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Abstract Two linear forms, 0,,{(5) + 1,$(3) + ¢, and 0,¢ (2) + 7, /2, with suitable
rational coefficients o,, 7,, ¢, are presented. As a byproduct, we obtain an identity
between simple and double binomial sums, where the simple sum is the value of a
terminating well-poised Saalschiitzian 4 F3 series. This complements a recent note
of the author on two linear forms: anz(4) + ,3,12(2) + v, based on an identity of
Paule-Schneider, and o, ¢ (2) + B,,, coming from the Apéry—Beukers construction.
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1 Main binomial and binomial-harmonic identities

Very well-poised hypergeometric series provide a clue in the study of diophantine
properties of the values of the Riemann zeta function ¢ (s) at positive integers, see
e.g. [4,7,8], to quote only a few papers dealing with this important topic. Further
references can be found in the bibliography of [4].

In the recent paper [5], we observed that the linear forms
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and

o0
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have two common coefficients, namely
A, = ay and B, = B,.

Here and in the sequel, (x), = x(x +1)--- (x +m — 1) if m > 0 is an integer, and
(x)o = 1. We denote by ¢(s) and ¢ (s) the following:

1 ~ (= Dk
(=) ;5 and €<S>=Z(ks) =" = D).
k=1 k=1

The equality A, = «, was noted earlier by Paule and Schneider [6], and is a special
case of [4, Proposition 1].
In the present paper we adapt the methods of [5] to the linear forms

> n n!®
Z(k+—>—6:O’né'(5)+fn§(3)+§0n, Ons Tny On €Q9
k=1 2 (k)n+1

and

Z(k_n)”(k+n+l)n = S,02) + Tp, Sn,TnEQ.

2
k=1 (k)n-‘rl

It seems reasonable to expect that one can solve [9, Problem 1] by similar methods.
We assume that the reader is familiar with the background contained in [4, Section 2].
In particular, we have
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A(H? + Hj(3(Hj — Hy_ ) + Honj — Hpyj)). (4
Throughout this paper,
1

, HP =0, k=1.2,...,
J

HY =1+ +
and the notation for the derivative d/dj is taken from [4, (7.2)].
The main result of the present paper is the following:

Theorem 1.1 We have

on = Sy, (5)
T, = 2T,. (6)

Despite the analogy between the equalities 7, = 27, in (6) and 8, = B, in the
paper [5] quoted above, we currently miss a unified proof. However, both (5) and
(6), and similar observations in [5], are implicitely connected to the period structure
of some multiple integrals (see [3, Section 9.5]). In particular, the linear forms A,
(respectively, ©,) in Sect. 2, and even more general linear forms, are equal to suitable
3-fold (respectively, 5-fold) multiple integrals over [0, 1P (respectively, over [0, 1),
and similar remarks hold for the linear forms in 1 and ¢(2) and in 1, £(2) and ¢(4)
in [5]. All the integrals alluded to above are period integrals on moduli spaces (see [3,
Section 1.3]).

In Sect. 2 we provide more details on the above linear forms and coefficients, and
in Sects. 3—4 we prove Theorem 1.1.

By combining (5) with another special case of [4, Proposition 1], we have

Theorem 1.2

SO )2 @) @
=~ "IN n ogiran N\ !
We give an independent proof of (7) in the last section of the present paper.
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2 Linear forms in 1, ¢(2) and in 1, ¢(3) and ¢ (5)

The following series is a linear form in 1 and ¢ (2) with rational coefficients:

U S L AR

(k)2 = Sn§(2) + Tn, Sn, Tn € Q
k=1 n+1

It is worth noticing that A, is a Saalschiitzian 4 F3 well-poised hypergeometric series

3
_ n! (3n+ 1)' F n+l1, n+l1, n+l, 3n+2
n = (2}’1 + 1)!3 2n+2, 2n+2, 2n+2 |*

Throughout the present paper we use identities between values of the function ;1 Fy
with the argument z = 1, which is customary omitted.
We have

n

k—n)p(k+n+1),k+ j)?

S, =
Z k2., P
j=0 n+ J

£ ()

j=0

whence S, is the right-hand side of (3) and, similarly, 7}, is given as the right-hand
side of (4).
The next series is a linear form in 1, £(3) and ¢ (5) with rational coefficients:

O, = E (k n) e = 5) 3)
n = + = = 0Op + n + ns
j=0 2 (k)S-H el e v

where

" d 19k + j)°
Un:z_<k+’_')¥
—, dk 2] (K

j=0 k=—j
Xn: d <n . > n!®

=2 .\ ¢/ 6 6 '
=0 de \ 2 (8_])j(1+8),,_j =0

By exchanging j with n — j, i.e. by inverting the order of summation, we have

16

" d n n!
n = —|—=+j+e¢
K 2d5< 2/ >(1+s)f-(1—e)6

n—j

e=0

Therefore o, equals the left-hand side of (1), and similarly 7, is given by one of the
two equivalent sums in (2).
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3 Application of Whipple’s transformation

We apply the following transformation formula, due to Whipple (see [2, 4.3 (4)]):

F, a, a/2+1, b, c, d, e, —m
716 a/2, l4a—b, 1+a—c, 1+a—d, 1+a—e, 1+a+m

_ A+a),(0+a—d—e)p, F [1+a—b—c, a . Y ] )
(1 +a— d)m(l +a-— e)m 4473 1+a—b, 14+a—c, d+e—a—m |*

The coefficient o,, can be written as

d n .
_ —n+2¢e, —n/24e+1, —n+e, —n+e, —n+e, —n+e, —n
Op=—|—5t¢ 7F6[ —n/2,  l4e, l4e, l+e, L+t 1+25]

ds\ 2 £=0
By applying (8), we obtain
G e e R
Since
(—g+e>(1—n+ze>n=s(—n+ze)n, ©
we have
on = —(—n)rzir)l%-l- Dn 4F3 [H]’ E _7272]
B
pr AN J n
Therefore (5) is proved.

Leta, b, c,d, «, B, y, 8 be eight complex parameters to be chosen later. We consider
the following functions of ¢:

o _n+,+ n n! n!
f"'f(e)_( 2 8)<j)(1+2g),-(1—28),,j (1 +ae); (I —ae),;

n! n! n!

. (I+be)j(1 = Be)p—j (I+ce)j(d—ye)p—j (1 +de)j(1 —38e),_; ’

We have

d
4z (Fn©) g

() (-5

(@+a+B+y+8Hij— Q+a+b+c+dH)),
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and similar expressions for the second and third order derivatives of f, ;(¢) ate = 0.
Withthechoicea = =1+i,b=a=1—-i,c=d=y =6 =1,wherei = /-1,
we have

d
Bt = 35 (10 ©) e
j=0
Therefore,
1 d3 (=D"(=n/2 +e)n!?

" T 3148 (it 200 (—n+ (14 D)8 (—n+ (1 — Do)y (—n + )2

. F —n+2e, —n/24e+1, —n+(1+i)e, —n+(1—i)e, —n+e, —n+e, —n
716 —n/24e,  1+(=i)e, 1+(1+ie, 14e, l+e, 142

e=0
Application of (8) yields
1 a3 (—=D"(=n/2 4+ ¢e)n!?
Tn = = —=
"T31ded (—n420)u(—n+ 1+ i)e)y(—n+ (1= i)e)u(—n +&)2
(I —n+2e),(1+n), Fo| 1A —nte, —nte, —n
: (1+e)2 3 I+(1=)e, 1+(1+i)e, —2n ||, _¢

Using (9) again,

1 d? (—1)"n!®
T4 (Tt )2 (—n+ (08 (—n+ (=)&), (—n +2)2

Z”: (n —|—j> (Zn —j) (—n+e)?
n n ) A+ A —Ded+U+De) |,

j=0

Taking

n!®
(It (—n+ A +De(—n+ (1= )e)a(—n+e)
(—n+e);

U+ 401+ (1 —i)e);’

gn,j(é‘) =

and computing its first and second derivatives at z = 0, after a few simplifications we
obtain

n . 2 .
D't =Y (" : J) (”) (Znn_ ]> (B + H +2(H,—; — H)?).

j=0 /
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4 End of the proof of Theorem 1.1

In this section we denote by a, b, «, B four real parameters to be chosen later. Let
hy, (e, w) be defined by

_ (A +ae)u(=2n+ pe)n

(e, ©) o
F n+1+ae, —n-+be, —n+(a+p+1) e+, —n
~4473 1+(a+b+1) e+w, 1+ae, —2n+Be |
By applying (see [2, 7.2(1)])
- (W =2)n(w—2) U—y. U— _
X, ¥, %, n — Yy, u—x, Z, n
4F3[ u, v, w ] - (V) (W) F. [ u, l—w+z—n, 1—v+Z—n]’

validforu +v+w=x+y+z—n+ 1, with

x=n+1+as, y = —n + be, z=—n+@+p+De+ow

and
u=14+@+b+1l)e+w, v=1+uwe, w = —2n + e,
we have
" _(d+@+De+w)p(=2n+(B+1e+w),
l’l(sa Cl)) - n!2
F n+1+(a+1)e+w, —n+b+1)et+w, —n+(@+p+1)e+w, —n
1403 I+(a+b+D)etw, 1+@+)etow, —2n+(B+Deto |*

Here we used (§), = (—1)"(1 —n—£&), withé = v—zand & = w — z. By choosing
a=-1,b=-2,a0 =1, 8 =—1 and comparing the two expressions of

2

3590 (hn (&, ®))(e,0)=(0,0)

we find out that

“L(n+ )\ (n 2(om — J
2 ()0 C)
(2H® — (12, - 1)~ 210 — (B2, — H)
+H?, —H® +2H —2H?
+ (2Hu—j + Hyyj — Hy — Hyp—j — 2Hj)

- (2H, — (Hy—j — Hy) + (Hy—j — Hy) — 2H; + 2H;)
— (Hy—j — Hy — H))
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. (Hn — (H, — Hy,) — (Hn+j — Hy) — Z(anj — Hy)
+ Hn_j — H, +2Hj — Hj — (Hy, — H2n—j))) =

By using

n . 2 2 .
Z("“)(".) (” ’)Hn<Hk+n_j—Hk+j) =0
n j n

J=0

with k = 0 and k = n, the above sum simplifies to

2 (0 ¢)
=0 n J n
@HP — B — H2) — (Hy—j = H))(Hj + Hy—j = Hyij = Hy-j)) =0,

hence

=)0 )

- (2H® — (Hy—j — H)3H,—j — 3H; — Hpyj + Hyy ).

2n —
’) wj(3H,—j —3H; — Hyy_j + Hy j)

2
J 2n —j
) < ) ( )H/ (3Hu—j = 3Hj — Hyp—j + Husj),

O
N
=
_l’_
~.
N———"
N
s
[\ *)
=+/\

we have
" n+ g\ (n\(2n—j
R 0 0
= n J n
: (HJ'(Z) — HjGHy—j = 3H; + Hysj — Hon—})),
and (6) is proved.

5 Application of Sheppard’s transformation

In this section we give a direct proof of (7). A similar argument was applied in [4,
Section 7] to the double binomial sum in the middle of [4, (7.1)].

@ Springer



On hypergeometric identities related to zeta values 51

We start with the double sum in (7), and rewrite it in the form
n n 4
e —na
> () s ) (10

i=0

Let us apply Sheppard’s transformation (see [1, Corollary 3.3.4] and [2, Section 3.9]):

F| —ma b | _ (d — a)m (e — a)m | —m a, a+b—m—d—e+1
302 d,e | (d)m(e)m a—m—d+1, a+l—-m—e '

We obtain

2
3F2[_n+'/’ nl, —nfj] _ (—n+ ])nfj le:—n+j, n+l1, —n]
1+j, 1+j (1+])ﬁ_j 1, 1

Hence the sum (10) is equal to

L)l -5 RO

Exchanging the order of summation and using

G-
the last double sum becomes
RO -2

The inner sum 7 F can be evaluated by the Chu—Vandermonde convolution formula
(see e.g. [2, Section 1.3]):

2n —1
)= (),

n

Therefore (7) is established.
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