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Abstract
A methodology is presented to quantify uncertainties resulting from the analysis of dynamic tests performed on classic 
split Hopkinson pressure bar system in order to improve material parameter estimation within the framework of Bayesian 
inference. Since the experimental setup is imperfectly known, the proposed methodology consists in modeling experimen-
tal parameters as random variables. Then, cumulative effects of all experimental uncertainties are estimated by a statistical 
analysis based on one-dimensional wave interpretation. For each test, results consist in stress and strain-rate given as normal 
random variables. In addition, an experimental campaign is performed on the aluminum alloy AA7075-O, in order to iden-
tify material variability and repeatability of tests. Additional tests in the quasi-static regime are performed at two different 
temperatures to characterize temperature dependence of behavior. Material parameters of a simple Steinberg-Cochran-
Guinan model are then estimated by (i) standard Bayesian inference exploiting data in the quasi-static regime, and (ii) a 
hierarchical Bayesian model exploiting data in the dynamic regime. The fitted model agrees well with the measurements 
and model uncertainties are easily quantified. Results are presented in the form of posterior probability density functions. 
The systematic quantification of uncertainties in dynamic tests opens interesting perspectives to analyze the response of 
structures and materials to impact.

Keywords Split Hopkinson pressure bar · Bayesian inference · Hierarchical model · Uncertainties

Introduction

Many industrial sectors (e.g., nuclear engineering, automo-
tive, aeronautic, rail etc...) require experimental characteri-
zation of a large variety of materials under dynamic con-
ditions. Material parameters that characterize the behavior 
are identified under relatively simple and well controlled 
experimental conditions and then are imported in complex 
computations related to engineering applications for design 
and certification purposes. However, material parameters are 
imperfectly known because of measurement uncertainties. 
In addition, validation and quality assessment of complex 
simulations usually consist in comparing measurements per-
formed on the real system of interest and the computations 

performed on the basis of the identified material parame-
ters. If significant discrepancies are observed, several ques-
tions arise in the design process. Are simulation choices 
and assumptions well verified for the complex system of 
interest? Is the material behavior model extrapolated too far 
from loading conditions (temperature, strain and strain rate 
levels) actually tested on specimens in the laboratory? Is the 
magnitude of discrepancies compatible with uncertainties 
on the identified material parameters? Thus, for engineering 
applications and probabilistic risk analysis, it is fundamental 
not only to identify material parameters with good quality 
experiments but also to estimate the overall uncertainty on 
the identified material parameters. Following this assertion, 
the present paper focuses on probabilistic interpretation of 
measurements provided by split Hopkinson pressure bar 
system (SHPB). Thus, this work deals with uncertainties 
brought from the experimental setup and diagnostics rather 
than test design procedure (interfacial friction, dispersion, 
etc).

The SHPB system is a well known and very common 
experimental apparatus for dynamic testing. Since the 
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early work of [22] a considerable amount of work has 
been produced to improve measurement quality and wave 
analysis [6, 11, 12, 18, 19, 23, 31, 43, 44]. In particular, 
several corrections have been proposed, namely: fric-
tion at the specimen/bar interfaces [18, 23], punching of 
the specimen into the bars [31], wave scattering due to 
three-dimensional effects [43], deconvolution techniques 
for long tests or visco-elastic bars [44]. Despite this con-
siderable effort to improve wave analysis, significant and 
undetected errors are sometimes made during material 
characterization campaigns, which can be critical for the 
aimed applications. Indeed, the SHPB system enables to 
analyze strain gauges measurements on each bar as inputs 
and provides displacements and forces at both ends of the 
specimen as outputs. However, stress and strain-rate as a 
function of strain are needed to identify material behavior. 
Some assumptions are therefore necessary among which 
the most significant is that equilibrium is rapidly reached 
in the cylindrical specimen (i.e., the compression wave is 
almost instantaneously propagated from one end of the 
specimen to the other end). Thus, discrepancies between 
the real material behavior and the obtained stress–strain 
curve are expected because of these simplifying assump-
tions and to a lesser extent the one-dimensional wave prop-
agation model. The equilibrium assumption is sometimes 
very badly verified leading to significant and undetected 
errors. In that case (or when the specimen is not cylin-
drical), material parameters should be identified by using 
inverse methods relying on dynamic Finite Element mod-
eling of the bar/specimen system (in order to release the 
equilibrium assumption). Several modeling strategies have 
been proposed [4, 8, 17, 20, 30, 40]. However, the com-
putational cost of such approaches being very significant, 
most experimental campaigns rely on the classic assump-
tions in order to directly determine stress and strain-rate 
as a function of strain from displacements and forces at 
both ends of the specimen. Thus, the quality of the equi-
librium assumption should be verified for each test with 
an acceptation-rejection criterion.

In addition, uncertainties and tests variability also affect 
measurements and material parameters identification. 
Within this framework, three issues are responsible for 
the overall uncertainty on the identified material param-
eters, namely: 

 (i) Imperfect knowledge of the experimental setup The 
analysis enabling to transform strain gauges meas-
urements into stress and strain-rate signals involves 
several experimental parameters (specimen size, 
material parameters of bars, strain gauge factors, 
wave propagating velocity etc.) that are imperfectly 
known, which in turn leads to uncertainties on the 
measured displacements and forces.

 (ii) Measurement noise Even though measurement noise 
may have deterministic causes, at the scale of the 
experimental setup it consists in a purely random 
signal affecting strain gauge measurements.

 (iii) Material variability and repeatability of tests Fab-
rication and forming processes have a great influ-
ence on material properties, and are more or less 
inhomogeneous along pieces whose specimens are 
extracted from. In addition, experimental conditions 
are not perfectly controlled. Two tests are never iden-
tical (e.g., striker speed, lubrication conditions at the 
specimen/bar interfaces etc...).

Moreover, the behavior model accounts only in a simpli-
fied way for real mechanisms responsible for the overall 
material behavior. Even, some behavior models are only 
phenomenological laws with limited validity. Thus, there 
are residual discrepancies between the real behavior and 
the behavior model. This uncertainty has not been taken 
into account in this contribution.

Usually material parameters identification is based on 
deterministic inverse methods. A significant effort has 
been done to adapt such methods to SHPB dynamic tests 
(e.g., among many others [17, 20]). A review has been 
recently published by [24]. Such methods are usually 
based on least-square minimization between Finite Ele-
ment computations and measurements. Thus, it is possible 
to deal with complicated specimen design with inhomoge-
neous mechanical state. However, the overall uncertainty 
on the identified material parameters cannot be estimated 
conveniently.

On the contrary, within a probabilistic framework, Bayes-
ian inference can be used to estimate material parameters 
involved in a specific behavior model and quantify related 
uncertainties. This approach is similar to computer model 
calibration problems [21]. General descriptions of Bayesian 
statistics are presented for instance by [3, 13]. Identification 
methods within the context of probabilist framework have 
also been presented by [38]. For instance, [14, 42] identified 
elastic parameters with a Bayesian approach. In addition, 
[26, 27] proposed a methodology to identify elastic-plastic 
material parameters accounting for model uncertainties. 
Bayesian inference has also been used in [2] within the con-
text of characterization of visco-plastic models by consider-
ing that some material parameters depend on experimental 
conditions (e.g., temperature) and non-parametric Gauss-
ian Process has been used to account for this variability. 
Within the framework of acoustics, a material characteriza-
tion based on Bayesian analysis has been proposed in [5]. 
The well known Preston–Tonks–Wallas (PTW) model [25] 
has been characterized in [41] on the basis of Bayesian esti-
mation by analyzing shock waves produced by flyer plate 
experiments.
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Within the context of mechanical dynamic testing using 
SHPB system very few attempts to use Bayesian analysis 
have been published. A simple Bayesian approach has been 
developed in [34] to obtain a single PTW set of parameters 
bridging compression tests and Rayleigh–Taylor instability, 
which was unachievable for beryllium S200F. In addition, a 
hierarchical Bayesian analysis has been proposed in [10] to 
estimate material parameters of a PTW model for various 
materials. However, these works only considered measure-
ment noise (centered normal random variable of unknown 
diagonal covariance matrix). On the contrary, this paper is 
an attempt to introduce prior uncertainties due to imperfect 
knowledge of the experimental setup. To do so, the experi-
mental settings (e.g., bar stiffness, position of strain gauges, 
density etc.) are treated as unknown control inputs to the 
model enabling to interpret measured signals. There is an 
uncertainty associated with determining the value of each 
of those experimental parameters. In other contexts, simi-
lar calibration problems have been proposed [1], in which 
the control inputs were not exactly known, but randomly 
perturbed from the nominal input. In the present contribu-
tion, a simple methodology is proposed for estimating the 
additional uncertainty brought by the imperfectly known 
experimental settings. Experimental parameters needed to 
interpret strain gauges measurements are assumed to be ran-
dom variables. Normal or rectangular distributions of known 
mean and variance are considered depending on measure-
ment techniques. If necessary, a series of measurements is 
performed to obtain reliable statistics. As a result, stress and 
strain-rate are given for each test as random variables. Thus, 
the proposed Bayesian estimations do not rely on determin-
istic stresses and strain-rates affected by measurement noise 
but on random variables characterized by means and non-
diagonal covariance matrices. This additional information 
enables us to quantify more realistically uncertainties related 
to the overall material parameters estimation.

The paper is constructed as follows. The classic one-
dimensional wave propagation model is briefly recalled 
in section “Classic Wave Analysis”. Then, a probabilistic 
framework is introduced in sections Imperfect Knowledge 
of the Experimental Setup and Statistical Analysis in order 
to deal with uncertainties due to imperfect knowledge of 
the experimental setup. In addition, in section Experimen-
tal Campaign and Overall Uncertainty, a series of tests is 
performed on the aluminum alloy AA7075-O in order to 
address material variability and repeatability of tests so 
that the overall uncertainty is identified. Since controlling 
temperature during SPHB tests is uneasy, a few additional 
tests in the quasi-static regimes are performed at different 
temperatures to characterize the temperature dependence of 
behavior. A simple Steinberg–Cochran–Guinan model [36] 
is presented in section Modeling Choices and modeling 
choices are detailed. Then, in section Standard Bayesian 

Estimation, a standard Bayesian estimation exploiting the 
data in the quasi-static regime only is proposed to identify 
the material parameter associated with temperature depend-
ence. Finally, remaining material parameters are identified 
in section Hierarchical Bayesian Estimation by developing 
a hierarchical Bayesian model exploiting the data in the 
dynamic regime (i.e., accounting for the uncertainty due to 
imperfect knowledge of the experimental setup). Conclusive 
remarks are addressed in section Conclusion.

Classic Wave Analysis

In this section, classic results are briefly recalled for the 
sake of clarity. Indeed, the statistical analysis proposed in 
the following relies on the one-dimensional wave analysis 
enabling to convert strain gauge measurements into displace-
ment and force signals at the bar/specimen interfaces giving 
in turn stress and strain-rate as a function of strain by using 
simplifying assumptions. More advanced analysis proposed 
by [43] (accounting for instance wave dispersion due to 3D 
effects) can be used instead, but developments would be 
more technical. In addition, deconvolution techniques intro-
duced by [44] have not been used in this contribution as well 
as the correction due to the punching of the specimen into 
the Hopkinson bars as proposed by [31]. The SHPB system 
and main notations are presented schematically in Fig. 1. 
Notations are listed in Table 1.

A compression wave is generated into the input bar by 
throwing a striker against it. The duration �t of the compres-
sion pulse depends only on the striker length LS and the wave 
propagating velocity C in the striker (assumed to be made of 
the same material as the input and output bars):

Although the strain-rate in the specimen significantly varies 
during the test, the average strain-rate is controlled by the 
striker velocity (measured by laser techniques) that deter-
mines the compression pulse magnitude. The compression 
wave propagates through the input bar until it reaches the 
bar/specimen interface where a part of the wave is reflected 
(traction wave) and the rest is transmitted into the speci-
men. The same reflection/transmission phenomena occurs 
at the second bar/specimen interface. Thus, a compression 
wave is transmitted in the output bar and a traction wave 
is reflected into the input bar. Strain gauges are glued to 
the input and output bars to measure compression/traction 
waves. Measured voltage signals are denoted by VI(t) and 
VO(t) and converted into strains �̃I(t) and �̃O(t) by multiplying 
by calibration factors KSGI and KSGO . Typical measured sig-
nals are presented in Fig. 2a. The input bar needs to be long 

(1)�t =
2LS

C
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enough so that the reflected traction wave does not over-
lap with the incident compression wave in order to avoid 
advanced deconvolution techniques.

Basic wave analysis consists in cutting measured sig-
nals �̃I(t) and �̃O(t) (recorded on t ∈

[
tini, tend

]
 where 

tend − tini > 𝛥t ) into incident, reflected and transmitted sig-
nals t ∈ [0,�t] ↦ �i(t) ( i ∈ {I,R, T} where I stands for inci-
dent, R for reflected and T for transmitted). The time origin 
of �I(t) is set manually as shown in Fig. 2a. Time origins of 
�R(t) and �T (t) are not determined manually because of the 
difficulty to estimate the relatively smooth starting point of 
the pulse. Thus, the signal cutting process consists in deter-
mining the time origin of �R(t) and �T (t) automatically, by 
considering strain gauge positions LSGI and LSGO and com-
puting the time for each wave to reach the strain gauge.

It is therefore necessary to estimate the wave propagating 
time in the specimen as it introduces a delay. To do so, the 
specimen mass m0 , diameter d0 and length l0 are measured 

and the specimen density �0 is computed. The wave propa-
gating velocity of the specimen c0 is then estimated based 
on the specimen Young modulus. This estimation may be 
difficult if the Young modulus is strain-rate sensitive. In this 
paper, c0 is estimated by assuming that the specimen Young 
modulus does not depend on strain-rate, which is consistent 
with the chosen aluminum alloy. However, for materials with 
a strain-rate sensitive Young modulus, further developments 
would be needed. The wave propagating time in the speci-
men is �t0 = l0∕c0 , which can be an important parameter to 
obtain accurate stress–strain response, particularly for the 
specimens with very low wave velocities [6]. However, in 
this contribution, since the specimen length l0 is very small 
compared to the distances LSGI and LSGO and since c0 is simi-
lar to the wave propagating velocity in the bars, uncertainty 
on c0 has a negligible impact on the signal cutting process. 
For instance, for the tested experimental conditions, ±5% 
variation on c0 has no effect on the stress–strain response, 

Striker Input bar Output bar

Specimen
Strain gauge Strain gauge

Velocity measurement

by laser
Signal amplification

and calibration

LS LSGI l0
LSGO

DI DOd0

KSGI KSGO

LI LO

C,MI C,MO

V (t)I V  (t)O

Fig. 1  SHPB system
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as the variation on the time origin is smaller than the time 
interval between two successive measurement points (with 
a frequency of acquisition set to 1 MHz). It should be noted 
that only the uncertainty on c0 is neglected and not the nomi-
nal value. Resulting signals are presented in Fig. 2b.

Forces FI(t) and FO(t) at both ends of the specimen read:

The displacement difference between both ends of the speci-
men reads:

Assuming that the specimen is at equilibrium, that is to say 
FI(t) ≈ FO(t) or equivalently �I(t) + �R(t) ≈ �T (t)(DO∕DI)

2 
and assuming that the stress/strain state is homogenous in 
the specimen, the nominal stress �0(t) and strain �0(t) can be 
computed in the specimen:

Since the equilibrium has been assumed, it is rather arbitrary 
to choose FO for the computation of �0 in (4). However, FI 
is proportional to �I + �R and is therefore dependent on the 
synchronization of �I and �R although FO is proportional to 
�T that is directly measured. In addition, the strain gauge 
distance on the input bar LSGI is large in order to avoid that 
the incident wave overlaps with the reflected wave, although 
the strain gauge at the output bar can be fixed much closer to 
the specimen. Thus, three-dimensional effects (geometrical 
dispersion) affect much less the transmitted signal and FO is 
often less affected by oscillations. Furthermore, the speci-
men itself acts as a low-pass filter (particularly when the 
specimen material is soft), which tends to reduce oscillations 
and less dispersion is usually observed [6].

The true stress �(t) and true strain �(t) read:

where �p is the coefficient of plastic expansion that is set to 
0.5 for metals due to deviatoric plastic flow.

In the following, stress, strain and strain-rate will refer 
to the true stress, true strain and true strain-rate according 
to (5).

(2)

⎧
⎪⎨⎪⎩

FI(t) =
�D2

I

4
�C2

�
�I(t) + �R(t)

�

FO(t) =
�D2

O

4
�C2�T (t)

(3)u(t) = C ∫
t

0

(
�T (�) − �I(�) − �R(�)

)
d�

(4)

⎧⎪⎨⎪⎩

�0(t) ≈
4FO(t)

�d2
0

�0(t) ≈
u(t)

l0

(5)
{

�(t) = �0(t)
(
1 + 2�p�0(t)

)
�(t) = ln

(
1 + �0(t)

)

Imperfect Knowledge of the Experimental 
Setup

Two sets of experimental parameters having an influence 
on measurements can be distinguished. The first set is com-
posed of the parameters directly used in the wave analysis 
presented in section Classic Wave Analysis (see Table 1). 
These parameters enable to transform voltage signals VI(t) 
and VO(t) into a stress–strain response. The second set is 
composed of all other parameters having an influence on the 
measured signals VI(t) and VO(t) and not used in the wave 
analysis. For instance, bar alignment1, strain gauge length 
etc., have an influence on the measured signals and there-
fore on results. Indeed, since the analytical wave analysis 
presented in section Classic Wave Analysis relies on simpli-
fying assumptions (such as that bars are perfectly aligned, 
straight and have flat and parallel impact surfaces), experi-
mental imperfections can introduce a bias, that is to say a 
systematic error. Similarly, strain gauge dimension, which 
tends to average strain over the length, has been neglected. 
In addition, pulse shaping techniques [6, 9] have not been 
used in this paper. However, pulse shapers could be used to 
filter high frequencies of the compression pulse to limit the 
effect of wave dispersion. Pulse shaping techniques do not 
introduce significant additional uncertainties though, as it 
is not necessary to know the pulse shaper characteristics to 
interpret the test. (No assumption is done on the shape of the 
compression pulse).

The uncertainty related to the second set of parameters 
is more difficult to characterize, as these parameters do 
not appear quantitatively in the wave analysis presented 
in section Classic Wave Analysis. It is theoretically pos-
sible to introduce the effect of uncertainties related to these 
parameters, by considering a much more detailed model for 
the wave analysis. For instance, a fully three-dimensional 
mechanical model would enable to take into account bar 
alignment issues directly in the wave analysis, so that the 
effect of alignment uncertainties is quantified. Similarly a 
detailed model of the strain gauge would enable to take into 
account settings of strain gauges and Wheatstone bridges 
and the associated uncertainties. However, such detailed 
models imply significant computation time, which would 
slow down the following statistical approach. A surrogate 
model that mimic the behavior of the fully three-dimensional 
simulation of the SHPB test could be used to reduced the 
computational cost. This contribution being limited to the 
classical analytical interpretation of measured signals, only 
the first set of parameters listed in Table 1 is considered, 

1 Offset of neutral axis, uneven support height, non-parallel impact 
face, bar straightness, dome or cone impact face shape.
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that is to say that the bias introduced by neglecting other 
parameters is not estimated and corrected.

All experimental parameters used in section Classic Wave 
Analysis and listed in Table 1 are imperfectly known. One 
could estimate experimental parameters errors at the same 
time as material parameters (involved in the behavior model) 
through the Bayesian analysis. For instance, [10] analyzed 
the measured voltage signals in a deterministic way (as in 
section Classic Wave Analysis) in order to obtain stress sig-
nals. Then, these stress signals have been assumed to be 
affected by an unknown overall error, which was determined 
at the same time as material parameters through the Bayesian 
analysis. However, to take into account the uncertainty due 
to the imperfectly known experimental setup, this approach 
would necessitate to introduce many additional unknown 
standard deviations in the Bayesian analysis. (There are 15 
experimental parameters listed in Table 1). Moreover, this 
approach would necessitate to introduce the classic signal 
analysis presented in section Classic Wave Analysis directly 
in the Bayesian model. This is why, in this paper, uncertain-
ties on experimental parameters are estimated first and then 
the overall measurement uncertainties are inferred (see sec-
tions Statistical Analysis and Experimental Campaign and 
Overall Uncertainty). Finally, measurement uncertainties are 
introduced as known random errors in the Bayesian analy-
sis to estimate material parameters (see sections Standard 
Bayesian Estimation and Hierarchical Bayesian Estimation).

Thus, each experimental parameter X is considered as a 
random variable with unknown probability density function 
depending on the measurement technique. Empirical estima-
tion of uncertainties for each measurement technique could 
be performed by measuring several known standards (e.g., 
objects with calibrated weight and dimensions) in order 
to obtain statistical distributions of measurement errors. 
However, an alternative procedure has been preferred in 
this paper. Rectangular or normal probability density func-
tions are chosen for each experimental parameter. In most 
cases, the parameter should have a positive value because of 
its physical meaning. As normal distributions allow nega-
tive values, the probability density function is truncated 
in order to avoid this issue. Experimental parameters have 
been measured to estimate the mean of the random variable 
denoted by X . Then, the standard deviation denoted by �X is 
set to a fixed value depending on the specific measurement 
technique. Indeed, classic standard deviations are usually 
associated to tape measurements, digital calipers, digital 
scales etc. on the basis of manufacturer specifications and 
good experimental practices (measurements performed by 
a trained operator with an adapted equipment). Of course, 
this procedure only enables to give a rough estimation of 
measurement uncertainties, as standard deviations are not 
characterized empirically but fixed at standard values. 
Nevertheless, this simplified approach has been chosen in 

this contribution, since it is convenient for real laboratory 
practices.

In addition, some parameters are computed from the oth-
ers. For instance, mean and standard deviation of the density 
� = MI∕((�∕4)D

2

I
LI) can be computed by simulating pseudo-

random draws on the basis of the random variables MI , DI 
and LI (estimated by rectangular or normal distributions 
of mean and standard deviation denoted by MI ,�MI etc.). 
Alternatively one can use approximations such as:

Strain gauges consist in Wheatstone bridges. Two gauges 
are glued to each side of each bar (one measuring the strain 
along the bar axis and the other measuring the strain perpen-
dicularly) in order to compensate potential bending effects. 
Resulting signals are amplified and transfer coefficients 
KSGI and KSGO are measured by using a calibrated electric 
resistance simulating a 0.1% strain. Then output voltages are 
measured in two different positions (using a switch). This 
procedure is reliable and the associated uncertainty is esti-
mated to around 1% by manufacturers at room temperature. 
This percentage refers to calibrated value of KSGI and KSGO 
and not to the measured signals. Since this uncertainty is 
provided by the manufacturer it is considered as an indica-
tive value, and the standard deviations associated to KSGI and 
KSGO is roughly estimated to a fixed value of 4 × 10−6 , which 
is slightly more than 1% of the nominal values of KSGI and 
KSGO . This estimation is a crude simplification, however the 
overall calibration method for KSGI and KSGO is nevertheless 
more accurate than alternative methods.

The wave propagating velocity C is usually estimated by 
performing tests without specimen by measuring the time 
�tSG between the beginning of the incident wave at the strain 
gauge of the input bar and the beginning of the transmit-
ted wave at the gauge of the output bar. Since there is no 
specimen, the distance covered by the wave is estimated by 
LSGI + LSGO and the wave propagating velocity reads:

This procedure presented in Fig. 3a is not very accurate 
because of the difficulty to determine the starting point of 
each compression pulse because of the smooth transition to 
reach the compression plateau. Nevertheless, this estimation 
is used very often in the industry because of its simplicity, 
even though more advanced and accurate techniques have 

(6)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

� ≈
4

�

MI

D
2

I
LI

��

�
≈

�����
�
�MI

MI

�2

+

�
�LI

LI

�2

+ 4

�
�DI

DI

�2

(7)C =
LSGI + LSGO

�tSG
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been proposed in [7]. The standard procedure presented in 
Fig. 3a is used in this contribution in order to assess uncer-
tainties commonly affecting SHPB tests. The random vari-
able C is statistically characterized by performing several 
tests without specimen. Each measurement is interpreted 
as a draw of the random variable C. The issue of finding 
the starting point of the incident and transmitted pulses is 
addressed by doing two independent estimations of the wave 
propagating velocity for each test without specimen. In this 
contribution, 15 tests without specimen have been performed 

for a total of 30 draws of the wave propagating velocity. The 
obtained statistic distribution of C is presented in Fig. 3b, 
and a rectangular distribution is chosen for C. All parameters 
means and standard deviations are listed in Table 1.

Statistical Analysis

Consider � the set of independent random variables neces-
sary for the analysis of measured signals:
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(a) Measurement of wave propagating velocity
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Fig. 3  Wave propagating velocity

Table 1  Standard deviations

Input bar

   L
I

(mm) Length L
I

2788 �L
I

0.5 Tape measure

   D
I

(mm) Diameter D
I

19.80 �D
I

0.02 Digital caliper

   M
I

(kg) Mass M
I

6.644 �M
I

0.025 Digital scale

   � (kg m −3) Density � 7740 �� 33 Computations
   C (m s −1) Wave propagating 

velocity
C 5096 �C 14.5 Tests without specimen

   L
SGI

(mm) Distance L
SGI

1395 �L
SGI

0.5 Tape measure

   K
SGI (V−1) Coefficient K

SGI
3.77424 × 10−4 �K

SGI 4 × 10−6 Calibration
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The classic one-dimensional wave analysis presented in sec-
tion Classic Wave Analysis can be seen as a transfer function 
f associating both a particular draw �∗ of the random variable 
vector � ∈ � and the measured signals VI(t) and VO(t) to the 
corresponding draw of true stress, true strain-rate and true 
strain 𝜎∗(t), �̇�∗(t), 𝜀∗(t) defined by (5) (where the superscript 
∗ is referring to a particular draw of a random variable):

Since the one-dimensional wave analysis f is analytical, it 
would be possible to approximate analytically mean and 
standard deviation of stress and strain-rate as a function of 
strain. However, since each call to the function f has a 
reduced computational cost, a simple and straightforward 
sampling technique is chosen for generating stress and 
strain-rate statistics as a function of strain. Consider that J 
loading conditions are tested, each of which including Kj 
specimens. For each loading condition (denoted by j where 
1 ≤ j ≤ J  ) and each specimen (denoted by k where 
1 ≤ k ≤ Kj ), recorded signals are denoted by VI,j,k(t),VO,j,k(t) . 
Then, N independent draws denoted by �(n)

j,k
 (where 

1 ≤ n ≤ N ) are generated by pseudo-random numbers giving 
in turn N output signals 𝜎(n)

j,k
(t), �̇�

(n)

j,k
(t), 𝜀

(n)

j,k
(t) (where the 

superscript (n) replaces *). Then, for each test k, one  
can construct stress and strain-rate as a function of  
strain �(n)

j,k
(�(n)) and �̇�(n)

j,k
(𝜀(n)) that can be interpolated with 

cubic splines. Thus, one defines a strain vector (of size M) 
denoted by � =

[
�1,… , �M

]
 common to all draws and  

the interpolation with cubic splines reads: �(n)

j,k
(�m) and 

�̇�
(n)

j,k
(𝜀m) (where 1 ≤ m ≤ M ). For each loading condition j 

and each specimen k, consider stress and strain-rate vectors 
(of size M) denoted by �(n)

j,k
=
[
�
(n)

j,k
(�1),… , �

(n)

j,k
(�M)

]
 and 

�̇�
(n)

j,k
=
[
�̇�
(n)

j,k
(𝜀1),… , �̇�

(n)

j,k
(𝜀M)

]
 . It is assumed that �(n)

j,k
 and �̇�(n)

j,k
 

are draws of normal random vectors (of size M) denoted by 
�j,k and �̇�j,k . There is no reason a priori to assume that stress 
and strain rate are normal random variables, as they are com-
puted from a non-linear combination (see section Classic 
Wave Analysis) of other random variables (experimental 
parameters). Nevertheless, this assumption is strongly sup-
ported by the resulting distributions of stress and strain rate. 
Thus, the set of draws is used to estimate means (of size M) 
and covariance matrices (of size M ×M ). Classic estimators 
are used in this section and recalled in (10). It should be 
mentioned that one can consider adding artificial noise to 
the measurements to improve the characterization of the 
estimators for bias and other systemic issues.

(8)
� =

{
LI ,DI , LSGI ,KSGI , LO,DO,

LSGO,KSGO, �,C, l0, d0, c0
}

(9)f ∶
(
�∗
,VI(t),VO(t)

)
↦ (𝜎∗(t), �̇�∗(t), 𝜀∗(t))

Similar expressions hold for strain-rates. One can also 
extract from covariance matrices the diagonal square root 
denoted by ��j,k (respectively 𝜟�̇�j,k ) and corresponding for 
each loading condition j and each specimen k to the point-
wise standard deviation of stress as a function of strain 
(respectively strain-rate). Typical results are presented in 
the form of mean stress �j,k as a function of strain (respec-
tively mean strain-rate �̇�j,k ) with an envelop corresponding 
to ±2��j,k (respectively ±2𝜟�̇�j,k ), which corresponds to a 
probability of 95% to lie in the envelop. Results extracted 
for one particular test are presented in Fig. 4. The choice of 
normal distribution and N = 10000 is visually confirmed in 
Fig. 5. A more detailed analysis of confidence intervals is 
given in A.

Experimental Campaign and Overall 
Uncertainty

An experimental campaign on the aluminum alloy AA7075-
O has been performed in order to illustrate the methodol-
ogy. To avoid technicalities associated with the use of visco-
elastic bars, an aluminum alloy has been chosen, so that 
steel bars can be used. Experimental results revealed that 
the sensitivity to strain-rate is negligible. A series of J = 8 
loading conditions have been tested, each of which include 
Kj specimens, as listed in Table 2. The average striker veloc-
ity (measured by laser) is reported for each loading condition 
with the associated variation due to the fact that tests are not 
identical. All tests under dynamic regime ( 1 ≤ j ≤ 4 ) with 
the SHPB system are performed at room temperature (at 
least initially because the specimen undergoes self-heating). 
It would be very difficult to identify the behavior depend-
ence on temperature on this basis only. Consequently, these 
dynamic tests are completed by additional tests on the same 
material under quasi-static regime ( 5 ≤ j ≤ 8 ) and controlled 
temperature conditions. The tested temperature range is 
100 K, although the classic analysis based on the Taylor-
Quinney coefficient (see section Modeling Choices) shows 
that the temperature increase is around 35 K for the dynamic 
conditions tested in this contribution. Thus, the temperature 
range for quasi-static conditions is sufficient to identify the 
behavior dependence on temperature. Despite the fact that 
the behavior does not significantly depend on strain-rate, 
and that the quasi-static tests could be sufficient to iden-
tify the material behavior, a large number of tests in the 

(10)

⎧
⎪⎪⎨⎪⎪⎩

�j,k =
1

N

N�
n=1

�
(n)

j,k

V
�
j,k

=
1

N − 1

N�
n=1

�
�
(n)

j,k
− �j,k

�
.

�
�
(n)

j,k
− �j,k

�T
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Fig. 4  Uncertainties for one test with N = 10000
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dynamic regime have been performed as the main purpose 
of the paper is to show how uncertainties associated with 
the SPHB system may be estimated and integrated in model-
based identification. The fact that the material behavior does 
not significantly depend on strain-rate has no influence on 
the proposed method, and the SPHB system is commonly 
use to identify material behaviors that are not very sensitive 
to strain-rate.

All tests have been made on specimens extracted from the 
same plate2 at different positions3. For each loading condi-
tion j, experimental conditions are maintained as identical 
as possible. For instance, a large series of K2 = 33 tests has 
been performed at 1000 s−1 as a target average strain-rate. 
Thus, the measured stress mean (respectively strain-rate) 
denoted by �j,k (respectively �̇�j,k ) and the standard devia-
tion denoted by ��j,k (respectively 𝜟�̇�j,k ) ( 1 ≤ k ≤ Kj ) are 
computed as detailed in section Statistical Analysis. One can 
compute the overall mean considering all Kj tests for each 
loading condition j:

And the overall standard deviation is given by:

(11)�j =
1

Kj

Kj∑
k=1

�j,k

(12)��j =

√
S
2

j,1
+ S

2

j,2

where

Similar expressions hold for strain-rates.
Since other experimental conditions at 600 s −1 , 2750 

s −1 and 7500 s −1 include much less specimens, the overall 
uncertainty is computed by assuming that the uncertainty 
due to material variability and test repeatability (computed 
as a percentage of stress) is the same as for the series of 
K2 = 33 tests at 1000 s −1 . Results are presented in Fig. 6. It is 
clear that the average measurement uncertainty Sj,2 increases 
with the average strain-rate at the beginning of the test (i.e., 
0 ≤ � ≤ 0.07 ). This part of the stress–strain curve is more 
sensitive to measurement uncertainties because the stiffness 
is much higher on the one hand and the specimen length 
is smaller on the other hand (leading to higher absolute 
uncertainty).

In addition, the behavior of the chosen material does 
not seem to present sensitivity to strain-rate as shown in 
Fig. 7, as the average stress–strain responses are similar for 
very different strain-rates. Considering the overall uncer-
tainty for each strain-rate condition, discrepancies between 
stress–strain responses in Fig. 7 are very likely due to mate-
rial variability. Indeed, specimens are extracted from differ-
ent places of a single plate, which can present inhomogene-
ous behavior.

Furthermore, since strain gauge measurements are trans-
formed into stress and strain-rate as a function of strain 
with a simple model (see section Classic Wave Analysis), 
a bias is introduced because of modeling assumptions. One 
of the most significant assumption is that the specimen is 
at equilibrium, that is to say that forces at both ends of the 
specimen are approximately equal (i.e., FI(t) ≈ FO(t) ). Thus, 

(13)

⎧⎪⎪⎨⎪⎪⎩

S
2

j,1
=

1

Kj

Kj�
k=1

�
�j,k − �j

�2

S
2

j,2
=

1

Kj

Kj�
k=1

��2

j,k

Table 2  Experimental campaign summary

j Kj Strain-rate (s−1) Temperature (K) Striker speed (m s −1)

Dynamic regime
 1 3 600 293 5.73 ± 0.14
 2 33 1000 293 6.44 ± 0.24
 3 4 2750 293 8.26 ± 0.11
 4 2 7500 293 16.82 ± 0.19

Quasi-static regime
 5 4 10−4 293
 6 4 10−4 400
 7 2 10−3 293
 8 2 10−3 400

2 For engineering applications, some materials present significant 
variability due to fabrication processes and chemical composition 
consistency that both depend on the manufacturer. Thus, for design 
purposes, if the manufacturer is unknown, one should prefer material 
parameters that have been identified by using specimens from various 
manufacturers.
3 Fabrication processes are usually responsible for inhomogeneous 
material properties along the produced object. Selecting specimens at 
different positions of the plate enables to take into account this vari-
ability.
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for each test, the quality of the equilibrium assumption is 
quantified by computing the following ratio:

The ratio R is statistically determined as a function of strain 
as detailed in section Statistical Analysis and presented for 
one test in Fig. 8. Clearly, the equilibrium assumption is 
not verified during the whole test. Thus, the usable data is 
reduced to �min ≤ � ≤ �max where �min = 0.05 and �max = 0.38 
so that the model bias does not affect much the results.

Quasi-static conditions ( 5 ≤ j ≤ 8 ) have been considered 
only to identify the behavior dependance on temperature, 
which is controlled by one material parameter denoted by 
G′_T , as detailed in section Modeling Choices. Mean stress 
is presented in Fig. 9a without the point-wise uncertainty at 

(14)R(t) =
FO(t)

FI(t)
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Fig. 6  Dynamic tests with overall uncertainties ( N = 10, 000)
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95%, as there are only 2 or 4 tests for each condition. The 
uncertainty due to imperfect knowledge of the experimen-
tal setup has not been estimated for quasi-static conditions. 
As a result, data in the quasi-static regimes are only used 
to identify G′_TT  in section Standard Bayesian Estimation 
with unknown uncertainty.

Moreover, quasi-static tests are also used to estimate 
the Young modulus E and to provide prior information on 
the yield stress, as shown in Fig. 9b. However, compres-
sive quasi-static tests are less reliable for very small strains 
( � ≤ 0.01 ), as contact conditions are not well controlled 
at the interfaces between the sample and the plates of the 
testing machine. The prior distribution of the yield stress is 

therefore a rough estimation associated with a rather large 
uncertainty.

Modeling Choices

In the following, a plasticity model is considered as a typical 
example for material parameter estimation. Thus, the model 
relates the stress as a function of material parameters (to be 
determined) and explanatory variables such as temperature, 
strain-rate and strain:

Material parameters to be identified are denoted by a vec-
tor � ∈ �  . A Steinberg–Cochran–Guinan (SCG) model is 
used in this contribution. This choice is consistent with the 
fact that the chosen aluminum alloy AA7075-O does not 
present significant dependency on the strain-rate but more 
complex models could have been used instead, such as the 
Preston–Tonks–Wallace model for instance. A classic John-
son Cook (JC) model could have also been used, but this 
model includes a dependance to strain-rate that should have 
been discarded in order to avoid difficulties in estimating 
the model parameter associated to strain-rate. In addition, 
since SCG and JC models share very similar mathematical 
structures, results would have been comparable. Therefore 
it is more straightforward to use a SCG model. In general, 
the mathematical model should not only be able to repro-
duce the overall experimental behavior, but should also 
present dependencies that correspond to the sensitivity of 
the experimental data with respect to the tested quantities 
(e.g., temperature, strain, strain-rate). Indeed, if the model 
depends on quantities with respect to which the experimental 

(15)𝛷 ∶ (�, �̇�, T , 𝜀) ↦ 𝜎
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data are not sufficiently sensitive, the corresponding coef-
ficients in the model would be poorly estimated with very 
large uncertainty that could affect the uncertainty associ-
ated to the other coefficients. Thus, the model is chosen as a 
compromise between the real behavior and the actual tests 
that have been performed.

The SCG model gives the yield stress Y as a function 
of the hydrostatic pressure P, the relative volume variation 
1∕� , the temperature T and the equivalent plastic strain �eq 
as follows:

with a saturation condition:

where T0 is the reference temperature, Y0 is the initial yield 
stress before hardening, Ymax is a saturation stress at ambient 
pressure and temperature, � and n are dimensionless coef-
ficients, G0 is the reference shear modulus, G′

p
 is dimension-

less and associated to the dependence on pressure and G′
T
 has 

the dimension of a stress over a temperature and is associ-
ated to the dependence on temperature. By assuming that the 
stress tensor is of the form �ex × ex (where ex is a unit vector 
aligned with the bar axis) and that elastic strain is negligible, 
it is obtained Y = � , P = �∕3 , �eq = � and 1∕�1∕3 = 1.

One can neglect the ratio (G�
p
∕G0)P in (16) since for 

the proposed tests P ≈ 100 MPa and following estima-
tions for a similar aluminum alloy 77075-O are found in 
the work of [37]: G�

p
= 1.74 and G0 = 26700 MPa lead-

ing to (G�
p
∕G0)P ≈ 0.00652 ≪ 1 . Moreover, no saturation 

is noticeable in Figs. 6 and 9a and the saturation stress is 
estimated by [37] to Ymax = 810 MPa that is much higher 
than the maximum stress reached in this paper. Thus, it is 
impossible to determine Ymax on the basis of the proposed 
experiments. Although aluminum is considered in both [37] 
and the present paper, the experimental testing methods are 
different. Thus, uncertainties associated to the experimental 
test methods are different, and extracting directly the ratio 
G�

p
∕G0 from [37] may be questionable. However, even con-

sidering this uncertainty, the estimated value of (G�
p
∕G0)P 

is sufficiently close to zero to be neglected.
In addition, the proposed uni-axial compression tests do 

not enable us to estimate G0 that is consequently fixed to the 
estimated value proposed by [37]. Thus, the identification 
of G′

T
 is equivalent to the identification of the ratio (G�

T
∕G0) . 

The estimation proposed by [37] is G�
T
= −16.45 MPa  K–1 

and the ratio (G�
T
∕G0) is expected to be relatively small that 

(16)
Y =Y0

(
1 + ��eq

)n
(
1 +

(
G�

p

G0

)
P

�1∕3

+

(
G�

T

G0

)
(T − T0)

)

(17)Y0
(
1 + ��eq

)n ≤ Ymax

is consistent with the behavior dependence on temperature 
shown in Fig. 9a. Then, the resulting model is:

Thus, there are d = 4 material parameters to identify: 
� =

(
Y0, �, n,G

�
T

)
∈ �  , where Y0 is the initial yield stress 

before hardening given in MPa, � and n are dimensionless 
and G′

T
 is given in MPa  K–1.

The term T − T0 in (18) has to be estimated. Quasi-static 
tests have been performed at two different constant tem-
peratures 293 K and 400 K (see Table 2). On the contrary, 
all dynamic tests have been performed at room tempera-
ture but plastic dissipation is responsible for self-heating. 
However, temperature evolution has not been measured 
with a specific experimental apparatus. Thus, the tem-
perature evolution is inferred under dynamic regime from 
the following equation (discussed for instance by [29] or 
similar formulation discussed by [28]) that assumes that 
the ratio of the thermal dissipation to mechanical work is 
known (Taylor–Quinney coefficient):

where �TQ is the Taylor–Quinney coefficient, �0 is the speci-
men density as listed in Table 1 and cp is the specific heat 
capacity at constant pressure. Thus the Eq. (19) reads:

where the plastic work is:

For each loading condition j and each specimen k, N draws 
of the form �(n)

j,k
 , �(n)

TQ
 , �(n)

0
 and c(n)

p
 are simulated as detailed in 

section Statistical Analysis. As a result, there are N draws of 
the form: T(n)

j,k
=
[
T
(n)

j,k
(�1),⋯ , T

(n)

j,k
(�M)

]
 with mean:

Thus, for each loading condition j, each specimen k and each 
material parameter � ∈ �  , the model (18) can be presented 
as a vector of size M:

As already mentioned, for the studied material the ratio 
(G�

T
∕G0) is expected to be relatively small. Hence, it is not 

(18)�(�, T(�), �) = Y0(1 + ��)n
(
1 +

(
G�

T

G0

)
(T − T0)

)

(19)
dT

d�
=

�TQ

�0cp
�(�)

(20)T(�) − T0 =
�TQ

�0cp
W(�)

(21)W(�) = ∫
�

0

�(�)d�

(22)Tj,k =
1

N

N∑
n=1

T
(n)

j,k

(23)�j,k =
[
�
(
�, Tj,k,1, �1

)
,… ,�

(
�, Tj,k,M , �M

)]
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necessary to consider the uncertainty related to temperature. 
In the following, the mean temperature is considered as per-
fectly known for dynamic experimental conditions with the 
mean values �TQ = 0.8 and cp = 876 J.kg−1.K−1.

Standard Bayesian Estimation

In this section, the parameter G′
T
 , which is involved in the tem-

perature dependence of the model (18), is determined by ana-
lyzing the tests in the quasi-static regime as listed in Table 2. 
Indeed, temperature variations occurring during the tests in 
the dynamic regime are not sufficient to accurately identify 
G′

T
 . The parameter G′

T
 is identified separately from the other 

material parameters Y0, �, n by using only the tests in the quasi-
static regime. Indeed, the tests in the quasi-static regime have 
been performed only to characterize the temperature depend-
ance of behavior. The uncertainty associated to the correspond-
ing quasi-static experimental setup has not been quantified 
as for the tests in the dynamic regime (see section Imperfect 
Knowledge of the Experimental Setup). Thus, for each test k 
of each condition j, the data �j,k obtained in the quasi-static 
regime (i.e., j = 5 to 8 in Table 2) are divided by the average 
stress data obtained at T0 = 293 K (i.e., j = 5 and 7) leading 
to dimensionless data denoted by ̂�j,k =

(
�̂j,k,1,⋯ , �̂j,k,M

)
 . It is 

clear from the SCG model (18) that the reduced model fitting 
the dimensionless data �̂k reads:

A simple Bayesian analysis is performed to identify G′
T
 . A 

normal likelihood is assumed with mean �̂ and unknown 
standard deviation ŝ  . Thus, the likelihood reads:

where 1 ≤ m ≤ M , and Tj = 293 K for j = 5 and j = 7 and 
Tj = 400 K for j = 6 and j = 8 . Prior distributions for G′

T
 and 

ŝ  are determined by exploiting available a priori information 
extracted from the literature and expertise. In this paper, it 
consists in the estimation of material parameters for an other 
aluminum alloy proposed in [37]: G�

T
= −16.45 MPa  K–1. 

Since the alloy studied in [37] is not identical to the mate-
rial studied in this contribution, a flat uniform distribution 
is considered with rather large bounds for G′

T
 . The prior 

distribution of ŝ  is chosen as the conjugate prior distribution 
for a normal model as detailed by [13], namely the scaled 
inverse chi-square law, hence:

(24)�̂
(
G�

T
, T

)
= 1 +

(
G�

T

G0

)
(T − T0)

(25)�̂j,k,m|G�
T
, ŝ ∼ N

(
�̂(G�

T
, Tj), ŝ

2
)

(26)
⎧⎪⎨⎪⎩

G�
T
∼ U

�
G�

T ,min
,G�

T ,max

�
G�

T ,min
= −50 MPa K

−1 G�
T ,max

= −5 MPa K
−1

ŝ2 ∼ Inv-�2
�
Ŝ2, �̂

�
Ŝ = 0.03 �̂ = 10

where U denotes a uniform distribution and Inv-�2 the scaled 
inverse chi-square law. The posterior distribution reads:

Statistics of posterior probability density functions (27) 
are explored by Markov-Chain Monte Carlo (MCMC) 
sampling techniques. In practice, a No U-Turn Sampler 
(NUTS) developed by [16] is used within the framework 
of the PYMC3 package developed by [33] in Python [39]. 
NUTS is an extension of the Hamiltonian Monte Carlo algo-
rithm, which avoids sensitivity to correlated parameters, but 
whose performance depends on two parameters that need to 
be specified, namely the step size and the number of steps. 
On the contrary, NUTS does not necessitate to hand-tune 
any parameter with equivalent efficiency. Results are pre-
sented in Fig. 10 with means and credible intervals at 94%.

Sensitivity Analysis

In this section, as standard practice in model-based esti-
mation, a sensitivity analysis of the SCG model (16) to 
parametric changes is provided. This analysis enables us 
to better interpret the results presented in section Results. 
There are numerous different sensitivity analysis methods. 
In this study, a variance-based sensitivity analysis (i.e., 
Sobol method) is proposed [32, 35]. Unlike local methods, 
which elucidate the model sensitivity to parametric changes 
around a specific value of the parameters, variance-based 
methods belong to the so-called global methods as the entire 
parameter set is usually sampled to perform the analysis.

Within a probabilistic framework, variance-based sensi-
tivity analysis decomposes the variance of the model outputs 
into proportions, which can be attributed to variations of 
model parameters. For each value of � the yield stress Y 

(27)p
(
G�

T
, ŝ|�̂j,k

) ∝ p
(
�̂j,k|G�

T
, ŝ
)
p(G�

T
)p(̂s)

37.00 36.75 36.50 36.25 36.00 35.75 35.50 35.25

-36.6 -35.8

94% HDI

mean=-36.2

Fig. 10  Posterior densities



461Journal of Dynamic Behavior of Materials (2021) 7:447–468 

1 3

given by (16) is a function of the parameters Y0, �, n,G′
T
 . 

Since the parameter G′
T
 has already been identified, the 

sensitivity analysis is performed only on Y0, �, n . Thus, the 
output variance due to variation of Y0, �, n at a fixed � can 
be explained by several contributions: (i) the first-order 
sensitivity index Si (where 1 ≤ i ≤ 3 ), which is the main 
effect of each parameter �i ∈

{
Y0, �, n

}
 varying alone, and 

(ii) the second-order sensitivity index Sij , which represents 
the interaction effect of varying pairs of parameters (�i, �j) 
together. Of course, the decomposition can be pursued for 
higher-order sensitivity, even though first and second-order 
sensitivity indexes are the most common indicators. More 
precisely, the output variance Var(Y) can be decomposed 
into several contributions:

where Var(Y) is the variance of Y and:

where 1 ≤ i ≤ 3 , �i ∈
{
Y0, �, n

}
 , Var� ,E� are respectively 

the variance and the expected value when � is varying, and 
�∼i, �∼ij denote the set of all variables except �i and (�i, �j) 
respectively. The first and second-order sensitivity indexes 
Si, Sij (or Sobol indexes) represent the proportion of the out-
put variance explained by the variation of the model param-
eters, therefore:

These sensitivity indexes are computed using the 
SALib package developed by [15] in Python, by using 
the following intervals for the parameters variation: 
(Y0, �, n) ∈ [60, 160] × [1000, 9000] × [0.10, 0.25] , and the 
analysis is done for � = 0.4 (i.e., highest plastic strain in the 

(28)Var(Y) =

3∑
i=1

Vi +

3∑
i<j

Vij +⋯

(29)

{
Vi = Var�i

(
E�∼i

(
Y|�i

))

Vij = Var�i,�j

(
E�∼ij

(
Y|�i, �j

))
− Vi − Vj

(30)

⎧⎪⎨⎪⎩

Si =
Vi

Var(Y)

Sij =
Vij

Var(Y)

data). Results are listed in Table 3 and same conclusions 
would be obtained for other values of �.

The SCG model (16) is less sensitive to � than Y0 and 
n, even though the considered interval of variation for � 
is large. Difficulties to identify � are therefore expected. 
In addition, there is very little sensitivity to simultane-
ous variations of pairs of parameters, especially for the 
interaction of Y0 and � . Based on this sensitivity analysis, 
the posterior distribution for � is expected to spread on a 
large interval, which is associated to higher uncertainty. 
However since the model is still slightly sensitive to � , 
the experimental data is expected to make evolve the prior 
distribution but not in the extent of other parameters Y0 
and n. Thus, posterior distributions of � are expected to be 
similar for all tests in section Results, although posterior 
distributions of Y0 and n should be clearly distinct. This is 
due to the fact that differences between tests are not suf-
ficiently pronounced considering the higher uncertainty 
associated to �.

Hierarchical Bayesian Estimation

Hyperprior Distribution

This section completes the identification of model param-
eters involved in the SCG model (18). A hierarchical Bayes-
ian estimation is proposed in order to use in details the infor-
mation provided by each test. Since the data obtained in 
the quasi-static regime ( j = 5 to 8 in Table 2) have already 
been used to identify the parameter G′

T
 , the following analy-

sis is based on one experimental condition in the dynamic 
regime (i.e., j = 2 in Table 2). Moreover, among the 33 tests 
performed at 1000 s −1 , only K = 20 tests are analyzed and 
the 13 remaining tests are used for a comparison to model 
predictions.

The prior distribution of G′
T
 is set as the posterior distri-

bution obtained in section Standard Bayesian Estimation, 
and since the considered tests ( j = 2 ) are at room tempera-
ture, there is very little sensitivity of the tests in the dynamic 
regime with respect to G′

T
 (i.e., self-heating is not sufficient). 

Therefore, the posterior distribution of G′
T
 is extremely simi-

lar to its prior distribution. Thus, for the sake of simplicity, 
G′

T
 is omitted in the following developments as the Bayesian 

inference on the tests in the dynamic regime has no influ-
ence on this model parameter. Thus, there are d = 3 remain-
ing material parameters to identify in this section, namely 
Y0, �, n.

As already mentioned, material parameters physically 
depend on each test k ( 1 ≤ k ≤ K ) because of material vari-
ability. Thus, it is legitimate to propose a hierarchical Bayes-
ian analysis considering each test k as a group with specific 
material parameters �k =

(
Y0,k, �k, nk

)
 . In this approach, the 

Table 3  Sensitivity indexes in percentage with a confidence level of 
95% for � = 0.4

First order sensitivity indexes Si are in bold on the diagonal, and sec-
ond order sensitivity indexes Sij are the non-diagonal terms

Y0 � n

Y
0

35.4%± 0.8% 0.4% ± 1.3% 3.7% ± 1.3%

� 5.4%± 0.3% 1.5% ± 0.6%

n 53.4%± 1%
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tested specimens constitute a sample of K = 20 draws among 
all possible specimens. Material parameters �k are assumed 
to be independent samples from a common hyper random 
variable that is parametrized by a hyperparameter vector � 
to which a hyperprior distribution is associated. The prefix 
hyper is used to highlight the fact that the sampling process 
of specimens is at a higher level than the rest of the Bayesian 
probabilistic approach. Thus, material variability is captured 
by the fact that each �k is conditionally dependent on � as 
detailed by [13]. The approach proposed in section Standard 
Bayesian Estimation relies on a direct empirical estimation 
of material variability and repeatability of tests. On the con-
trary, the hierarchical approach relies on a hyper random 
variable determining the dispersion of material parameters 
from one test to another.

On the basis of results obtained in section  Standard 
Bayesian Estimation, informative normal distributions are 
assumed for hyperprior distributions related to Y0 and n. 
Thus, the hyper random variable is assumed to be normal 
with mean �� and covariance matrix �� . Thus, hyperparam-
eter vector is � =

(
�� ,��

)
 and:

where Nd denotes a multivariate normal distribution of size 
d = 3 . In addition, �� =

(
�Y0

,�� ,�n

)
 and �� is a diagonal 

d × d matrix of diagonal 
(
�Y0

,�� ,�n

)
 . The conditional 

probability density function (31) accounts for material vari-
ability. In addition, since 

(
�� ,��

)
 are unknown, an associ-

ated hyperprior distribution is needed and chosen to corre-
spond to the classic conjugate prior distribution for a normal 
model as detailed by [13]:

where

where l ∈
{
Y0, �, n

}
 and Inv-�2

(
S2
l,0
, �l,0

)
 denotes the scaled 

inverse chi-square law. That is to say that the prior distribu-
tion of �l is taken to be the distribution of S2

l,0
�l,0∕Z where 

Z ∼ �2
�l,0

 . The fixed parameters that completely determine the 
hyperprior distr ibution are 

(
S2
l,0
, �l,0,�l,0, s

2

l,0

)
 with 

l ∈
{
Y0, �, n

}
 . Normal prior distributions have been consid-

ered for the means �l with conjugate prior distributions (i.e., 

(31)�|�� ,�� ∼ Nd

(
�� ,��

)

(32)

⎧⎪⎪⎨⎪⎪⎩

p(�� ) ∝
d�
l=1

p(�l)

p(�� ) ∝
d�
l=1

p(�l)

(33)

⎧⎪⎨⎪⎩

�l ∼ Inv-�2
�
S2
l,0
, �l,0

�

�l ∼ N

�
�l,0, s

2

l,0

�

scaled inverse chi-square law) for variances �l . This choice 
of normal prior distributions seems reasonable. Indeed, the 
hyperprior distributions characterize a priori information on 
how material variability is distributed in the aluminum plate, 
from which specimens have been extracted. Material vari-
ability is mainly due to heterogeneity of microstructure and 
residual stresses, which are respectively related to the tem-
perature distribution during the annealing process, and pre-
vious plastic deformations during forming processes. Thus, 
some specimens have higher or lower values than the rest of 
the specimens depending on their respective location in the 
plate. However, heat treatments and forming processes are 
usually performed so that material parameters are as homog-
enous as possible. Therefore, most specimens likely share 
similar material parameters, which are a priori distributed 
around a mean value, leading to consider normal prior 
distributions.

One can define a global material parameter � =
(
Y0, �, n

)
 

accounting for material variability and repeatability of tests 
(on the basis of the studied sample of specimens) whose 
prior probability density function is:

Multivariate Normal Model

For each test k, the observations are the mean stress as a 
function strain �k and the covariance matrix V�

k
 (determined 

by (10)). The covariance matrices V�
k
 only includes random 

measurement errors and uncertainties due to the imper-
fect knowledge of the experimental setup, since material 
variability is taken into account through the hierarchical 
approach. The explanatory variables are the strain � and the 
temperature Tk . The likelihood distribution is given as a 
latent normal model with unknown mean and known covari-
ance matrix V0 where

where V�
k
 is given by (10). The average covariance matrix is 

considered instead of the covariance matrix of each tests in 
order to reduce the amount of data to be processed during 
the Bayesian inference and because covariance matrices are 
very similar. Thus the likelihood reads:

where �k is given by (23) and where NM is the normal dis-
tribution of size M. It should be mentioned that the normal 

(34)
p(�) ∝ ∫��

∫��

(
K∏
k=1

p
(
�k|�� ,��

))
p(�� )

p(�� )d��d��

(35)V0 =
1

K

K∑
k=1

V
�
k

(36)�k|�k ∼ NM

(
�k,V0

)
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model (36) relies on the assumption that measurement noise 
and uncertainties due to imperfect knowledge of the experi-
mental setup are perfectly estimated by the statistic analysis 
proposed in section Statistical Analysis. Posterior density 
reads:

where p
(
�k|�� ,��

)
 is given by (31). Marginal posterior dis-

tributions are also computed:

Statistics of posterior probability density functions (38) are 
explored by Markov-Chain Monte Carlo (MCMC) sampling 
techniques. In practice, a No U-Turn Sampler (NUTS) devel-
oped by [16] is used within the framework of the PYMC3 
package developed by [33] in Python ([39]). Finally, the 
posterior density of the global material parameters � reads:

It should be noted that the hierarchical approach relies 
on hyperprior distributions instead of prior distributions. 
Therefore, resulting hyperprior parameters listed in Table 4 
cannot be directly reduced to prior distributions on Y0, �, n . 
Parameters �l,0 control the average values of material 
parameters and parameters sl,0 control the uncertainty on 
the estimation of �l,0 . Parameters Sl,0 control the range of 
possible values of material parameters and parameters �l,0 
control the uncertainty on Sl,0 . Parameters 

(
Sl,0, �l,0,�l,0, sl,0

)
 

with l ∈
{
Y0, �, n

}
 are listed in Table 4. These parameters 

have been set by using prior information. For instance, 

(37)
p
(
�k,�� ,�� |�k

) ∝ p
(
�k|�k

)
p
(
�k|�� ,��

)
p(�� )p(�� )

(38)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p
�
�k��k

� ∝ ∫��
∫��

p
�
�k,�� ,�� ��k

�
d��d��

p
�
�� ��1,⋯ ,�K

� ∝
K�
k=1

∫��
∫�k

p
�
�k,�� ,�� ��k

�
d��d�k

p
�
�� ��1,⋯ ,�K

� ∝
K�
k=1

∫��
∫�k

p
�
�k,�� ,�� ��k

�
d��d�k

(39)
p
(
�|�1,… ,�K

) ∝ ∫��
∫��

K∏
k=1

p
(
�k|�� ,��

)

p
(
�� |�1,⋯ ,�K

)
p
(
�� |�1,… ,�K

)
d��d��

quasi-static tests enable us to roughly estimate Y0 directly by 
determining an inflexion point on the stress–strain curve for 
small strains (see Fig. 9). In addition, n is roughly estimated 
from stress–strain curves. However, there is no a priori infor-
mation on � , therefore a significant uncertainty is associated 
to the corresponding hyperprior distributions.

Table 4  Parameters for 
hyperprior distribution

l Sl,0 �l,0 �l,0 sl,0

Y
0

16 10 100 15
� 500 10 3000 1000
n 0.03 10 0.2 0.02

Table 5  Comparison between prior and posterior distributions

Mean Standard deviation

Prior Posterior Prior Posterior

�
Y0

99.8 105.5 15.0 3.6
�

Y0
17.4 10.3 4.5 1.4

�� 2966.6 4502.9 980.1 692.4
�� 548.3 509.9 155.3 115.6
�
n

0.2 0.17 0.02 0.0041
�

n
0.03 0.019 0.008 0.0026

Y
0

99.9 105.7 23.4 5.1
� 2966.5 4523.9 1134.2 851.7
n 0.200 0.173 0.0388 0.0047

90 100 110 120 130 140

1000 2000 3000 4000 5000 6000 7000 8000 9000

0.155 0.160 0.165 0.170 0.175 0.180 0.185 0.190

37.25 37.00 36.75 36.50 36.25 36.00 35.75 35.50 35.25

Fig. 11  Material parameter posterior distributions
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Results

Among the K2 = 33 tests performed at 1000 s −1 , only K = 20 
tests are analyzed to sample posterior marginal distribu-
tions and the 13 remaining tests are used for a comparison 
to model predictions. Marginal posterior distributions of 
Y0, �, n,G

′
T
 are presented for all tests in Fig. 11. As already 

mentioned, the posterior distribution of G′
T
 is extremely sim-

ilar to its prior distribution, which was identified with stand-
ard Bayesian inference using data in quasi-static regime (see 
section Standard Bayesian Estimation). This is due to the 
fact that there is very little sensitivity of the tests in dynamic 
regime with respect to G′

T
 . These results clearly show the 

uncertainty of each test on the one hand and dispersion of 
distributions due to material variability and repeatability on 
the other hand. For the � parameter, all tests have almost 
the same posterior distribution. This behavior was expected 
from the sensitivity analysis proposed in section Sensitivity 
Analysis. Indeed, it has been shown that the SCG model 
(18) is mainly sensitive to variations of Y0 and n although 
� explains only 5.4% of the variance. Thus, differences 
between tests are hidden by the large uncertainty associated 
to � . Global marginal posterior distributions are inferred 
from (39) and are presented in Fig. 12. A comparison of 
mean and standard deviation between prior and posterior 
distributions is given in Table 5 in order to summary how the 
experimental data make evolve prior information.

Scatter-plots of marginal and pairwise joint densities are 
presented in Fig. 13 for test k = 1 (and similar results are 
obtained for the other tests). Probability density functions 
take place on the diagonal and scatter plots show the draws 
(produced by MCMC sampling) as a function of parameters 
pairs. A significant correlation between Y0 and � is observed. 
This correlation is due to the fact that the prior distribution of 
� spreads on a very wide range, and the model is only slightly 
sensitive to � as shown in section Sensitivity Analysis. Thus, 
large relative variations of � can be compensated by rather 
small relative variations of Y0 . Therefore, the significant uncer-
tainty associated to � has a negative influence on the posterior 
uncertainty associated to Y0 . Of course, using a more informa-
tive prior distribution with less dispersion for � would signifi-
cantly reduce this correlation. However, there is no a priori 
information that would justify such a choice. An other option 
to reduce the uncertainty associated to � and therefore the cor-
relation between � and Y0 would be to analyze the tests with-
out the equilibrium assumption. Indeed, as shown in Fig. 8, 
the equilibrium assumption implies to consider 𝜀 > 0.05 . 
Since the model is almost only sensitive to Y0 for low values 
of � , using the data for 𝜀 < 0.05 would enable to estimate Y0 
almost independently on � . However, releasing the equilibrium 
assumption is uneasy and would require complex treatments 
of the experimental signals.

In addition, no significant correlation is observed 
between n and other material parameters in Fig. 13. This is 
due to the fact that n controls the overall “curvature” of the 
stress–strain curve. Even though the experimental data have 
been considered for 𝜀 > 0.05 , the range of strain variation 
is sufficient to identify n almost independently on the other 
material parameters. Indeed, for n values not in the range 
presented in Fig. 12, it is possible to adjust Y0 and � so that a 
part of the corresponding stress–strain curve fits the experi-
mental data, but not on the entire range 0.05 ≤ � ≤ 0.38.

Maximum a posteriori (MAP) estimates are computed 
and listed in Table 6 to compute the calibrated model. The 
overall model uncertainty is directly computed as the inter-
val defined by the quantiles at 2.5% and 97.5% obtained 
from the draws of the model � , which are generated at the 
same time as the posterior distributions of material param-
eters Y0, �, n,G′

T
 . Good agreement is observed as shown for 

instance in Fig. 14 for different tests ( k = 1, 5, 10, 15 ). The 
model uncertainty has been computed for � ∈ [0.05, 0.38] as 
for the experimental data, but the MAP estimates have been 
used to compute the model also for 𝜀 < 0.05 to show how 
the model behaves for small deformations. In addition, the 
mean of individual MAP estimates gives a global material 
parameter estimate that enables us to compute global model 
predictions. Posterior predictive checks sampling techniques 
are also used to simulate future experimental tests on the 
basis of the calibrated model accounting for experimental 
uncertainties. A comparison with the 13 remaining tests at 

40 60 80 100 120 140 160 180

84.9 126

94% HDI

mean=105

0 2000 4000 6000 8000 10000

2904 6212

94% HDI

mean=4544

0.05 0.10 0.15 0.20 0.25 0.30

0.138 0.21

94% HDI

mean=0.174

Fig. 12  Marginal posterior densities for global parameters
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1000 s −1 (not used for the identification) is proposed. A good 
agreement is observed, as shown in Fig. 15 that is to say that 
the global average MAP predicts correctly the behavior of 
future tests.

Conclusion

This paper is an attempt to quantify uncertainties within the 
context of dynamic tests relying on a split Hopkinson pres-
sure bar system. A classic one-dimensional wave propaga-
tion model is used to transform strain gauge measurements 
into force and displacement at both ends of the specimen. 
The approach necessitates to determine uncertainties due 
to imperfect knowledge of the experimental setup. Each 
measured parameter is modeled as a random variable. Then, 
a simple statistical analysis simulates draws of stress and 
strain-rate as a function of strain in order to determine this 
uncertainty. Addressing such uncertainties is a good exper-
imental practice insofar as it leads to regularly and care-
fully measure components of the experimental setup with 
adapted measurement devices. An experimental campaign 
has been performed on the aluminum alloy AA7075-O in 
order to estimate material variability and repeatability of 
tests. Several tests have been performed for each experi-
mental condition. For each condition, the mean stress as a 
function of strain has been determined as well as the overall 
uncertainty (accounting for random measurement errors, 

Fig. 13  Scatter-plots of 
marginal and pairwise joint 
densities

Table 6  Maximum a posteriori estimates

� ≈ 3000,G�
T
≈ −36.2 MPa  K–1

k Y0 (MPa) n k Y0 (MPa) n

1 114.53 0.171 11 110.83 0.176
2 114.15 0.173 12 111.86 0.171
3 117.33 0.168 13 110.34 0.176
4 117.81 0.168 14 111.86 0.175
5 111.11 0.174 15 112.29 0.175
6 114.46 0.172 16 109.77 0.176
7 118.07 0.166 17 111.16 0.174
8 117.40 0.166 18 112.70 0.174
9 105.54 0.178 19 110.50 0.177
10 113.72 0.172 20 110.60 0.177
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imperfect knowledge of the experimental setup, mate-
rial variability and repeatability of tests). A simple Stein-
berg–Cochran–Guinan (SCG) behavior model has been 
calibrated because the studied material does not present 
significant dependance on strain-rate. Bayesian estimation 
has been performed to identify material parameters. Results 
are given as posterior probability density functions and the 
resulting overall uncertainty on material parameters is there-
fore clearly quantified. The fitted model agrees well with the 
measurements and model uncertainties are reasonable even 

though it has been shown that there is very little sensitivity 
of the SCG model with respect to one parameter, leading to 
significant uncertainty on this parameter. Thus, alternative 
models for which the sensitivity is similar for all parameters 
would reduce the overall uncertainty exhibited in this study.

The systematic quantification of uncertainties in dynamic 
tests opens interesting perspectives to analyze the response of 
structures and materials to impact, as calibrated models are 
generally extrapolated to conditions that have not been tested 
experimentally. Of course, this extrapolation should be limited 
to conditions involving the same physical phenomena as those 
actually tested. In addition, the probabilist framework consid-
ered in this paper enables to simply introduce uncertainties 
in the definition of design criteria to accommodate high-rate 
loading.
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and expertise and Cyril Bolis (CEA) for fruitful discussions.

Appendix: Confidence Intervals

For each strain �m ( 1 ≤ m ≤ M ), confidence intervals can be 
defined for the estimations (10) in order to determine a rea-
sonable number of draws N that can be considered. The confi-
dence intervals for estimating the mean and standard deviation 
are respectively denoted by IN and JN and defined by:
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Fig. 14  Experimental data of each and calibrated models for k = 1, 5, 10, 15
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Fig. 15  Remaining experimental data, global model and predictive 
checks
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where v1−�∕2 and v�∕2 are quantiles of the Chi-square density 
function �2

(N−1)
 of order 1 − �∕2 and �∕2 respectively and 

t1−�∕2 the quantile of the Student density function T(N−1) of 
order 1 − �∕2 . Confidence intervals at 95% are listed in 
Table 7 for � ≈ 0.09 (similar results are obtained for different 
values of strain). It is clear that N = 10, 000 is a good com-
promise between computation time and accuracy.
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