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Abstract Let (H;(n)),>1 be an s-dimensional generalized Halton’s sequence. Let
D}, be the discrepancy of the sequence (Hj (n))ﬁ/: |- Itisknown that NDYy, = O(In® N)
as N — oo. In this paper, we prove that this estimate is exact. Namely, there exists a
constant C(Hy) > 0 such thats

MDjy, > C(Hy)logy N for N=2,3,...
g3 MOl > CCHI g N for
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1 Introduction

Let (B,),>1 be a sequence in the unit cube [0, 1)°, By = [0, y1) x---x [0, ys),

N

A(By, (Bun=1) = D (15, (B) = y1 -+ ¥y). (1

n=l1

where lgy(x) = lifx € By, and lBy(x) =0ifx ¢ By.
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We define the star discrepancy of an N-point set (,3,1),11\;1 as

D*((B)Y_) = sup (2)

0<y1,....ys <1

A(By, (Bu)y_1) ‘
v :

In 1954, K. Roth proved that

lim sup N (In N)~*/2D*((B)_,) > 0.

N—o0

According to the well-known conjecture (see, e.g., [1, p.283]), this estimate can be
improved to

limsup N (In N) ™ D*((B)Y_,) > 0. 3)

N—o0

In 1972, W. Schmidt proved this conjecture for s = 1. For s = 2, Faure and Chaix [4]
proved (3) for a class of (¢, s)-sequences. See [2] for the most important results on
this conjecture.

There exists another conjecture on the lower bound for the discrepancy function:
there exists a constant ¢3 > 0 such that

ND*((Be.n)pg) > é3(InN)*/2

for all N-point sets (ﬁk’N),iV;Ol (see [2, p. 147]).

Definition An s-dimensional sequence ((8,),>1) is of low discrepancy (abbreviated
Ld.s.) if D*((B)Y_;) = O(N~!'(In N)*) for N — oo.

Let p > 2 be an integer,

n=>>epijmp’~" e, jm)e{0.1,....,p=1}, ¢p(n) =D epjmp~’

j>1 izl
van der Corput proved that (¢, (1)), >0 is a 1-dimensional 1.d.s. (see [12]). Let
Hy(n) = (¢p,(n), ... 5, (), n=0,1,2,...,

where Py, ..., ps > 2 are pairwise coprime integers. Halton proved that (I/-I\S ())n>0
is an s-dimensional 1.d.s. (see [6]). For other examples of l.d.s. see, e.g., [1,5,11].
In [9], we proved that Halton’s sequence satisfies (3). In this paper we generalize this
result.

Let O = (q1,92,...) and Q; = qi1q2---qj, whereq; > 2, j =1,2,...,isa
sequence of integers. Consider Cantor’s expansion of x € [0, 1):

o
X
= ZQ—j, x;j€{0,1,...,9; — 1}, x; #q;— 1 forinfinitely many j.
i J
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876 M.B. Levin

The Q-adic representation of x is then unique. We define the odometer transform as

To = 2L SN ey = 1 (137 ), @
O 55 9

n =2,3,...,T8(x) = x, where k = min{j : x; #¢; — 1}.

For Q = (¢, ¢, ...), we obtain von Neumann—Kakutani’s g-adic adding machine
(see, e.g., [5]). As is known, the sequence (Tg (x))n>1 coincides for x = 0 with the
van der Corput sequence (see, e.g., [5, Section 2.5]).

Letgo > 4, pi,j 22,5 2i > 1, j > 1, be integers, g.c.d.(p;k, pj,;) = 1 for
i # 7. P = (Pt piae ) P = (Pro . P, Tp(x) = (T, (x1). ... Ty, (x5).

Po=1. Pj=[]rin Bj<q” iecllsl j>1. )
1<k
n=> ey, jMP 1, ey, im0, . pij—1} n=01,...,
izl
— p—1 —
op,(n) =D ep iMP ', Hpn) = (pp, (), ..., pp, (). (6)
izl

We note that Hp(n) = Tg(0) forn =0, 1, ...
Let X; = (0i,j)j>1 be a sequence of corresponding permutations o; ; of {0, 1, ...,
pl,j - 1}f0r.] > l’z = (21,...,2_;),)(: (x17'~~1xs)’

T = (i@, Ti), Tity) = Z# xi = Z sy

=1 b SRL
We consider the following generalization of Halton’s sequence (see [3,5,7]):
HY(n,x) = X(Th(x)), n=0,1,2,...
We note that (Hg)g (n,X))n>0 coincides for x = 0 and s = 1 with the Faure sequence
SS [3]. Similarly to [11, pp.29-31], we get that (H% (1, X)) >0 is of low discrepancy.
2 Theorem and its proof

In this section we will prove

Theorem Lets > 2, C| = quJr log, go, C =8¢y C} and logy N > 2q;Cy. Then

inf MD*((HE(n,x))™ ) > C log) N. 7
(Jnp  max MD*((Hy(n.%)),21) og) ™

This result supports conjecture (3) (see also [8,10]).
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On the lower bound of the discrepancy of Halton’s sequence II 877

The proof of Theorem is similar to the proof of [9, Theorem]. The main part of the
proof in [9] and in this paper is the construction of the bounded vector (yi, ..., ys)
and the application of the Chinese Remainder Theorem. In the paper [9], we take

i
v = Z'}':l p; i=1,... s, where

. ; pi--p
ti=1tj, j=12,..., pl.r = (mod—p' S), i e[l,pr---ps]l. (8)
1

In this paper we take y; = Z’;’: 1 Pl.;ij, with some special sequences (7, j)1<i<s, j>1-
In order to obtain the ‘periodic’ properties similar to (8), we need a more complicated
construction of (7; j)s>i>1,j>1:

L pl’,‘[,’yj - pi,r,-,p .] = 17 27 ey
. ?;}’J,(O) - oi’_rij(l) =o' (0)— ai’_;l(l) (mod pi g )y j=1,2,...,

LT

o F‘[,‘L’,‘JE l‘,T,'Vl(mOdpl"'pS/pl‘Lj:1925-~~v

in such a way that the sets {t; 1, 7; 2, ...} N [1, m] would receive the greatest length,
wherem = [2s! log, N1,s =i > 1. Weneed all these conditions to prove statement
(26).

In order to construct (7;,j)1<i<s, j>1, We define auxiliary sequences L

(m)
L T

(m) 7 (m)
i,j £ Ll ’

1

2.1 Construction of the sequence (z;, ;)
Letm = [25~ " log, N1, £™ = {1 <k <m: pix < go}. By (5), we get
2 m—# Ef'")
q(T)n/ = H Pi,j > 4y .
jeltmpg™
Hence

m

Leta; Eaijj](())—oi’j () (mod p; j),aij€fl,....pij— 1L ae{l,...,q)

L ={ke &™: pix = pij, aix =a},
ngm) =  max #L™ 1<i<s. )

1</ sm,1<agqo

It is easy to see that there exist g; m € [1, m] and a; = a;,, € [1, go] such that

#L% L=L™  1<i<s.
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878 M.B. Levin

We enumerate the set L<m) .
Ly <<l )
igim. — ULl L™
Fori € [1, s] we have
# o™ m
LW> "> = Lywsm ay, =, je[LL{M]. (10
90 25]0 T

Let p; = p\™ = Pigim < 40> PO = p(()m) = pip2---Ps < 44 Pi = po/pi < qp

and

gy ={1 <k<L™: P! =b(modp)}. (11)

We define F;, m and b; = bi(m) as follows:

Fi=F™ =43 = max #F7,  m = min ™, (12)
0<h<p;i <I<Y

We enumerate the set Fi(;:):
={fi1 << fir) m=[2s""log, NI

Bearing in mind that log, N > 2¢;C; and C; = sng log, g0, we have

m —s—1
m = min Lg. ) > min o > mdy - > Cllogy N = 2¢5 > 2po. (13)
ISISs pi | ISiss 2¢3 pi 2
Let k = (kls ML) kS)’ ‘Cl',j = li,_fj’js Tk = (‘Cl,kl LRI ] TS,](S)’ Pi,k = E,Ti‘ka

S
P=]]Pk. Mix=Mpq. with M= []P} modFy). (14)

1<)<s
J#
Applying (10), we get 7, = li 1, < linv(m) < li’L(m) <m Letm = (m,...,m).
From (5) and (14), we derive
s[2s~!log, N1/2
2P < 2]‘[3 <25 =gy M, (15)

We will need the following properties of integers a;, 1 < i < s, (see (16), (17)): By
(11), we have that (b;, p;) = 1 and (b;, p;) = 1fori # j,i,j =1,...,s. Let
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On the lower bound of the discrepancy of Halton’s sequence II 879

¢ = ngjgx,#i bj (mod p;). According to (10), (11) and (14), we obtain

(ci,pi) =1, Mix=ci(modp;), air;=0a;, j=1, iel[l,s]l. (16)

Let
pi=gcd.(a, pi), Pi==, a==, d=cia(modp),
Pi Di
d; €{1,...,p; — 1}. Hence
d; a; R N )
— =c¢i—@modl), ,p)=1, p>1, i=1,..,s. (17)
Pi Pi

2.2 Using the Chinese Remainder Theorem

~_1 . .
Letx; = Z./.?lxi,jPi’j ,withx; ;€ {0,1,..., p;;—1},i =1,..., 5. We define the
truncation

5—1
[xi]rzzxi,jpi,j7 rz>1
I<j<r
If x = (x1,...,x5) € [0, 1) then the truncation [x], is defined coordinatewise, that
is, [x]r = ([x1lrys - - s [x5]r,), Where r = (r1, ..., rs).

By (6), we have

lop, W, = [xi), & n= > x;Bj_1(modB ).
I<j<r

Applying (14) and the Chinese Remainder Theorem, we get

[Hp()lr =[xl <= n =% (mod ), (18)

N

Xy = quzrﬁrﬁl_r’l in,jﬁi,j—l (mod B), X €[0,B). (19
i=1 1<<r

Now we will find the relation between Tf;i(x) and Hp(n) (see (20). It is easy to verify
that if rl./ >ri,i=1,...,s,then Xp = Xy (mod P;). According to (4), we get

if [wlp =[x]y, then [Tp(W)]r=[TpX)], n=0,1,...

From (4), (6) and (18), we obtain

Il
=<
7

(T3 O], = [Hp(W)l = [x]r, W
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880 M.B. Levin

Hence
[TpX)]r = [T;?)(ng](o))]r = [Tg’;+w(0)]r = [Hy(n+ W)].
Let Win(X) = X € [0, Py). Therefore

[Tp®)]r = [Hp(n+Wm(x)], 1<r<m, 1<i<s, n=0. (20

2.3 Construction of boundary points yi, ..., ys and uy, ..., u;

Lety = (y1, ..., y) Withyi = >0y i P | andlety,k—ZKjgk P_ ki>1,
i=1,.. 5 k=K. k)

N

By =10,y) %+ x[0,3),  BY=T][5x — Pl 5ik)- 21)
i=1
We deduce
m m
By = |J B®, 1z@-yi-y= D (Lzw@-P"). (22
ki,..., ky=1 ki,....ks=1

Consider the following condition:
H3(n,x) € BY. (23)

In order to express this condition in terms of the sequence (Hp(n)),>1, we will

construct boundary points uq, ..., us. Next we will construct auxiliary sequences
u® 7™ A . Applying (18) we will get in (26) the solutlon of (23).
Letu = (u1, ... 1y), ;= > i P withug = oy (i), uf ;= 0 (0,
Tik; -1
k (k1) kg (k) p—1
u()z(ull,...,uf,‘)), Zu,] u”lk P
s T, ki —
l'vi(k) = ZMi,k})l(PiJ(:( Zut jrij—1 +u Tik; zt,k 1) (mode),
i=1
T, ki

uk—ZM,kPkP,k Zu,, i1 (mod P), i i € [0, ). (24)

i=1 j=1

According to (9)—(14), we have Pitiy, = Pi» ki=1,....mi=1,...,5s. By 9),

we getai g, =0, (0) =0 () =uf, —uig, (modp).
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On the lower bound of the discrepancy of Halton’s sequence II 881

From (16), we obtain i,z = W ki=1,...,m,i =1,...,s. Hence

N
a® = g + Ak (mod Py), where Ax = Z Mi’kPkplflai (mod Px) (25)
i=1

with Ak € [0, Px). B
Letw = (wy, ..., ws) = ng) (n,x) = Z(T;,(X)). We see from (21) and (24) that

LAS B(k) — Wi, j = Vi, j» J € [lvrl',ki)a wi,ri,k,- :07 i € [I,S]

—
01, j (Wi,zy,) = ul

I =

oi,j(wi j) = u;j, I<j<tn—1
1,..

LTk S

= [TH®)]y =u®.
Applying (18), (19), (20), (24) and (25), we have

Hy(n.x) € BY = [Tj®)]y, =u®
—  [Hp(+Wm(x)ly =u®
— n+ Wnx) =i® (mod Py)
< n=uvy + Ak (mod Py),

where v, = =W (X) + U = — W (X) + g (mod Py) and vy, € [0, Pm).
Hence

Hy(n,x) e BY = n=uv,+ Ax(mod Pk), vy € [0, Pm), n > 0. (26)

2.4 Completion of the proof of Theorem

Bearing in mind that

s M (0L > N S w0 (0.

we get that it is sufficient to find the lower bound of the main value of discrepancy
function to prove Theorem.

Lemma 1 Let
1 Lm
an = o= D A(By, (Hyp(n, )1, 7

m y=1
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882 M.B. Levin

Then
B 1 A1
w2 (-%-m) @

Proof Let H, = Hg“; (n, x). Using (26), we have

v+ (M1+1) Pe—1

> (@) —P) =0 (29)
n=v,,+Mj P
and
Um+M1 Pk+Mr—1
> @ -PA) = D> (e @) - A
n=vp,+M P nevy, v +M3)

= > 1-mp!

n€[vy, vm+Mp)
n=vp+Ag

= 1o, m,) (Ak) — MyP. ",

with M| > 0 and M; € [0, Px), M1, M> € Z. From (1) and (22), we get

Uln‘l’M*] m
A(By, (F)itM) = " (1, (H) —y1---y5) = > plk, M),
n=vm ki,....kg=1 (30)
v +M—1
where p(k, M) = Z (lB(k)(iHn) — Pk_l).
n=vm
By (27), we obtain
| o
Wn = D omk.  where ok = - > pk. M). 31)
1<ky kg <m M=1

Bearing in mind (29)—(30), we derive

Ak = Pm Z Z Z (1500 (Fn) — P

Pm/Pc—1 (v77z+M1Pk_l
=0 Mp=1 n=vm

U +M1Pg+Mr—1

+ > (1B(k><9cn>—Pk1))

n=v,+MPx
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On the lower bound of the discrepancy of Halton’s sequence II 883

| /Pl A
=5 2 2 (Lowy(A - MR
m =0 My=1

Py
1
= A > (10,0 (Ak) — My P!
Myr=1

Pe—Ax AP+ 1 Ag
Px 2P 2 P 2P

Using (31), we have

Lemma 2 With notations as above,

|| = Jor m = 2po.

Proof From (16) and (25), we get

A MixPip; ay
0,1y Ak _ 3 Miaclhb 6 _cad 60 gy,

k 1<i<s Py P1 Ps

Applying (17) and (28), we derive

1 1 d d
amzms(z—{a})_ Z 2—, where a:rl+...+75’ (32)
1<k ks S P P1 Ds
di,pi)=1,pi > 1,i =1,...,s,and {x} is the fractional part of x. We have that if

Po = pi1p2---Ps & 0(mod2) then a # 1/2 (mod 1). Let p, = 0 (mod 2) for some
vell,s],andleta = 1/2 (mod 1). Then

P/2—dv _ > 4 mod1).  ay = ay (mod po).
Py 1<i<s Dl
i#v
with a; = po(py/2 — dv)/pv and ax = 3, pod;/pi. Let j € [1,s]and j # v.
We see that a; = 0 (mod p;) and a> # 0 (mod p;). We get a contradiction. Hence
o # 1/2 (mod 1). We have

1 1 d| dy la| .
——{a}|=|=—-1 =+ + =1 =— for some integer a.
2 2 P1 Ps 2170

Thus [1/2 — {a}| > 1/(2po) > 1/(2po) with po = p1 -+ ps, (Po, Po) = Po.
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884 M.B. Levin

Bearing in mind that P > 2X1T%2+ 4k we obtain from (32) that

m?® 1 m?’ Do m?’
lam| 2 -— — - = 1-—) = for m > 2po. (33)
2po 2 2po m* 4po
This completes the proof. O

Going back to the proof of Theorem, by (7) and (13), we get

m*(4po)~" = (4po) ' C logy N = 2C " ogd N,

>
m = 1_1 logy N = 2py,
where C1 = sqg+l log, g0, C =8¢y Cy and g5 = po.

Using (15) and (26), we have that v, + Py, < 2Py < N. According to (33), (27)
and (2), we obtain

27 ogy N < m*(4po)™" < lem| < max  MD™((Hg (n, %))

N

*((Z L+M—1
S ian™” (Hp ), 207)

<2 maxNMD* ((H}, (n, x)),’lwzl).

ISM<
Hence Theorem is proved.
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