, c, d, α, β, γ, δ be eight complex parameters to be chosen later.Weconsider

the following functions of ε:

fn, j (ε) =
(

− n

2
+ j + ε

)(

n

j

)

n!
(1 + 2ε)j (1 − 2ε)n− j

n!
(1 + aε)j (1 − αε)n− j

· n!
(1 + bε)j (1 − βε)n− j

n!
(1 + cε)j (1 − γ ε)n− j

n!
(1 + dε)j (1 − δε)n− j

.

We have

d

dε

(

fn, j (ε)
)

ε=0

=
(

n

j

)6

+
(

− n

2
+ j

)(

n

j

)6

·((2 + α + β + γ + δ)Hn− j − (2 + a + b + c + d)Hj
)

,
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48 R. Marcovecchio

and similar expressions for the second and third order derivatives of fn, j (ε) at ε = 0.
With the choice a = β = 1+ i , b = α = 1− i , c = d = γ = δ = 1, where i = √−1,
we have

3!τn =
n

∑

j=0

d3

dε3
(

fn, j (ε)
)

ε=0.

Therefore,

τn = 1

3!
d3

dε3
(−1)n (−n/2 + ε)n!5

(−n + 2ε)n (−n + (1 + i)ε)n (−n + (1 − i)ε)n (−n + ε)2n

· 7F6
[ −n+2ε, −n/2+ε+1, −n+(1+i)ε, −n+(1−i)ε, −n+ε, −n+ε, −n

−n/2+ε, 1+(1−i)ε, 1+(1+i)ε, 1+ε, 1+ε, 1+2ε

]∣

∣

∣

ε=0
.

Application of (8) yields

τn = 1

3!
d3

dε3
(−1)n (−n/2 + ε)n!5

(−n + 2ε)n (−n + (1 + i)ε)n (−n + (1 − i)ε)n (−n + ε)2n

· (1 − n + 2ε)n (1 + n)n

(1 + ε)2n
4F3

[

1+n, −n+ε, −n+ε, −n
1+(1−i)ε, 1+(1+i)ε, −2n

]∣

∣

∣

ε=0
.

Using (9) again,

τn = 1

2!
d2

dε2
(−1)nn!6

(1 + ε)2n (−n + (1 + i)ε)n (−n + (1 − i)ε)n (−n + ε)2n

·
n

∑

j=0

(

n + j

n

)(

2n − j

n

)

(−n + ε)2j

(1 + (1 − i)ε)j (1 + (1 + i)ε)j

∣

∣

∣

∣

ε=0
.

Taking

gn, j (ε) = n!6
(1 + ε)2n (−n + (1 + i)ε)n (−n + (1 − i)ε)n (−n + ε)2n

· (−n + ε)2j

(1 + (1 + i)ε)j (1 + (1 − i)ε)j
,

and computing its first and second derivatives at z = 0, after a few simplifications we
obtain

(−1)nτn =
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

(

H (2)
n + H (2)

n− j + 2(Hn− j − Hj )
2).
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4 End of the proof of Theorem 1.1

In this section we denote by a, b, α, β four real parameters to be chosen later. Let
hn(ε, ω) be defined by

hn(ε, ω) = (1 + αε)n (−2n + βε)n

n!2
· 4F3

[

n+1+aε, −n+bε, −n+(α+β+1)ε+ω, −n
1+(a+b+1)ε+ω, 1+αε, −2n+βε

]

.

By applying (see [2, 7.2 (1)])

4F3
[ x, y, z, −n

u, v, w

] = (v − z)n (w − z)n
(v)n (w)n

4F3
[

u−y, u−x, z, −n
u, 1−w+z−n, 1−v+z−n

]

,

valid for u + v + w = x + y + z − n + 1, with

x = n + 1 + aε, y = −n + bε, z = −n + (α + β + 1)ε + ω

and

u = 1 + (a + b + 1)ε + ω, v = 1 + αε, w = −2n + βε,

we have

hn(ε, ω) = (1 + (α + 1)ε + ω)n (−2n + (β + 1)ε + ω)n

n!2
· 4F3

[

n+1+(a+1)ε+ω, −n+(b+1)ε+ω, −n+(α+β+1)ε+ω, −n
1+(a+b+1)ε+ω, 1+(α+1)ε+ω, −2n+(β+1)ε+ω

]

.

Here we used (ξ)n = (−1)n(1− n− ξ)n with ξ = v − z and ξ = w − z. By choosing
a = −1, b = −2, α = 1, β = −1 and comparing the two expressions of

∂2

∂ε∂ω
(hn(ε, ω))(ε,ω)=(0,0)

we find out that

n
∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

·
(

2H (2)
j − (

H (2)
n− j − H (2)

n

) − 2H (2)
n − (

H (2)
n− j − H (2)

n

)

+ H (2)
n− j − H (2)

n + 2H (2)
j − 2H (2)

j

+ (

2Hn− j + Hn+ j − Hn − H2n− j − 2Hj
)

· (

2Hn − (Hn− j − Hn) + (Hn− j − Hn) − 2Hj + 2Hj
)

− (Hn− j − Hn − Hj )
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50 R. Marcovecchio

· (

Hn − (Hn − H2n) − (Hn+ j − Hn) − 2(Hn− j − Hn)

+ Hn− j − Hn + 2Hj − Hj − (H2n − H2n− j )
)

)

= 0.

By using

n
∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

Hn (Hk+n− j − Hk+ j ) = 0

with k = 0 and k = n, the above sum simplifies to

n
∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

· (

2H (2)
j − H (2)

n − H (2)
n− j − (Hn− j − Hj )(Hj + H2n− j − Hn+ j − Hn− j )

) = 0,

hence

(−1)nτn =
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

· (

2H (2)
j − (Hn− j − Hj )(3Hn− j − 3Hj − H2n− j + Hn+ j )

)

.

Since

n
∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

Hn− j
(

3Hn− j − 3Hj − H2n− j + Hn+ j
)

= −
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

Hj
(

3Hn− j − 3Hj − H2n− j + Hn+ j
)

,

we have

(−1)nτn = 2
n

∑

j=0

(

n + j

n

)(

n

j

)2(2n − j

n

)

· (

H (2)
j − Hj (3Hn− j − 3Hj + Hn+ j − H2n− j )

)

,

and (6) is proved.

5 Application of Sheppard’s transformation

In this section we give a direct proof of (7). A similar argument was applied in [4,
Section 7] to the double binomial sum in the middle of [4, (7.1)].
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On hypergeometric identities related to zeta values 51

We start with the double sum in (7), and rewrite it in the form

n
∑

i=0

(

n

j

)4

3F2
[

n+1, −n+ j, −n+ j
1+ j, 1+ j

]

. (10)

Let us apply Sheppard’s transformation (see [1, Corollary 3.3.4] and [2, Section 3.9]):

3F2
[ −m, a, b

d, e

]

= (d − a)m (e − a)m

(d)m (e)m
3F2

[ −m, a, a+b−m−d−e+1
a−m−d+1, a+1−m−e

]

.

We obtain

3F2
[ −n+ j, n+1, −n+ j

1+ j, 1+ j

]

= (−n + j)2n− j

(1 + j)2n− j
3F2

[ −n+ j, n+1, −n
1, 1

]

.

Hence the sum (10) is equal to

n
∑

j=0

(

n

j

)2

3F2
[ −n+ j, n+1, −n

1, 1

]

=
n

∑

j=0

(

n

j

)2 n− j
∑

l=0

(

n + l

n

)(

n

l

)(

n − j

l

)

.

Exchanging the order of summation and using

(

n

j

)(

n − j

l

)

=
(

n

l

)(

n − l

j

)

,

the last double sum becomes

n
∑

l=0

(

n + l

n

)(

n

l

)2 n−l
∑

j=0

(

n

j

)(

n − l

j

)

=
n

∑

l=0

(

n + l

n

)(

n

l

)2

2F1
[ −n, −n+l

1

]

.

The inner sum 2F1 can be evaluated by the Chu–Vandermonde convolution formula
(see e.g. [2, Section 1.3]):

2F1
[ −n, −n+l

1

] =
(

2n − l

n

)

.

Therefore (7) is established.

Acknowledgements The author is indebted to the referee for helpful comments and suggestions, and for
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