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Abstract
Many split Hopkinson pressure bar (SHPB) or Kolsky bar techniques use pulse shaping methods to obtain constant engi-
neering strain rate for the specimen response. However, constitutive models for numerical simulations use the axial rate of 
deformation which is the true axial strain rate. In this study, we present an equation for the incident bar strain produced by 
a truncated conical striker bar. These incident bar strains are shaped so that we can obtain constant true strain rate for the 
specimen.
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Introduction

Constitutive models obtained from large strain compression 
data are typically fit to curves at nearly constant engineer-
ing strain rates [1]. For Kolsky bar experiments, constant 
engineering strain rates can be obtained with pulse shap-
ing techniques that produce the desired wave shapes in the 
incident bar. The most common method for pulse shaping is 
to place copper [2] or copper-steel [3] discs on the impact 
surface of the incident bar. After impact by the striker bar, 
the pulse shaper plastically deforms and spreads the pulse in 
the incident bar so that the specimen reaches dynamic force 
equilibrium and constant engineering strain rate.

However, as discussed in [4], constitutive models used 
for numerical simulations use the axial rate of deforma-
tion which is the true axial strain rate. Casem [5] presents 
a variable impedance, inverse approach [6] for the striker 
bar design. This method is used to design the striker bar 
cross-section to shape the incident strain pulse and obtain 
constant true strain rate for the specimen response. This 
wave shaping technique uses a thin copper disc or a small 
amount of grease on the incident bar and striker bar with a 
variable cross section. The striker bar consists of a series 

of cylindrical sections that decrease in diameter away from 
the impact end. Wave motion in the segmented striker bar 
is calculated with a detailed numerical analysis. Casem [5] 
demonstrates his procedure with experiments conducted on 
nylon specimens for a true strain rate of about 2500 1/s and 
axial strains that reach 0.60.

We observe that the striker bar with a series of cylindri-
cal sections used in [5] could be closely approximated with 
a smooth, conical striker bar that simplifies the machining. 
More important, the conical striker bar wave motion could 
be analyzed with classical mathematical methods to obtain 
closed-form equations. For this study, we derive closed-
form equations with the Laplace transform method for the 
stress and strain in the incident bar impacted by a conical 
striker bar. We compare our incident strain–time predictions 
with the predictions given by Casem [5] and show good 
agreement.

Conical Striker Model

A truncated conical striker bar with length L impacts a cylin-
drical incident bar with velocity V. As shown in Fig. 1, the 
larger striker bar end and the incident bar have diameter 2a. 
The smaller striker bar end diameter is 2b. Both bars have 
the same material properties given by density ρ and Young’s 
modulus E. The wave velocity is given by c =

√

E∕� . We 
solve for the incident stress pulse with the Laplace transform 
method.
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Figure 2 shows the conical striker bar coordinates. The 
wave equation in terms of particle displacement u [7, 8] is

where u is positive in the x-direction, and t is time. Axial 
stress and strain are related to particle displacement with

where σ is taken positive in tension.
We use the Laplace transform method [9] and transform 

Eq. (1) to

where u(x, s) is the Laplace transform of u(x,t). Before 
impact

and the transformed equation becomes

For a wave traveling in the negative x-direction, Eq. (3) has 
solution
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where A is a constant. The transformed stress � and particle 
velocity � are

The wave equation for the incident bar in terms of particle 
displacement u [7, 8] is

where u is positive in the x-direction. Axial stress and strain 
are related with

where σ is positive in tension.
We transform Eq. (7) and obtain

where the incident bar is initially at rest. For a wave traveling 
in the x-direction
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Fig. 1  Conical striker and inci-
dent bar before impact

Fig. 2  Coordinate system for 
the conical striker bar
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where D is a constant. The transformed stress and particle 
velocity are

Now, we solve for the constant D needed in Eq. (11). At x = l, 
the cross-sectional bar areas are equal, so for equal particle 
velocities and stresses at the interface

We obtain the constant D from Eq. (13a) and (13b). The 
transformed incident bar stress is

We take the inverse transform of Eq. (14) and obtain

where H is the Heaviside unit function. At the striker bar-
incident bar interface, x = l, and

At the wave front,t = (l − x)∕c

For applications, the length l in the incident bar equation 
must be related to the conical striker geometry. From Figs. 1 
and 2

The stress wave in the incident bar is non-dispersive. Thus, 
the stress-time response given by Eq. (16) moves in the 
x-direction at propagation velocity c. This is expressed math-
ematically by Eq. (15). The incident stress pulse duration is
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In addition, we point out that the stress equation for a 
cylindrical striker bar [10, 11] is the same as that given 
by Eq. (17) for the wave front stress. In the next section, 
we show that the stress-time response in the incident bar 
decreases behind the wave front for a conical striker bar.

Incident Strain Pulses

Casem [5] presents a method to determine the shape of 
the incident pulse needed to obtain a nearly constant true 
strain rate of 2500 1/s for a nylon specimen. Then, he uses 
a detailed numerical method to obtain the shape of a seg-
mented aluminum striker bar to produce this pulse in an 
aluminum incident bar. In this section, we compare results 
from our conical striker bar model with the desired incident 
pulse presented by Casem [5].

Experiments [5] were conducted with 7075-T651 alu-
minum bars with Young’s modulus, density, and wave veloc-
ity given by E = 73.9 GPa, ρ = 2810 kg/m3, and c = 5130 m/s. 
The incident bar and segmented striker bar at the impact end 
had a diameter of 19.05 mm. The segmented striker bar had 
a series of 20 cylindrical sections with decreasing diameters 
away from the impact end. The segmented striker bar had 
a length of 680 mm and a diameter of 14 mm at the end of 
the striker bar.

For our model, the geometry for the conical striker bar 
is shown in Fig. 1. We take 2a = 19.05 mm and L = 680 mm 
to have the same pulse duration as that given in [5]. From 
Eq. (19), the incident pulse duration is 0.265 ms. To design 
the conical striker bar, we have one adjustable parameter, 
namely 2b as shown in Fig. 1. We start with 2b = 14 mm as 
given in [5] and vary the parameter 2b in Eqs. (18) and (16) 
until we have a close fit to the desired incident pulse given in 
[5] which has a wave front strain of V∕2c = 1360 ��.

Figure 3 shows the desired incident pulse [5] and the 
pulse predicted by the conical striker bar model given by 
Eqs. (18) and (16) with value of 2b = 14 mm. In Fig. 3, time 
is measured from the arrival of the wave front of the pulse 
traveling at c = 5130 m/s. Clearly, predictions from the coni-
cal striker bar model are in good agreement with the desired 
pulse presented by Casem [5].

Summary and Discussion

We derived a closed form equation that predicts the inci-
dent stress pulse produced by a truncated conical striker bar. 
This equation can be used as a convenient alternative to the 
detailed numerical method presented by Casem [5] in his 
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procedure to obtain a constant true strain rate for Kolsky 
bar experiments.

Reference [4] presents a procedure that uses data with 
constant engineering strain rate to obtain a constitutive 
equation in terms of true strain rate. By contrast, Casem 
[5] present an experimental method to directly obtain true 
strain rate, However, both studies showed only minor dif-
ferences between true stress versus true strain predictions 
from experiments conducted with engineering and true 
strain rates. These comparisons are presented for 4340 Rc 
45 steel for true strains to 0.15 [4] and nylon for true strains 
to 0.60 [5].
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Fig. 3  Incident strains versus 
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