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Abstract
We report a preliminary computational study of the rate-dependent behavior of a polycrystal magnesium alloy under varying 
levels of stress triaxiality conditions. Smooth and notched round bar specimens with a strong initial texture are considered to 
achieve different levels of stress triaxiality. Full three-dimensional crystal plasticity simulations are conducted, which mimic 
tensile Kolsky bar experiments. The results indicate that the material rate sensitivity couples with the stress state to produce 
qualitatively different macroscopic responses that are governed by the interacting microscale deformation mechanisms. While 
the smooth specimens show macroscopic strain localization resulting in stress softening immediately following the initial 
yield, notched bars exhibit increasingly stable responses with increasing notch acuity. Deformation anisotropy is tempered 
with increasing stress triaxiality and strain rate. A micromechanical analysis of the deformation activities is presented to 
explain the macroscale responses. Stress triaxiality distributions in the notch regions provide insights into probable damage 
mechanisms as a function of the imposed strain rate.

Keywords Magnesium alloys · Crystal plasticity · Stress triaxiality · Material rate sensitivity

Introduction

Recent experiments on magnesium (Mg) alloys assert the 
interacting effects of microstructure and stress state on their 
macroscopic strength and damage tolerance. Together with 
high resolution computational modeling and simulation, a 
quantitative understanding of the underlying micromecha-
nisms is beginning to emerge [14]. One consistent feature as 
evidenced from multiaxial experiments and modeling is the 
importance of texture and intrinsic crystallographic plastic 
anisotropy in their uniaxial and multiaxial responses [1, 3, 
6, 11, 23, 27].

Another important effect is the role of loading rate on the 
macroscopic response of Mg alloys. A number of experi-
mental reports on assessing the rate-dependent behaviors of 
different Mg alloys have emerged. The reader is referred to 
the succinct review by Prasad et al. [15]. Key takeaways are: 

(i) Mg alloys loaded along a direction that causes profuse 
extension twinning exhibit a lower rate sensitivity of the flow 
stress compared to the directions along which slip mecha-
nisms dominate the flow stress, (ii) deformation localizes 
into multiple shear bands, and (iii) texture plays a role on 
the strain to failure. Experiments conducted at even higher 
strain rates, ∼ 104 s −1 (using miniaturized Kolsky bar appa-
ratus [8]) and ∼ 105 s −1 (plate impact experiments [28, 31]) 
assert this assessment by Prasad et al. [15] but also provide 
deeper insight into the deformation and failure mechanisms 
as a function of the loading state and initial microstructural 
details (e.g. texture). For instance, the compressive strain-
to-failure (defined empirically as the critical strain beyond 
which a persistent stress decrease occurs), which is driven 
by shear localization, increases with increasing strain rate 
regardless of the loading direction. In comparison, at slower 
strain rates ( ∼ 10−3 s −1 ) the failure strain is anisotropic with 
a consistently higher value for specimens loaded along the 
directions that promote extension twinning [15, 18].

Yet another aspect that has been of interest is the tem-
perature rise at dynamic rates of loading. To that end, we 
refer to the detailed experiments on AZ31 Mg alloys [5, 10]. 
Their careful analysis reveals that the average temperature 
rise even at very high rates of loading ( ∼ 105 s −1 ) may be 
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modest—on the order of 15–50 ◦ C (also see [31]). In other 
words, thermal effects on the material strength may be small 
at least under the assumption of homogeneous deformations. 
Shear bands may result in a much larger local temperature 
rise, which can then affect the strength and activity of the 
deformation mechanisms [10].

These and similar works provide useful insight into the 
high rate behavior of Mg alloys under compressive defor-
mation states. In comparison, investigations on Mg alloys 
under dynamic tensile deformation states are scant [26, 29], 
although they may set more stringent conditions from the 
viewpoint of ultimate failure limits. Moreover, the state of 
stress is nominally uniaxial in most cases (save for the plate 
impact experiments [28, 31] and the shear-compression 
experiments [5]). A detailed investigation of the role of 
stress triaxiality ( T = Σm∕Σeq where Σm is the macroscopic 
hydrostatic stress and Σeq the von Mises equivalent stress) 
and its interaction with the mechanism-based plastic anisot-
ropy is particularly important to Mg alloys because of the 
implications on failure [9, 16, 17, 24], let alone when the 
applied strain rate becomes a factor. Tensile experiments 
on AZ31 and WE43 notched round bars at slow strain rates 
( ∼ 10−3 s −1 ) reveal several discriminating features not com-
monly observed in ductile metals, which include: (i) shear 
failure in smooth round bar specimens, and (ii) a non-mono-
tonic dependence of fracture strains on the notch acuity with 
peak ductility occurring at intermediate values of T  [11, 12]. 
This hints at more complex interactions between texture and 
failure mechanisms than currently appreciated.

Recent efforts on the rate-dependent uniaxial tensile 
behavior of rolled Mg alloys [4, 25, 26, 29] indicate that 
at room temperature both the hardening response and the 
maximum elongation increase with increasing strain rate 
along the rolling as well as the in-plane transverse direc-
tions, in effect reducing the overall anisotropy in damage 
that is observed at slow loading rates. Although the mate-
rial strain rate sensitivity is known to be a stabilizing fac-
tor, its coupling with stress triaxiality remains largely 
unexplored. To our knowledge, only the most recent work 
by [7] investigates the role of stress triaxiality in the rate-
dependent behavior of rolled AZ31 Mg alloys over a range 
of strain rates, from 10−3 to 104 s −1. Their experiments reveal 
a qualitative effect on the stress–strain response when the 
high strain rate is imposed on relatively sharp notched bar 
specimens. For specimens loaded along the rolling direc-
tion at strain rates ≳ 103 s −1, the tensile response switches 
from a conventional power-law/saturation hardening type 
to a sigmoidal type, indicating profuse extension twinning. 
Notably, such a behavior is observed in specimens with 
a high notch acuity, which suggests an intricate coupling 
between the stress triaxiality and strain rate. On a broader 
note, one may posit that there exists a critical combination of 
strain rate and stress triaxiality which effects a fundamental 

switch in the dominant deformation mechanism. Granted 
this postulate, it then becomes imperative to investigate the 
strain rate–notch acuity combinations that bring about such 
a qualitative change in the response.

With this in mind, we take a step towards understanding 
the connections between stress triaxiality and material rate 
dependence in Mg alloys using a high resolution compu-
tational modeling and simulation approach. Recently, we 
investigated the interplay between the stress triaxiality and 
intrinsic plastic anisotropy in Mg that revealed complex 
characteristics of the macroscopic deformation anisotropy 
and their micromechanical underpinnings in single [19] and 
polycrystalline [20] notched specimens at a nominal strain 
rate of 10−3 s −1. Those works clarify the role of the aggregate 
(intrinsic crystallographic as well as texture-induced) plastic 
anisotropy in the deformation stability of Mg alloys under 
triaxial stress states.

Motivated by the experiments of Kale et al. [7], we per-
form three-dimensional, finite deformation based crystal 
plasticity finite element simulations over strain rates rang-
ing from 10−3 to 103 s −1. The objective here is to assess the 
fundamental effect of the material rate sensitivity on the 
rate-dependent behavior of an Mg alloy under varying lev-
els of induced stress triaxiality conditions. We should note 
three key limitations of this work: first, it does not consider 
the effect of material inertia in the rate-dependent response. 
Second, we ignore the effect of temperature rise on the 
mechanical response. Third, the framework is based on a 
damage-free constitutive description and hence, no damage 
evolution is modeled. With these caveats, the results provide 
a glimpse of the intrinsic coupling between the strain rate, 
deformation mechanisms, and the stress triaxiality.

Computational Framework

The crystal plasticity model for hexagonal single crystals 
developed by [30] and implemented as a User MATerial 
(UMAT) subroutine in ABAQUS/STANDARDⓇ [21] is 
adopted as the constitutive framework. It comprises 18 slip 
and 12 twin systems (Table 1).

Crystal Plasticity Formulation

The transversely isotropic elastic response is accounted 
for by using the following elastic constants (in GPa) [22]: 
C11 = 59.4,C12 = 25.61,C13 = 21.4,C33 = 61.6 and C44 =

16.0.

The total deformation gradient � is multiplicatively 
decomposed into elastic �e and plastic �p components, i.e. 
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� = �
e
�
p. The spatial velocity gradient is the sum of an elas-

tic ( �e ) and a plastic ( �p ) part

where �̇ is the material derivative of �. The plastic velocity 
gradient ( �p ) is computed in the current configuration as 
the sum of three parts: slip in the parent region, twin in the 
parent region

where � and � respectively refer to slip systems and twin 
systems in the parent region; the model accounts for Ns = 18 
slip and Ntw = 12 denote twin systems. The shear rate on the 
system i is denoted by �̇� i where i = � or �. The twin volume 
fraction of the �th twin system is denoted as f � . The slip/
twin plane normal and direction vector of the ith system, in 
the current configuration, are denoted as �i and �i respec-
tively. Details of the model can be found in [30]; below, we 
briefly present the constitutive relations. 

(1) Constitutive equations for slip: The slip rate �̇� i on the 
ith slip system is described by a visco-plastic power 
law: 

(1)
� = �̇�

−1 = �
e + �

e
�̃
p(�e)−1

���������
�p

,

(2)

�
p =

(
1 −

Ntw∑
𝛽=1

f 𝛽

)
Ns∑
𝛼=1

�̇�𝛼(�𝛼 ⊗�
𝛼)

�������������������������������������������
slip in parent

+

Ntw∑
𝛽=1

�̇�𝛽(�𝛽 ⊗�
𝛽)

�����������������
twin in parent

,

(3)�̇�𝛼 = �̇�0
||||
𝜏𝛼

g𝛼

||||
1∕m

sign(𝜏𝛼),

where �� = �
�
⋅ � ⋅ �

� is the resolved shear stress 
(RSS) based on the Schmid law and g� is the current 
strength of the αth slip system. The reference slip rate 
�̇�0 = 3.0 s−1 and the inverse rate-sensitivity exponent 
1∕m = 100. g� is calculated as the sum of the initial 
strength 

(
��
0

)
, the hardening due to slip–slip 

(
ġ𝛼
sl−sl

)
 and 

twin–slip 
(
ġ𝛼
tw−sl

)
 interactions. 

where ġ𝛼
sl−sl

 is given by 

with hij the hardening moduli for self ( i = j ) and latent 
( i ≠ j ) hardening. hij depends on the total accumulated 
shear strain ( ̄𝛾 ) on all slip systems, i.e. �̄� =

∑Ns

i=1

ti∫
t0

�̇� idt 

and hij is 

For simplicity, we set q = 1. The basal and non-basal 
slip systems harden as follows: 

where hi
0
 is the initial hardening modulus and � i

s
 the 

saturation stress of the ith slip system.
(2) Constitutive equations for twinning: The extension (ET) 

and contraction (CT) twin volume fraction rates in the 
parent region are given by 

where �� is the RSS and s� is the current strength of 
the �th twin system. The average reference twin vol-
ume fraction rates of ET and CT are ḟ 0

et
= 3.0 s−1 and 

ḟ 0
ct
= 0.3 s−1. The rate-sensitivity exponent 1∕mt = 100 

for both, ET and CT systems. The rate of plastic shear 
�̇�𝛽 on �th twin system is related to ḟ 𝛽 via 

where � tw is the theoretical twinning shear. For Mg, 
� tw = 0.129 and 0.138 for ET and CT respectively. s� is 
calculated as the sum of the initial CRSS 

(
�
�

0

)
, the 

(4)g𝛼 = 𝜏𝛼
0
+ ∫

ti

t
◦

(ġ𝛼
sl−sl

+ ġ𝛼
tw−sl

) dt,

(5)ġ𝛼
sl−sl

=

Ns∑
j=1

hij(�̄�)�̇�
j

(6)hij =

{
h(�̄�) (i = j),

qh(�̄�) (i ≠ j).

(7)h(�̄�) =

⎧⎪⎨⎪⎩

h0, (basal slip),

hi
0
sech2

����
hi
0
�̄�

𝜏 i
s
−𝜏 i

0

����, (non-basal slip),

(8)ḟ 𝛽 =

⎧⎪⎨⎪⎩

ḟ 0
et

�
𝜏𝛽

s
𝛽
et

�1∕mt

, (ET),

ḟ 0
ct

�
𝜏𝛽

s
𝛽
ct

�1∕mt

, (CT),

(9)�̇�𝛽 = ḟ 𝛽𝛾 tw,

Table 1  Slip and twin systems considered in this work

Slip/twin plane Slip/twin direction Number 
of sys-
tems

Basal slip (0001) ⟨112̄0⟩ 3
Prismatic ⟨a⟩ slip

{
101̄0

} ⟨112̄0⟩ 3
Pyramidal ⟨a⟩ slip

{
101̄1

} ⟨112̄0⟩ 6
Pyramidal ⟨c + a⟩ 

slip

{
112̄2

} ⟨112̄3⟩ 6

Extension twinning 
(ET)

{
101̄2

} ⟨101̄1⟩ 6

Contraction twin-
ning (CT)

{
101̄1

} ⟨101̄2̄⟩ 6
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hardening due to twin–twin ṡ𝛽tw−tw and slip–twin ṡ𝛽
sl−tw

 
interactions. 

The extension twin systems are assumed to follow a 
saturation type hardening due to twin–twin interaction 

where h�et is the initial hardening modulus and ��s_et is 
the saturation stress for ET. �̄�et is the total shear strain 
on all ET systems. The hardening of contraction twin-
ning systems is given by 

where Nct is the total number of CT systems. Hct and b 
are hardening parameters for CT. We assume ṡ𝛽

sl−tw
= 0 

while ġ𝛽
tw−sl

 in Eq. (4) is given by 

For a particular twin mode, when the total twin v.f. on all 
its twin systems reaches a critical value fcr (set equal to 
0.9) the finite element (FE) volume represented by a Gauss 
point (GP) is reoriented from its original orientation to the 
twinned one; the twin system that possesses the largest 
twin v.f. is chosen as the orientation of the twinned lattice. 
See Ref. [30] for details.

Simulation Set‑Up

Figure 1a–c depicts typical meshes used in the calculations 
for the smooth and notched specimens. These are the same 
geometries adopted in our recent work [20], which mimic 
the experimental protocol of Kondori and Benzerga [11], 
which considers rolled AZ31 alloy. The round notched speci-
mens are identified by RN� with � = 10R∕�0 where R is the 
notch radius. The rolled plate, from which the specimens 
are extracted, is defined by three principal directions: trans-
verse (�), rolling (�) and normal (�) . In our simulations, 
these directions are aligned with the global �, � and � axes, 
respectively. All specimens are loaded in tension along � 
(the global � axis) with a constant velocity v0 applied at 
the top surface of the specimen keeping the bottom surface 
fixed along � with sufficient constraints to suppress rigid 

(10)s𝛽 = 𝜏
𝛽

0
+ ∫

ti

t
◦

(
ṡ
𝛽
tw−tw + ṡ

𝛽

sl−tw

)
dt.

(11)ṡ
𝛽
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𝛽
etsech

2

||||||
h
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𝜏
𝛽
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𝛽

0_et

||||||
�̇�𝛽 ,

(12)ṡ
𝛽
tw−tw = Hct

(
Nct∑
m=1

f m

)b

�̇�𝛽 ,

(13)ġ
𝛽

tw−sl
=

⎧⎪⎨⎪⎩

h
𝛽

et_sl
sech2

����
h
𝛽

et_sl
�̄�et

𝜏
𝛽
s_et−𝜏

𝛽
◦_et

�����̇�
𝛽 , (ET),

0.5Hct_sl(�̄�ct)
−0.5�̇�ct, (CT).

body motion. The constant nominal strain rate ̇̄𝜀 = v0∕L0, 
where v0 is the prescribed velocity and L0 is the length of the 
specimen. Three cases are considered ̇̄𝜀 = 1 × 10−3, 1 × 101 
and 1 × 103 s −1. For details on creating the polycrystal geom-
etries and their finite element rendering the reader is referred 
to Ref. [19] together with the mesh sensitivity analysis at 
slow strain rate. Here we provide a brief outline. For a 
given geometry (smooth or notched), a grain is defined by 
grouping a fixed number of elements and assigning a unique 
crystallographic orientation to that element group. For the 
smooth specimen, the entire volume is divided into several 
grains whereas for the notched specimens, only the notch 
volume is considered for the polycrystalline representation 
while the remaining region is assigned a fixed single crystal 
orientation. The number of elements that constitute a grain 
is different for different specimens; however, the total num-
ber of grains Ng in each specimen is kept approximately 
the same so that a systematic comparison can be made for 
a family of smooth and notched specimens with the same 
initial texture (Table 2). 

Each grain is defined by an Euler angle set 
{E} = {�1,Φ,�2}, comprising the Euler rotation angles 
associated with that grain. In a single crystal setting, 
the [101̄0] and [0001] directions of a grain are aligned 
with the global � and � directions, respectively. Subse-
quently, each grain is rotated following the Bunge rota-
tion scheme, which determines its actual orientation with 
reference to the material principal directions (cf. Table 3). 
Given Ng grains in a specimen, the required Ng Euler 
angle sets are generated assuming normal distributions 
of the Euler angles (with mean value equal to zero) and 
defining their standard deviations {E�} = {��

1
,Φ� ,��

2
}. 

From the three distributions, an Euler angle set is 
formed by randomly picking �1,Φ and �2 from the dis-
tributions with −3��

1
≤ �1 ≤ 3��

1
, −3Φ� ≤ Φ ≤ 3Φ� and 

−3��
2
≤ �2 ≤ 3��

2
, respectively. The so-generated tex-

ture is represented as a pole figure plotted using the open 
source package MTEX [2]. The stress state at a material 
point (denoted by a position vector x ) is characterized by 
the local stress triaxiality, T(x) = �h(x)∕�e(x) where �h(x) 
is the local hydrostatic stress and �e(x) the local von Mises 
equivalent stress.

The effect of initial texture, stress triaxiality and crystal-
lographic plastic anisotropy on the following macroscopic 
quantities will be of interest in the remainder of the paper; 
first, the normalized load is given by 

(
F∕A0

)
, where F is the 

total force along the loading direction and A0 is the initial 
cross sectional area at the notch root. Second, the deforma-
tion anisotropy ratio which is a useful metric to quantify 
the macroscopic anisotropy. For loading along �, the anisot-
ropy ratio �

�
 is defined as the ratio of the diametric strain 

along � to the diametric strain along �; i.e. �
�
= �

�
∕�

�
 where 
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�� = ln
(
��∕�0

)
 in the direction �; �� is the current charac-

teristic specimen diameter and �0 is the initial characteristic 

diameter. In addition to these macroscopic quantities, we 
also highlight the role of initial texture and stress state in 
determining the deformation micromechanics and texture 
evolution. The following macroscopic quantities will also 
be used in the paper: the normalized diametric reduction (
�� = Δ��∕�0

)
 where Δ�� is the reduction in diameter 

along direction � (where � = � or � ) and the total areal strain 
�
�
= �

�
+ �

�
.

The material parameters identified in Eqs. (3)–(13) are 
given in Table 4 and are representative of an AZ31 Mg alloy 
[20].

Fig. 1  Finite element rendering 
of smooth and notched round 
bar geometries. �c = 7 mm, 
�0 = 3.9 mm

Table 2  Details of polycrystal 
geometry and finite element 
mesh density per grain

Specimen # FE/grain Ng

Smooth 32 680
RN10 16 630
RN2 8 640
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Results

For simplicity, results are presented only for a single texture 
case {E} = {�1,Φ,�2} = {10, 0, 0}, which mimics a poly-
crystalline material with an extremely strong texture close to 
a single crystal. A more detailed analysis will be presented 
in a follow-up paper.

Figure 2a and b respectively show the initial 
(
101̄0

)
 

and (0001) pole figures for the polycrystal texture con-
sidered in this work ( {E�} = {10◦, 0◦, 0◦} ). For reference, 
Fig. 2c shows the 

(
101̄0

)
 pole figure for a single crystal. 

For the polycrystal and single crystal, Fig. 2b is the (0001) 

pole figure. Note that the (0001) intensity in both cases 
is unchanged for the chosen {E�}. On the other hand, the (
101̄0

)
 peak intensity of the textured polycrystal (Fig. 2a) 

is somewhat lower than that of the single crystal (Fig. 2c). 
In other words, increasing ��

1
 causes increased spread of 

[101̄0] of the grains away from � in the plane of the sheet 
while the (0001) pole figures do not change because the 
rotation is about the [0001] axis of the grains. Such a poly-
crystalline microstructure roughly resembles a strongly 
textured material produced by severe plastic deformation, 
for example, rolling.

Table 3  Effect of Euler rotations on the final orientation of the of the grain

Rotation angle Rotation axis w.r.t. Cartesian (respectively crystal) 
co-ordinate system

Effect on crystal orientation

�
1

Initial �([0001]) Rotation of [101̄0] in the plane of the sheet
Φ Rotated � 

([
101̄0

])
Rotation of [0001] away from the sheet normal direction

�
2

Rotated �([0001]) Rotation of [101̄0] out of the plane of the sheet

Table 4  Material parameters for Mg alloy

�
0
 (MPa) h

0
 (MPa) �s (MPa)

Basal slip 10 50 –
Prismatic ⟨a⟩ slip 55 1500 110
Pyramidal ⟨a⟩ slip 55 1500 110
Pyramidal ⟨c + a⟩ slip 60 3000 170

�
0
 (MPa) het (MPa) �s_et (MPa) het_sl (MPa)

Extension twinning 15 120 30 120

�
0
 (MPa) Hct (MPa) Hct_sl (MPa) b

Contraction twinning 85 6000 15 0.05

(a) (b) (c)

Fig. 2  Panel a shows the [101̄0] pole figure of the polycrystal con-
sidered in this work. Panel b is the corresponding [101̄0] pole figure, 

which also represents a single crystal. Panel c shows the reference [
101̄0

]
 pole figure  for a single crystal (��

1
= Φ� = ��

2
= 0◦) . Results 

for the single crystal case are not presented in this work
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Overall Load–Deformation Response

Figure 3 shows the load versus diametric reduction for the 
each specimen over six decades of strain rates. Several sali-
ent features are observed in the rate-sensitive responses. For 
smooth specimens the responses are anisotropic at all three 
rates but the deformation anisotropy is much stronger for 
̇̄𝜀 = 10−3 s−1 and ̇̄𝜀 = 101 s−1. This is a direct consequence 
of the deformation anisotropy along the two principal direc-
tions � and � . For instance, at ̇̄𝜀 = 10−3 s−1, �

�
= 0.038 and 

�
�
∼ 0.0027 at the peak load (F∕A0)peak = 214 MPa. Simi-

lar situation exists for the ̇̄𝜀 = 101 s−1 case. In compari-
son, the deformation anisotropy is somewhat tempered at 
̇̄𝜀 = 103 s−1. The precipitous softening is a result of strain 
localization, which persists over the entire range of strain 
rates considered here. The strain localization phenomenon 
at quasi-static strain rate was previously reported by [19].

In comparison, both notched specimens show a tempered 
response anisotropy, and this improves with increasing notch 
acuity. In other words, for a given ̇̄𝜀 the response is less 
anisotropic for RN2 compared to the RN10 specimen. On 
the other hand, for a given notch acuity (say RN10), the 
response is more anisotropic at a higher ̇̄𝜀. Interestingly, 
higher strain rates exhibit a more stable load–deformation 
response in both notched bars, which alludes to the coupling 
between the stress triaxiality and strain rate.

Figure 4 shows the normalized load at a nominal axial 
strain ( �nom ) of about 0.02 as a function of the nominal 
applied strain rate. As seen, the apparent rate sensitivity is 
higher for the RN10 and RN2 specimens compared to the 
smooth specimen, which quantifies the coupling between the 
stress triaxiality and the material rate dependence.

0 0.008 0.016 0.024 0.032 0.04
0

100

200

300

400

500

(a) Smooth

0 0.02 0.04 0.06 0.08 0.1
0
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900

(b) RN10

0 0.03 0.06 0.09 0.12 0.15
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(c) RN2

Fig. 3  Normalized load vs normalized diametric reduction responses 
for a Smooth, b RN10, and c RN2 specimens as a function of the 
nominal strain rate ( ̇̄𝜀)

10-4 10-2 100 102 104
0

100

200

300

400

500
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Fig. 4  Rate-dependence of normalized load ( F∕A0)
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Deformation Anisotropy

Figure 5a–c show the variation of �
�
= �

�
∕�

�
 for different 

specimens as a function of imposed strain rate. For the sin-
gle crystal case, �

�
 is not unity and varies with triaxiality 

at quasi-static loading rates; see [19] for more details. On 
that backdrop, we observe several interesting features aris-
ing from the coupling between the stress-triaxiality effect 
and the strain rate. First, for a fixed strain rate the deforma-
tion anisotropy decreases with increasing notch acuity. This 
observation is consistent with the previous results based on 
quasi-static strain rates [11, 19, 20]. In the smooth speci-
men, �

�
> 1, which means 𝜀

�
> 𝜀

�
. The lateral deformation 

of the bar is highly anisotropic ( �
�
≫ 1 ) at ̇̄𝜀 = 10−3 s−1 

and ̇̄𝜀 = 101 s−1 and it continues to increase with increasing 
deformation. However, when the same bar is subjected to 
̇̄𝜀 = 103 s−1, the deformation anisotropy is nearly an order 
of magnitude smaller and exhibits much slower increase, 
although it still is greater than unity. In RN10 and RN2 
specimens, the rate-dependence is reversed. The deforma-
tion anisotropy is higher at ̇̄𝜀 = 103 s−1. In RN10, �

�
> 1 but 

is non-monotonic with the strain rate such that for a fixed �A, 
�
�
| ̇̄𝜀=103 s−1 > �

�
| ̇̄𝜀=10−3 s−1 > �

�
| ̇̄𝜀=101 s−1 . On the other hand, 

in the RN2 case, �
�
| ̇̄𝜀=103 s−1 > �

�
| ̇̄𝜀=10−3 s−1 ≈ �

�
| ̇̄𝜀=101 s−1 . 

For ̇̄𝜀 ≤ 10 s−1, �
�
 rapidly decreases from a value much 

greater than unity to �
�
< 1 in the regime 𝜀A ≲ 0.03, which 

signifies 𝜀
�
< 𝜀

�
. This behavior is qualitatively distinct from 

the smooth and RN10 specimens subjected the same strain 
rates.

Deformation Micromechanics

The micromechanics that drives the observed dependence 
of �

�
 on initial texture and triaxiality can be understood by 

studying the underlying deformation mechanisms. The rela-
tive activity 

(
�
�
)
 is a useful measure to quantify the relative 

magnitude of rate of strain accrual on one slip/twin system 
compared to the others. Thus, for each slip/twin system

Equation (14) quantifies the relative amount of strain accom-
modated on various slip/twin systems. Here Ngp is the total 
number of Gauss points in the volume over which averaging 
is performed, Ωi is the FE volume represented by ith Gauss 
point, Δ��

i
 is the increment in plastic strain on the �th system 

and ΔΓi =
∑N

�=1
Δ��

i
 is the increment in the cumulative plas-

tic strain on all N = Ns + Ntw deformation systems at that 
Gauss point. For the smooth specimen, volume averaging is 
performed over the entire sample whereas for the notched 
specimens it is performed over the notch volume.

(14)�
�
=

∑Ngp

i=1
Δ��

i
Ωi

∑Ngp

i=1
ΔΓiΩi

.

0 0.02 0.04 0.06 0.08 0.1

1.5

3

4.5

6

7.5

9

10.5

12

13.5

15

(a) Smooth

0 0.02 0.04 0.06 0.08 0.1
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(b) RN10

0 0.02 0.04 0.06 0.08 0.1
0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

(c) RN2

Fig. 5  Rate-dependent variation of �
�
 in a Smooth, b RN10, and c 
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As seen in Fig. 6a–c, prismatic ⟨a⟩ slip dominates the 
response of the smooth specimen over the range of applied 
strain rates. At ̇̄𝜀 = 103 s−1, pyramidal ⟨a⟩ and pyramidal 
⟨c + a⟩ slip modes emerge as second most important defor-
mation mechanisms indicating the effect of strain rate. At 
̇̄𝜀 = 103 s−1 some contraction twinning (CT) is observed 
although its relative importance decreases as pyramidal 
⟨c + a⟩ slip becomes more prominent.

In notched specimens, the deformation landscape is 
richer. In RN10 specimens (Fig. 6d–f), the profuse basal 

slip occurs at yield but quickly recedes paving the way to 
the prismatic slip. This behavior is observed across all 
three strain rates. While the prismatic slip remains the 
primary mechanism, pyramidal ⟨c + a⟩ slip also plays a 
role while the pyramidal ⟨a⟩ slip plays a tertiary role espe-
cially at ̇̄𝜀 = 10−3 s−1 and ̇̄𝜀 = 101 s−1. In RN2 specimens 
(Fig. 6g–i), basal slip remains active over the entire defor-
mation range shown with a stronger presence at slower 
strain rates. At ̇̄𝜀 = 103 s−1 , the CT activity is much tem-
pered in the notched specimens compared to the smooth 
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specimen at the same rate of loading. In all three speci-
mens, the extension twinning (ET) activity remains rela-
tively insignificant across the range of strain rates. This 
result indicates that for a strongly textured material (closer 
to a single crystal) the imposed rate does not play a major 
role in the extension twinning activity.

Distribution of Stress Triaxiality

Figures 7 and 8 show the distribution of stress triaxiality 
[ T(x) ] at �A = 0.05 along the L–T and L–S planes over the 
range of strain rates. Note that the sections are taken at the 
mid-planes and may cut through the grains non-uniformly, 
which manifests as patchy contour plots. Nevertheless, 
these distributions give a reasonable idea of the specimen 

response. The peak stress triaxiality in RN10 specimens is 
∼ 0.70. For ̇̄𝜀 = 10−3 s−1 and ̇̄𝜀 = 101 s−1, the high triaxial-
ity region is in the central portion of the notch whereas at 
̇̄𝜀 = 103 s−1 the high triaxiality region is closer to the notch 
root. In RN2 specimens, the peak stress triaxiality is ∼ 1 and 
appears to be located in the central region of the notch. For 
the latter case, the region of high triaxiality is rather diffuse 
at ̇̄𝜀 = 103 s−1, in contrast to those at slower rates.

Discussion

The work reported here is motivated by the experiments of 
Kale et al. [7], however no attempt is made to quantitatively 
compare the present results with their experiments. Such an 

Fig. 7  Distribution of stress tri-
axiality T(x) in RN10 specimens 
at �

�
= 0.05

Fig. 8  Distribution of stress tri-
axiality T(x) in RN2 specimens 
at �

�
= 0.05
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exercise requires an elaborate calibration of the basic mate-
rial parameters as a function of strain rate, which is beyond 
the scope of this work. One of the interesting results in the 
experiments is the sigmoidal response for small notched 
specimens subjected to ̇̄𝜀 = 103 s−1, which alludes to the 
significant extension twinning. On that backdrop, the pre-
sent simulations do not reveal such a characteristic in any 
of the notched specimens at the same strain rate. It is noted 
that there may be several variables at play. First, the notch 
acuity and therefore, the nominal stress triaxiality, is dif-
ferent in the two scenarios. According to their calculations 
[7], the estimated nominal stress triaxiality is Tnom ∼ 1.68 
in the small-notched bars. In comparison, our results indi-
cate that the RN2 specimen induces Tnom ∼ 1, which is in 
fact closer to the large-notched bar of Kale et al. [7] that 
does not exhibit a sigmoidal behavior, consistent with the 
present observation. Second, texture is expected to play a 
role in the activation of twinning. Our preliminary analysis 
indicates that a texture somewhat ( ∼ 20% ) weaker than the 
one adopted in this work does exhibit sufficient extension 
twinning to render a sigmoidal response in RN2 specimens 
at high strain rates.

We note here that there are two non-dimensional groups 
involving both, loading and material parameters [13]

where v0 is the magnitude of the imposed velocity, 
Lc = c0∕(v0∕L0) the reference length, and L0 the specimen 
length. The first ratio is a measure of the effect of mate-
rial inertia while the second signifies the effect of loading 
rate, independent of material inertia. In the quasi-static 
limit L0∕Lc → 0 so that the material inertia effect vanishes 
although the role of � still persists. For polycrystalline Mg 
alloys, the longitudinal wave speed c0 ≈ 5700 m/s [31], 
which gives Lc ≈ 5.7 m (for the largest strain rate considered 
here, v0∕L0 = 1000 s−1 ) so that L0∕Lc = 40∕5700 ≈ 0.007. 
Likewise, assuming �̇�0 ≈ �̇�0 = 3.0 s−1, � = 1000∕3.0 ≈ 330. 
For this combination of L0∕Lc and �, the material inertia is 
expected to play a negligible role and the response is gov-
erned by the material rate sensitivity [13].

Another aspect of interest is the local temperature 
increase ( ΔT  ) at high strain rates due to the plastic work

where Wp(x) = �(x) ∶ �p(x) is the plastic work density at 
time t with �p(x) being the local plastic strain tensor, and 
� = 1730 kg m−3 the mass density, Cp = 1005 J kg−1 ◦C−1 
the specific heat [31], and � ≈ 0.8 the Taylor–Quinney 
factor [5, 10]. With these parameters, Fig. 9a, b show the 

(15)
L0

Lc
=

v0

c0
; 𝜅 =

v0∕L0

�̇�0
,

(16)ΔT(x) =
�Wp(x)

�Cp

,

temperature distribution at an areal strain �A = 0.05 cal-
culated using Eq. (16) for the RN10 and RN2 specimens 
subjected to ̇̄𝜀 = 103 s−1. Interestingly, the RN10 specimen 
shows relatively uniform temperature distribution in the 
notch region while the RN2 specimen exhibits a stronger 
temperature gradient with the temperature at the notch 
root being somewhat higher than that of the notch center. 
Nevertheless, the corresponding volume averaged tem-
perature increase ( ΔTavg ) is relatively modest. For instance, 
ΔTavg ≈ 9 ◦ C in the notched region of RN2 specimen and 
increases to ∼ 19 ◦ C at �A = 0.1. These numbers corroborate 
with experimental estimates [8].

Fig. 9  Snapshot of temperature distribution [Eq. (16)] in a RN10 and 
b RN2 specimens subjected to ̇̄𝜀 = 103 s−1 at �A = 0.05
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Summary

In this work, we present a crystal plasticity based numerical 
study of the interaction between the material rate sensitivity 
and stress triaxiality in polycrystalline Mg alloys. The simula-
tions reveal that for strongly textured Mg alloys, strain localiza-
tion may occur under nominally uniaxial tensile stress states 
(smooth specimens), which is tempered at high strain rates 
due to the stabilizing effect of the material rate sensitivity. The 
resulting diametrical reduction is anisotropic along the two 
principal lateral directions and this anisotropy decreases with 
increasing strain rate. In notched geometries, which induce ele-
vated levels of stress triaxialities, the deformation anisotropy is 
much lower compared to the smooth specimens over the range 
of strain rates considered here. In specimens with low notch 
acuity (RN10) the region of high triaxiality appears to shift 
from the notch center towards the notch root with increasing 
strain rate. This may have implications on the nucleation and 
growth of damage. Interestingly, specimens with a high notch 
acuity (RN2) do not exhibit such a behavior, which merits fur-
ther investigation. This preliminary effort is a step towards 
understanding structure–property linkages in such low sym-
metry materials with an obvious interest in its effect on their 
failure mechanics at dynamic loading rates. At least for the 
cases considered here, the material inertia and temperature rise 
are sufficiently small so that they may not significantly alter the 
main conclusions. However, a rigorous analysis should account 
for these effects, which will be our focus in the near future.
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