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Abstract
Testing tungsten carbide cermets at high strain rates is difficult due to their high stiffness and brittle failure mode. There-
fore, the aim of this study is to apply the image-based inertial impact (IBII) test methodology to analyse the high strain rate 
properties of tungsten carbide cermets. The IBII test uses an edge on impact test configuration with a narrow stress pulse. 
The narrow input pulse travels through the specimen in compression and reflects in tension causing failure. Full-field meas-
urements of acceleration and strain are then coupled with the virtual fields method to identify the stiffness components and 
tensile strength of a test sample at high strain rates. Image deformation simulations were used to select optimal test processing 
parameters and predict the associated experimental errors. The elastic modulus and tensile strength of the tested tungsten 
carbide cermet samples were successfully identified using the IBII test at strain rates on the order of 1000 s−1 . No significant 
strain rate dependence was detected for either the stiffness or tensile strength.

Keywords  Tungsten carbide · High strain rate · Full-field measurement · Tensile strength · Virtual fields method

Introduction

Tungsten carbide cermets are used in a wide range of appli-
cations in which they undergo high strain rate loading. The 
high wear resistance, stiffness, strength and fracture tough-
ness make tungsten carbide cermets ideal for use in machine 
tooling [1]. In order to adequately model machining pro-
cesses and effectively design new machining tools the high 
strain rate properties of tungsten carbide cermets need to be 
fully characterised. Unfortunately, experimental difficulties 
limit the available data for the high strain rate properties of 
tungsten carbide cermets.

Traditionally, the high strain rate properties of ceramic 
materials are analysed in compression using the split Hop-
kinson pressure bar (SHPB) technique [2–4]. The SHPB 
method uses a small sample sandwiched between two long 
bars which act as load cells. A stress wave is imparted onto 
the specimen through the bars and the readings on the strain 

gauges are used to infer the properties of the test sample. 
A key assumption required to analyse the strain gauge data 
from SHPB is that the test specimen must be in a state of 
quasi-static equilibrium. In order to satisfy this assumption 
specimens must be small relative to the overall bar length 
such that the stress waves reverberate and quickly damp out 
in the test sample. These inertial effects generally occur in 
the initial (i.e. elastic) portion of the test. Therefore, it is 
generally accepted that the SHPB technique cannot be used 
to measure the elastic modulus of materials at high strain 
rates since failure/damage occurs before quasti-static equi-
librium is reached, and therefore only an apparent modulus 
can be obtained [5].

For brittle materials the problems associated with inertial 
effects are exacerbated. The small strain observed prior to 
failure in brittle materials means that the specimen can fail 
before the inertial effects have damped out, corrupting not only 
the stiffness but also the strength measurements [3]. Another 
assumption required by the SHPB analysis is that the specimen 
and the bars remain in contact and planar with respect to one 
another. Given the high stiffness of tungsten carbide this can 
be a difficult constraint to satisfy without modifying the bars 
using end caps. However, modifications of the bars using end 
caps can lead to increased problems with inertial effects and 
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dispersion due to the impedance mismatch between the bars 
and the end caps [3, 6].

To the authors best knowledge there is only a single study 
investigating the strain rate dependence of the strength of tung-
sten carbide/cobalt cermets in the open literature [6]. The study 
by Mandel et al. [6] analysed the strain rate dependence on the 
compressive strength of tungsten carbide/cobalt cermets using 
a specially modified SHPB technique. The results of this study 
showed that the compressive strength exhibited an exponential 
relationship with respect to strain rate from quasi-static rates 
to strain rates of 500 s−1 . Unfortunately, data for the elastic 
properties and tensile strength of tungsten carbide cermets is 
unavailable at high strain rates.

Recently, new high strain rate testing techniques have been 
developed that do not rely on the assumptions that limit tradi-
tional SHPB analysis [7–9]. The Image-Based Inertial Impact 
(IBII) test is a viable alternative to the SHPB and has been 
successfully applied to the analysis of quasi-brittle materials 
such as composites [8, 10] and brittle materials such as con-
crete [11–13]. The IBII technique takes advantage of ultra-
high speed ( > 1 MHz ) camera technology to perform full-field 
displacement measurements during a dynamic test in the wave 
propagation regime. From the kinematic fields the material 
properties can be identified using an inverse technique such 
as the virtual fields method (VFM). The IBII test method has 
significant potential for investigating the properties of brit-
tle materials such as tungsten carbide and will allow for the 
measurement of material properties at high strain rates that are 
not currently obtainable using the standard SHPB technique.

The aim of this study is to develop an IBII test method 
to investigate the stiffness and tensile strength of tungsten 
carbide (WC) cermets at high strain rates. The first section 
of this paper outlines the concept and required theory for the 
IBII test. Following this, the second section briefly details 
the design of the test components using explicit dynamics 
simulations. This then leads to the third section which out-
lines the image deformation simulations used to validate the 
stiffness identification procedure and select optimal smooth-
ing parameters. The fourth section describes the experimen-
tal results obtained with the IBII test for several different 
tungsten carbide cermets. This includes identification of the 
elastic modulus, Poisson’s ratio and the tensile strength. The 
final sections of this paper discuss the limitations and future 
applications of the IBII test along with a summary of the 
main findings.

Test Concept and Theory

The Imaged‑Based Inertial Impact (IBII) Test

A simplified schematic of the IBII test configuration is shown 
in Fig. 1. The specimen of dimensions LS × HS × ts is loaded 

by a short compressive pulse, F(t) by impact with a projectile. 
A compressive stress wave then travels through the specimen, 
reflects and becomes tensile. The input pulse is selected such 
that failure occurs once the wave reflects off of the free edge 
in tension. Throughout the propagation of the stress wave full-
field displacement measurements are obtained through white 
light imaging and image processing. From this the strain and 
acceleration fields are derived. These kinematic fields are then 
used with the methods described in the following sections to 
determine the material properties.

VFM

A detailed discussion of the VFM applied to the IBII test is 
provided in references [8, 10]. Therefore, only the concept and 
the main results will be briefly revisited taking into account 
the differences that are specific to the material being tested. 
Note that a detailed discussion of the VFM formulation can 
be found in reference [14].

Consider the dynamically impacted sample shown in Fig. 1. 
Suppose that kinematic full-field measurements are taken over 
the surface of the specimen for a specified time interval. The 
desired output from the test is the constitutive behaviour of 
the material being tested. In order to relate the constitutive 
behaviour of the material to the kinematic fields the principle 
of virtual work is used. The process is referred to as the VFM. 
If body forces are neglected, the principle of virtual work is 
given by:

where V is the volume of the specimen and �V  is the surface 
of the volume. The virtual displacement field is u∗ and the 
virtual strain tensor (derived from u∗ ) is �∗ . � is the Cauchy 

(1)−∫
V

� ∶ �
∗dV + ∫

�V

T ⋅ u
∗dS = ∫

V

�a ⋅ u∗dV

Fig. 1   IBII test schematic. Note that the variables �xx
y and ax

S cor-
respond to Eq. (9)
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stress tensor and T is the Cauchy stress vector acting on 
the boundary surface �V  . The material density is given by 
� and the acceleration field is a . The matrix dot product is 
given by : and vector dot products is denoted by ⋅ . The first 
term of Eq. (1) is referred to as the internal virtual work, 
the second term is the external virtual work and the third 
term is the acceleration virtual work. All kinematic fields in 
this equation are functions of both time and space. In order 
to simplify the notation in the following sections, the time 
and space variables as function notation have been omitted.

The VFM uses the principle of virtual work to generate 
equilibrium equations that relate the stress components to 
accelerations and externally applied forces. If the stress 
components are substituted with an appropriate constitu-
tive law then the VFM can be used to directly identify 
material properties from full-field measurements. The only 
condition that must be satisfied is that the virtual displace-
ment vectors are continuous and piecewise differentiable. 
Additionally, u∗ has to be ‘VFM-admissible’ so that no 
unwanted unknowns appear in the equation (e.g. the dis-
tribution of pressure from a projectile impacting the edge 
of a sample).

Constitutive Model and Assumptions

In order to identify material parameters using Eq. (1) it is 
necessary to substitute the stress tensor with a constitutive 
model. Here, an isotropic linear elastic constitutive law is 
used. This constitutive law is described by the following 
equation, using the plane stress assumption:

where Qxx and Qxy are the stiffness components given by:

where E is the elastic modulus and � is Poisson’s ratio.
This constitutive law can now be substituted into the 

principle of virtual work (Eq. 1). Here, a number of simpli-
fying assumptions are made: (1) the density, thickness and 
material properties of the specimen do not vary in space; 
(2) the kinematic fields are uniform through the thickness; 
and (3) the specimen is in a state of plane stress. If these 
assumptions are applied then the principle of virtual work 
becomes:

(2)
⎡⎢⎢⎣

�xx
�yy
�xy

⎤⎥⎥⎦
=

⎡⎢⎢⎣

Qxx Qxy 0

Qxy Qxx 0

0 0
Qxx−Qxy

2

⎤⎥⎥⎦

⎡⎢⎢⎣

�xx
�yy
�xy

⎤⎥⎥⎦

(3)Qxx =
E

1 − �2
; Qxy = �Qxx

where S is the surface of the specimen and l is the perimeter 
of the specimen. In order to use Eq. (4) for stiffness identifi-
cation two virtual fields are required that generate independ-
ent equations for Qxx and Qxy . This will be described in the 
following section.

Virtual Fields for Stiffness Identification

In this section, several virtual fields are described that will 
be used for stiffness identification. Here, the objective is to 
identify the stiffness components Qxx and Qxy which are related 
to the elastic modulus and Poisson’s ratio. In the following 
sections, overline notation will be used to denote spatial aver-
aging. For example: �xx

y denotes the average stress over the 
line at x shown in Fig. 1. Additionally, ax

S denotes the surface 
average of the acceleration between the considered line and 
the free edge (shaded area in Fig. 1).

Virtual Field Set 1: Manual

This set of virtual fields is denoted as ‘manual’ as the virtual 
fields are manually specified. The derivation of manual virtual 
fields for a similar loading condition is described in [8]. There-
fore, the full derivation will be omitted. The first virtual field 
to be used is as follows:

It is generally difficult to accurately measure the impact 
force in a dynamic test. Thus, the virtual field in Eq. (5) has 
been selected to cancel the contribution of the impact force 
at x = ls (see Fig. 1). Therefore the external virtual work 
term in Eq. (4) is zero and the desired stiffness parameters 
are only a function of the measured strain and acceleration 
fields. Substituting the virtual field in Eq. (5) into Eq. (4) 
gives:

(4)

− Qxx ∫
S

(
�xx�

∗

xx
+ �yy�

∗

yy
+

1

2
�xy�

∗

xy

)
dS

− Qxy ∫
S

(
�xx�

∗

yy
+ �yy�

∗

xx
−

1

2
�xy�

∗

xy

)
dS+

∫
l

T ⋅ u
∗dl = �∫S

a ⋅ u
∗dS

(5)
�

u∗
x
= ls − x

u∗
y
= 0

⎧⎪⎨⎪⎩

�∗
xx
= −1

�∗
yy
= 0

�∗
xy
= 0

(6)Qxx�xx
S
+ Qxy�yy

S
= �ax(ls − x)

S
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where �xx
S and �yy

S are the surface average of the strain fields 
over the whole field of view. ax(ls − x)

S
 is the surface average 

of the acceleration over the whole field of view weighted 
by the function ls − x . As there are two unknown stiffness 
components an additional virtual field is required to obtain 
another equation that relates the measured kinematic fields 
to the stiffness components. This can be obtained from the 
following virtual field:

Again, this virtual field has been selected to cancel the con-
tribution of the impact force. Substituting the virtual field in 
Eq. (7) into Eq. (4) gives:

Therefore, at any time step Eqs. (6 and 8) can be solved 
simultaneously to obtain the stiffness components Qxx and 
Qxy.

Virtual Field Set 2: Special Optimised

An infinity of virtual fields can be substituted into Eq. (4) to 
generate equations for the stiffness components. Therefore, the 
question of how to select these virtual fields arises. For a per-
fect data set (i.e. no noise) all sets of independent virtual fields 
will give the correct results for both stiffness components. In 
practice, full-field measurements contain noise. Thus, it is 
desirable to automatically select virtual fields that reduce the 
effects of noise. These virtual fields are known as ‘special opti-
mised’. The derivation of the special optimised virtual fields 
for the dynamic case is essentially the same as [15] . The main 
difference is that the external virtual work term is replaced by 
the acceleration virtual work term. The interested reader is also 
referred to [14] for a detailed description of the formulation 
of special optimised virtual fields. Here, the virtual fields will 
be expanded using bilinear piece wise functions similar to Q4 
finite elements.

Virtual Field Set 3: Stress‑Gauge Equation

As described in [8, 10] the rigid body virtual field u∗
x
= 1 , 

u∗
y
= 0 can be used to derive the stress-gauge equation. The 

stress-gauge equation is given as follows:

(7)

�
u∗
x
= 0

u∗
y
=

(ls−x)y

hs

⎧
⎪⎨⎪⎩

�∗
xx
= 0

�∗
yy
=

(ls−x)

hs

�∗
xy
= −

y

hs

(8)

−Qxx

⎡
⎢⎢⎣
(ls − x)�yy

hs

S

−

y�xy

hs

S⎤
⎥⎥⎦
−Qxy

⎡
⎢⎢⎣
(ls − x)�xx

hs

S

+

y�xy

hs

S⎤⎥⎥⎦

= �
(ls − x)yay

hs

S

where �xx
y is the average stress over the line at x, � is the 

material density and ax
S is the area averaged acceleration 

from the free edge to the line at x
0
 . These quantities are 

shown schematically in Fig. 1. This equation can also be 
used for stiffness identification. Consider the linear elas-
tic isotropic constitutive law described in Eq. (2). The ‘x’ 
direction stress component is related to the stiffness Qxx as 
follows:

Therefore, by linearly fitting the average stress �xx
y against 

the average strain �xx + ��yy
y the stiffness component Qxx is 

obtained. In order to use this method to determine Qxx the 
Poisson’s ratio can be obtained using either of the first two 
virtual field sets described above.

Virtual Fields for Strength Identification

Rigid body virtual fields can be used to derive equations that 
relate stress averages to averages of the acceleration fields. 
These equations can be used for strength identification, as in 
[10]. For the present study the linear stress gauge equation 
will be used for strength identification. The linear stress-
gauge equation is given as follows:

Here the first term in the equation is the stress-gauge equa-
tion (Eq. 9). The second term of this equation describes the 
first moment of the axial stress in terms of weighted aver-
ages of the acceleration components. The linear stress-gauge 
equation has been previously used for tensile strength identi-
fication using the IBII test on composite materials. Note that 
the full derivation for this relationship is given in "Appen-
dix" and in [10].

Numerical Test Design

The procedure for designing an IBII test using a parametric 
design sweep has been outlined in detail in reference [10]. 
Therefore, only a brief description of the procedure will be 
given here along with the results that are relevant to the 
specific material being tested.

Model Configuration and Design Sweep Criteria

The objective of the design sweep is to determine the 
experimental configuration required to achieve the desired 
reflected tensile stress and cause failure in the test sample. 

(9)�xx
y
= �xax

S

(10)�xx = Qxx(�xx + ��yy)

(11)�xx(LSG) = �xax
S
+

12�xy

h2
s

(
axy

S
− ayx

S
+ xay

S
)
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An estimate of the compressive and tensile strengths of tung-
sten carbide is needed to set design limits on the input pulse 
required for the test. For tungsten carbide cermets the com-
pressive strength is on the order of 3 GPa and is expected 
to increase with strain rate [6, 16]. Therefore, the maximum 
magnitude of the input pulse can be conservatively set at 
3 GPa in compression.

Data on the quasi-static tensile strength of tungsten 
carbide is limited as ceramics are extremely sensitive to 
test machine misalignment. The strength of ceramics are 
also dependent on defect distributions, exhibiting a volume 
effect which is normally characterised using Weibull sta-
tistics. Due to these experimental difficulties ceramics are 
normally tested in bending to give the transverse rupture 
strength which can be used to obtain the Weibull modulus. 
Thus, in a similar manner to [17] it is possible to relate 
the tensile strength to the transverse rupture strength as a 
function of the Weibull modulus. The Weibull modulus 
for tungsten carbide with 13% cobalt binder can be taken 
as ∼ 7 [18, 19]. Given this Weibull modulus and assuming 
the samples are tested in three point bending the tensile 
strength is approximately half of the transverse rupture 
strength. Depending on binder content the transverse rup-
ture strength of tungsten carbide cermets varies from 1 to 
3 GPa giving an estimated tensile strength between 0.5 to 
1.5 GPa [16, 19, 20]. Unfortunately, it is not known if the 
tensile strength of tungsten carbide cermets changes with 
strain rate, making it difficult to determine the magnitude 
of the input pulse required to cause tensile failure. The 
failure modes for tungsten carbide in quasi-static compres-
sion and tension are significantly different, in compression 
coarse grained tungsten carbide exhibits plastic deforma-
tion while in bending it is linear elastic to failure [16, 18, 
19]. Thus, care must be taken using this data to infer a 
strain rate dependence on the tensile strength when design-
ing the IBII test for tungsten carbide. Therefore, a tensile 
strength of ∼ 1 GPa at high strain rates will be assumed 
for the design sweep. This gives a design envelope for the 
input compressive stress of less than 3 GPa with a reflected 
tensile stress of greater than 1 GPa.

The components required to implement the IBII test are 
shown schematically in Fig. 2. Several of these parameters 
are fixed based on experimental constraints. The gas-gun 
used for the experiments has a 50 mm bore and can launch 
projectiles with a diameter up to 45 mm encased in a 50 mm 
diameter sabot. For simplicity, the height of the projectile 
and waveguide was fixed at 45 mm ( hp = hwg = 45 mm).

The tungsten carbide samples that were obtained had 
dimensions of 60 × 30 × 4 mm, fixing the length and height 
of the specimen ( ls = 60 mm and hs = 30 mm ). Previous 
work had shown that the waveguide length does not affect 
the result of the design sweep as long as it is at least twice 
the projectile length [10]. For the IBII test a short pulse 

is required. As such, the projectile length will be less than 
the specimen length (given that the specimen and the wave-
guide have similar bulk wave speeds). Thus, the waveguide 
length has been fixed at the same length as the specimen 
lwg = 60 mm.

A design sweep of the projectile length and projectile 
velocity was conducted to achieve the desired tensile stress. 
The projectile length was swept from 5 to 25 mm in 2.5 mm 
increments. The projectile velocity was swept from 10 to 
70 m s

−1 in 10 m s
−1 increments. The material selected for 

the projectile and waveguide was steel. The reason for this 
is that steel alloys with a yield stress on the order of 1 GPa 
are readily available and cost effective. Having a high yield 
stress projectile allows a 1 GPa pulse to be imparted on the 
tungsten carbide sample without significantly yielding the 
projectile and clipping the input pulse.

Finite Element Model

All explicit dynamics models were constructed using 
ANSYS APDL LS-DYNA (v16.2). Simulations were con-
ducted in two dimensions using PLANE162 elements with 
the plane stress assumption (4-node, reduced integration). 
The waveguide, projectile and sabot are cylindrical in the 
experiments but were modelled as two dimensional com-
ponents for the purpose of the design sweep. This approach 
reduces computation time and provides suitable design pre-
dictions as described in [10].

In order to select appropriate simulation parameters a 
parametric sweep of time step, beta (stiffness proportional) 
damping and mesh size was conducted. These parameters 
were selected such that the error between the mean stress 
calculated from the acceleration (see Eq. 9) and the mean 
stress extracted directly from the FE model was below 1%. 
The selected simulation parameters are summarised in 
Table 1. The data output step was selected to simulate the 
camera frame rate used in the experiments (5 Mfps giving 
a data output step of 0.2 μs ). The total simulation time was 
set such that the stress wave would travel through the sam-
ple, reflect and return to the contact point with the wave-
guide. The default automatically generated two-dimensional 

Fig. 2   Schematic of the physical components for the image-based 
inertial impact test experiments
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contact algorithm in LS-DYNA was used to model contact 
between all components. All materials were modelled as 
linear elastic and isotropic. The material properties for the 
various components used in the simulations are summarised 
in Table 1.

Parametric Design Sweep Results

The parametric sweep results are summarised in Figs. 3 and 
4. The peak mean tensile stress and compressive stress as 
function of projectile length and velocity is shown in Fig. 3. 
All cases tested have an input compressive stress below the 
predicted compressive strength of 3 GPa. Based on maxim-
ising the ratio of the input compressive stress to reflected 
tensile stress (see Fig. 4) a projectile length of LP = 10 mm 
or 12.5 mm will be optimal. For these two projectile lengths 
an impact speed between of VP = 50 to 70 m s

−1 will give a 
reflected tensile stress of ∼ 1 GPa or greater. For the exper-
iments the projectile length was set to 10 mm as a similar 
design sweep showed that this length would also be suitable 
for testing other ceramics such as silicon or boron carbide.

Experimental Methodology

Tungsten Carbide Samples

Four different tungsten carbide cermets were obtained 
from a commercial vendor, General Carbides. The spe-
cific grades of tungsten carbide tested here are the same 
as in [21]. The composition and relevant properties for the 
tested materials are summarised in Table 2. The specimens 
were machined by the vendor to nominal dimensions of 60 
× 30 × 4 mm. Hereafter the different grades of tungsten 
carbide will be referred to using the specimen identifier 
given in Table 2. Different specimens from each grade will 
be referred to using a numeral preceding identifier. For 
example: 1-WC-F-Ni6 refers to specimen number one from 
the tungsten carbide with fine grains and 6% nickel binder.

Impact Apparatus

The IBII tests were conducted on a custom built impact 
rig at the University of Southampton. An annotated pho-
tograph of the impact chamber is shown in Fig. 5(a) along 
with close up views of the projectile (b), waveguide and 
specimen (c). The projectile and waveguide were machined 

Table 1   Finite element simulation parameters and material properties

Simulation parameters

Element type PLANE162
Mesh size 0.5 mm
Nominal time step 0.7 tcrit

Beta damping 0.1
Data output step 0.2 μs

Material properties Tungsten carbide Steel Nylon

� (kgm−3
) 14500 7800 1140

E (GPa) 550 210 3.45
� 0.24 0.29 0.4

Fig. 3   a Maximum average 
tensile and b compressive stress 
predicted by the finite element 
model as a function of projectile 
length ( lp ) and projectile veloc-
ity ( vp)
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from a cylindrical rod of high strength steel alloy 15CDV6. 
This material was selected as its quasi-static yield stress 
is 993 GPa. The specimen was bonded to the waveguide 
using cyanoacrylate glue. The waveguide was mounted 
in front of the exit of the gas gun barrel using a wedge 
shaped foam stand.

The camera was triggered using a contact trigger con-
sisting of two strips of copper tape on the front of the 
waveguide. When the projectile impacts the waveguide the 
circuit is completed and the camera is triggered. A delay of 
12.4 μs was used before recording to account for the time 
taken for the wave to propagate through the waveguide. 
Two infra-red light gates at the barrel exit were used to 
measure the projectile speed. The photographic flash used 
for lighting has a rise time of approximately 100 μs so it 
could not be triggered using the same trigger as the cam-
era. In order to trigger the flash the light gates were con-
nected with a custom Arduino system. The Arduino sys-
tem automatically calculated the projectile speed and the 
time to impact given the range to the target. The Arduino 
then automatically triggered the flash allowing for the rise 

time. The gas gun pressure chamber was set for a nominal 
impact speed of 50–55 m s

−1.

Imaging and Full‑Field Measurement Setup

All experimental data were collected using a Shimadzu 
HPV-X ultra high speed camera coupled with a Sigma 
105 mm macro lens. The grid method was used for all full-
field measurements as it offers a better compromise between 
spatial and deformation resolutions than digital image corre-
lation [22]. This is especially important given the small pixel 
array size of the camera used for the experiments. Obviously, 
the drawback of the main grid method is the need to apply 
a regular grid pattern to the sample. Grids with a 0.7 mm 
pitch were bonded to the test specimens using the process 
outlined in [23]. Relevant imaging and full-field measure-
ment parameters are summarised in Table 3.

When using ultra-high speed cameras such as the Shi-
madzu HPV-X it is important to consider the effects of the 
low pixel fill-factor. When using the grid method the low 
pixel fill-factor leads to parasitic fringes in the displacement 
fields [24, 25]. In [24, 25] it was shown that slightly blurring 
the image by defocusing the lens mitigated the effects of the 
low pixel fill-factor. Here, the blurring was assessed by using 
an out-of-plane movement test prior to the dynamic test as 
described in [10].

Table 2   Properties of the four 
tungsten carbide cermets tested 
in this study, see [21]

Specimen identifier Manufact. number Binder material Binder 
content 
(%)

Average 
grain size 
( μm)

Density ( kgm−3)

WC-F-6Ni GCN-061 Nickel 6.8 0.5–1.0 14.54 ± 0.04
WC-F-6Co GC-206 Cobalt 6.7 1.0–1.5 14.77 ± 0.06
WC-F-13Co GC-313 Cobalt 12.5 0.75–1.25 13.97 ± 0.03
WC-C-13Co GC-613CT Cobalt 12.8 2.0–3.0 13.69 ± 0.01

Fig. 5   a Photograph of the test section and capture chamber show-
ing the camera, flash and mounted specimen. b Projectile and sabot 
assembly. c Close up view of the test sample attached to the wave-
guide

Table 3   Imaging and full-field measurement parameters

Note that measurement resolution and smoothing parameters are 
summarised in Table 4

Camera Shimadzu HPV-X
Pixel array size 400 × 250

Total frames 128
Inter frame time 0.2 μs

Integration (shutter) time 0.11 μs

Grid pitch 0.7 mm
Grid sampling 5 pixels/period
Field of view 56 × 35 mm
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Experimental Data Processing

The raw grey-level images were processed using an open 
source code, as described in [26]. A detailed review of the 
grid method including experimental applications is also pro-
vided in reference [26]. Here, the grid method will only be 
briefly described.

Unlike digital image correlation which uses a nominally 
random pattern, the grid method uses a periodical (and 
nominally sinusoidal) pattern. Signal processing algorithms 
based on Fourier transforms are then used to determine the 
phase at each pixel of the grid sampled by the camera. The 
phase can then be directly related to the displacement on the 
samples surface. When the in-plane displacement is large, 
discontinuities can occur in the phase maps. This can be 
corrected for using a suitable spatial unwrapping algorithm. 
The spatial unwrapping algorithm used here was developed 
in [27] and comes with the open source code described in 
[26]. Discontinuities in the phase can also occur in time 
when the rigid body motion of the sample is large compared 
to the pitch of the grid used. For the IBII test configura-
tion considered here the rigid body motion between frames 
is small compared to the grid pitch and it increases mono-
tonically over the test. Therefore, the discontinuities in time 
can be corrected by adding integer multiples of 2� to the 
phase fields to ensure that the average displacement over the 
field of view increases monotonically over the test duration. 
The temporal unwrapping code used here was developed 
in-house. After extracting the displacement fields using the 
grid method Matlab code from [26] all further processing 
was conducted using a custom post-processing Matlab pro-
gram (v R2017a).

As the displacement fields contain noise it is necessary 
to smooth in space and time prior to numerical differentia-
tion. The spatial filter used here was Gaussian with a kernel 
of 41 × 41 pixels . The temporal filter used here was a third 
order Savitsky–Golay filter over 11 frames. This raises the 
question of filter kernel selection for optimal identification. 
This issue is addressed in the following section using an 
image deformation software pipeline to simulate the exper-
iment (see "Image Deformation Simulations"). The strain 
and acceleration fields were then derived from the displace-
ment fields. Note that smoothing was only applied directly 
to the displacement field prior to numerical differentiation. 
In order obtain the acceleration fields, the velocity fields 
were derived first using a centred finite difference method. 
The velocity field was then differentiated again in the same 
manner to obtain the acceleration fields with no additional 
smoothing. The strain fields were obtained from the dis-
placement fields using a centred finite difference method. 
Forward and backwards differences were applied at the 
edges of the data. The kinematic fields were then used with 

procedures described in "Test Concept and Theory" section 
to identify the stiffness components and tensile strength.

Another consideration with full-field measurement tech-
niques is how to deal with the missing data on the borders 
of the specimen. For the grid method one pitch of data is 
lost along the border in the direction of the respective dis-
placement component (e.g. one pitch on each edge in the 
x direction is lost for the x displacement with no pitches 
lost in the y direction). It has been previously shown that 
padding to replace the missing data significantly improved 
identification with the VFM [28]. Here, a similar padding 
method was adopted. The specific method used for padding 
was to linearly extrapolate the displacements in space by 
fitting the last five data points along the edge. Note that it is 
only necessary to pad the x displacement field in the x direc-
tion by one pitch on each edge. Similarly, the y displacement 
field is only padded in the y direction. The raw images, data 
processing program and associated output are provided for 
all tested specimens in the data repository detailed at the end 
of the manuscript.

Image Deformation Simulations

A software pipeline was developed that simulates the imag-
ing process in the IBII test. The purpose of this procedure 
was to simulate the effects of camera noise and limited spa-
tial resolution to select smoothing parameters for the experi-
mental data in a rational manner.

Image Deformation Procedure

The general methodology used in this study is similar to 
previous work using simulated experiments to analyse imag-
ing procedures [12, 13, 28–32]. For image deformation 
simulations finite element displacement fields are used to 
numerically deform images. These images can then be pro-
cessed using exactly the same procedure as the experimen-
tal images. The advantage of using finite element displace-
ment fields is that the underlying constitutive parameters 
are known and serve as a reference value for error analysis.

The displacements fields were extracted from the explicit 
dynamics model of the optimal configuration selected in 
"Parametric Design Sweep Results" section. These fields 
were then used to synthetically deform grid images using 
the analytical description of a sinusoidal grid pattern:

where G(x, y) is the grey level value at the point (x, y), b is 
the bit range of the camera (for the HPV-X b = 10 ), I

0
 is 

the average illumination, � is the image contrast and p is the 

(12)

G(x, y) = 2
b

[
I
0
+

�

4

(
1 + cos

(
2�x

p

))(
1 + cos

(
2�y

p

))]
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pitch of the grid pattern. The parameters of the simulated 
grid images were set to replicate the experimental case (grid 
pitch of 0.7 mm sampled at 5 pixels/period). The contrast of 
the experimental images was assessed using ImageJ (i.e. the 
overall percentage of the dynamic range used between light 
and dark areas of the grid image). A typical grid image in 
this study was found to use 50% of the dynamic range after 
blurring. The contrast of the simulated grid images was set 
to replicate the observed contrast and average illumination 
of the experimental images.

Gaussian white noise was then added to the simulated 
images before they were processed using the same custom 
built Matlab program as was used for processing the exper-
imental data. The grey level noise was evaluated from an 
experimental static image sequence and the standard devi-
ation of the grey level noise was expressed as a percentage 
of the full dynamic range. This was found to average 0.35% 
over a static experimental grid image sequence. Therefore, 
a uniform grey-level noise was applied to the images with 
a standard deviation of 0.35% of the dynamic range. An 

example synthetic grid image is shown in Fig. 6 next to an 
experimental grid image. Note that the sequence of syn-
thetic deformed grid images (without noise) is supplied in 
the data repository detailed at the end of the manuscript.

Image Deformation Stiffness Identification

To illustrate the stiffness identification procedures a single 
case from the image deformation sweep will be considered 
here. The Gaussian filter window was set to 41 × 41 pixels 
and the Savitsky–Golay filter was third order applied over 
11 frames. Note that in the following section it will be dem-
onstrated that these filter parameters give a near optimal 
trade-off between random and systematic error (see "Image 
Deformation Error Analysis" section). As these are the same 
smoothing parameters as used to process the experimental 
data the stiffness identification presented here will serve as 
a useful comparison to the experimental results presented 
in "Stiffness Identification" section. The kinematic fields for 
this simulated specimen are not shown here but can be found 
in the data repository detailed at the end of the manuscript.

A sensitivity study was conducted to determine the 
appropriate virtual mesh density for use with the special 
optimised virtual field routine. The identification was found 
to converge with a virtual mesh density of 5 × 3 elements 
(x, y) so this was used for all subsequent processing with the 
optimised virtual fields method. The identification with the 
optimised virtual fields procedure is shown in Fig. 7 for the 
stiffness components Qxx and Qxy . Figure 7 shows that both 
methods are not stable in the early portion of the test with 
both methods stabilising at approximately 3.5 μs for Qxx . 
The reason for this is that there must enough information 
encoded in the kinematic fields such that the stiffness can 
be identified (i.e. acceleration and strain). This only occurs Fig. 6   a Synthetic grid image and b experimental grid image

Fig. 7   Stiffness identifica-
tion for the synthetic image 
deformation using the manual 
and optimised virtual fields 
procedures. a Identification of 
Qxx for and b Qxy

(a)

(b)
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once a significant portion of the stress wave has entered the 
specimen. Figure 7 also shows that it is much harder to iden-
tify Qxy than Qxx . This result was expected as the deforma-
tion is predominantly axial with small lateral strains and 
acceleration. Furthermore, the Poisson’s ratio for tungsten 
carbide is relatively small.

There are also significant differences between the manual 
and optimised virtual fields routines. In general, the opti-
mised virtual field routine is much more stable. This is 
because the optimised virtual fields are able to follow areas 
of high strain signal minimising the effects of noise. This is 
particularly noticeable when the wave reflects off the free 
edge at around 15 μs where the manual virtual fields show a 
period of extreme instability. Therefore, only the optimised 
virtual fields will be considered for further analysis in the 
rest of this paper.

A single stiffness value can be obtained from the opti-
mised virtual field method by averaging the response over 
the frames for which the identification is stable. Only the 
compressive loading portion is considered for the VFM 
analysis. The reason for this is that in the experiments the 
specimen will damage and fail in tension corrupting the 
modulus identification with the VFM. Thus, the response 
can averaged from 5 to 13 μs to give a single identified stiff-
ness. For the optimised virtual fields the following stiffness 
components are identified for the image deformation case 
considered here, Qxx = 568 GPa and Qxy = 128 GPa . This 
can be compared to the target values input into the finite 
element model, Qxx = 584 GPa and Qxy = 140 GPa . There 
is a notable difference between the identified stiffness com-
ponents and the target values which can be attributed to a 
combination of systematic (i.e. camera spatial and temporal 
resolution) and random (i.e. camera noise) errors . In order 
to separate and predict these two error sources multiple 
iterations of noise need to be considered as described in the 
following section.

Stress–strain curves were constructed at all axial slices 
along the specimen length using the stress-gauge equation. 
Several representative stress–strain curves along the specimen 

length are shown in Fig. 8a. For every section along the length 
the stress–strain curve can be linearly fitted to obtain the stiff-
ness component Qxx . As mentioned previously, in the experi-
ments the specimen will fail after the wave reflects therefore 
only the compressive loading portion of the stress–strain curve 
is linearly fitted to obtain the stiffness. The identified stiff-
ness along the specimen length is shown in Fig. 8b. A single 
identified stiffness can then be obtained by averaging over the 
middle 50% of the specimen to avoid edge effects from the 
Gaussian smoothing filter. For this case the mean identified 
stiffness over the length is Qxx = 582 GPa compared to a target 
value of Qxx = 584 GPa.

This section has demonstrated the stiffness identification 
procedure for a single copy of noise and a single smoothing 
filter. In order to select the optimal smoothing parameters and 
predict the experimental error multiple copies of noise must 
be considered for several different smoothing kernels. The fol-
lowing section outlines this procedure.

Image Deformation Error Analysis

Various smoothing kernels were swept for the spatial and tem-
poral filters. The spatial filter selected was Gaussian and the 
kernel was swept from 0 (i.e. no smoothing) to a kernel of 
71 pixels in increments of 10 pixels ( Sk = 0, 11, 21,… , 71 ). 
The temporal filter selected was a third order Savitsky–Golay 
filter which was swept from a kernel of 0 to 25 frames in incre-
ments of 5 frames ( Tk = 0, 5, 10,… , 25 ). Note that both filters 
require that the specified kernel size be an odd number. For 
each combination of spatial and temporal smoothing kernels 
thirty iterations of noise were processed. The stiffness com-
ponents Qxx and Qxy were then identified using the procedures 
outlined in "Image Deformation Stiffness Identification" sec-
tion. The mean of the identified stiffness components for the 
thirty iterations was compared to the stiffness input into the 
finite element model to assess the systematic error. Specifi-
cally, the systematic error Errsys was defined as follows:

(13)Errsys =
(Qij,ID − Qij,FE)

Qij,FE

, ij = [xx, xy]

(a) (b)

Fig. 8   Stiffness identification for the synthetic image deformation 
using the stress-gauge equation. a Stress–strain curves at several loca-
tions along the specimen length, note that all curves pass through the 

origin but have been offset by 5 mm m
−1 for clarity. b Identified stiff-

ness Qxx as function of axial position from the free end at x = 0
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where Qij,ID is the mean stiffness identified from the image 
deformation simulation over thirty iterations of noise and 
Qij,FE is the target stiffness input into the finite element 
model. The random error was defined as the standard devia-
tion of the identified stiffness over the thirty iterations of 
noise normalised by the target stiffness value:

where N is the number of iterations of noise ( N = 30 ) and 
Qk

ij,ID
 is the stiffness identified with kth copy of noise. These 

two measures were combined to form the total error Errtot as 
follows:

(14)

Errrand =
1

Qij,FE

�∑N

k=1
(Qk

ij,ID
− Qij,ID)

2

N − 1
, ij = [xx, xy]

The systematic, random and total errors for the identification 
of Qxx and Qxy using the special optimised virtual fields is 
shown in Fig. 9. The error analysis for Qxx identified with the 
stress-gauge equation is shown in Fig. 10. From Figs. 9 and 
10 the systematic error tends to increase with increased tem-
poral smoothing and decrease with increased spatial smooth-
ing. The local minima for the systematic errors in Figs. 9 
and 10 occur with significant spatial smoothing and minimal 
temporal smoothing with the stiffness parameters being sys-
tematically under predicted. Normally, it is expected that the 
minimum systematic error occurs with minimum smoothing 
for both the spatial and temporal filters. This suggests that 

(15)Errtot = max
(|||Errsys ± 2Errrand

|||
)

(a) (b) (c)

(d) (e) (f)

Fig. 9   Predicted identification error as a function of the spatial ( Sk ) and temporal kernel ( Tk ) using the special optimised virtual fields method: a 
systematic error, b random error and c total error for Qxx . d Systematic error, e random error and f total error for Qxy

(a) (b) (c)

Fig. 10   Predicted identification error as a function of the spatial ( Sk ) and temporal kernel ( Tk ) using the stress-gauge equation: a systematic 
error, b random error and c total error for Qxx
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the camera resolution (spatial and temporal) is leading to a 
systematic under prediction of the acceleration compared to 
the strain, which in turn leads to the identification of a lower 
stiffness. Further investigation will be required to determine 
if this bias results from the spatial or temporal resolution of 
the camera (or both). While there is a systematic bias in the 
measurement the magnitude is relatively low given the low 
number of pixels for the simulated camera. The limiting case 
gives a systematic error of ∼ −5% for Qxx identified with the 
optimised virtual fields.

The random error shows the opposite trend to the sys-
tematic error with the local minima occurring with signifi-
cant temporal smoothing and minimal spatial smoothing. In 
general, the random error maps suggest that the temporal 
smoothing kernel has a more significant contribution to the 
random error than the spatial smoothing kernel. This is not 
surprising as the acceleration is a result of double tempo-
ral differentiation which will act to amplify the noise and 
result in a more significant contribution to the random error. 
Another trend shown in Figs. 9 and 10 is that the random 
error tends to be much lower in magnitude than the system-
atic error. This results from averaging the identified stiff-
ness over a number of frames in the case of the optimised 
virtual fields or a number of transverse sections in the case 
of the stress-gauge equation. Another factor contributing to 
the random error will be the grey level noise of the camera 
itself. The Shimadzu HPV-X used in this study has excel-
lent image quality with low grey level noise ( 0.35% of the 
dynamic range) which reduces the random error. Finally, 
analysis of Fig. 9 shows that the error on the identified Qxy 
is higher than Qxx . This result is expected as the y direction 
strains and accelerations have a much lower signal to noise 
ratio than the x direction and the Qxy stiffness parameter is 
relatively small.

The total error maps show that there are combinations of 
spatial and temporal smoothing kernels that lead to an opti-
mal compromise between the systematic and random error. 
Figures 9 and 10 show that the smoothing kernels interact 
with the optimised virtual fields and stress-gauge equation 
differently and the local minima for the two methods do not 
coincide. Therefore the smoothing parameters were selected 
to minimise the sum of the total error of both methods on the 
identification of Qxx (referred to as the combined total error). 
The selected smoothing kernels are as follows: Gaussian 
over 41 × 41 pixels in space and third order Savitsky–Golay 
over 11 frames in time. In Table 4, the calculated measure-
ment resolutions for the synthetic and experimental images 
is given for the selected smoothing kernels. Also, the pre-
dicted identification errors for this combination of smooth-
ing kernels are given in Table 4. It should be noted that these 
smoothing parameters do not correspond to the exact mini-
mum combined total error. However, they were selected to 
minimise the size of the spatial smoothing kernel and reduce 
edge effects coming from the spatial filter and padding to 
reconstruct the missing pitch of data. These edge effects are 
more significant for real grids used in the experiments which 
can have defects on the edges. The overall difference when 
compared to the true minimum was 0.15% on the combined 
total error for a reduction in the spatial smoothing kernel of 
20 pixels.

It is also interesting to note that the predicted total error 
for Qxx does not vary significantly over a wide range of 
smoothing kernels. For the optimised virtual fields method 
the total error is almost always below 5% , apart from the 
limit case of the largest temporal smoothing kernels. A simi-
lar trend is shown for the stress-gauge equation. Therefore, 
as long as extreme values of the temporal smoothing kernel 
are avoided the total error will generally be less than ∼ 5%.

Table 4   Selected smoothing 
filter kernels with the resulting 
measurement resolution (for 
synthetic and experimental 
images) and predicted 
identification error

Selected filter Type Kernel

Spatial Gaussian 41 × 41 pixels

Temporal Savitsky–Golay, third 11 frames

Resolution Synthetic Experiment

Raw displacement (μm) 0.91 0.76
Strain (μmm−1

) 101 93
Acceleration (ms−2) 2.0 × 106 1.6 × 106

Error (%) Systematic Random Total

Virtual fields Qxx − 2.4 0.70 3.8
Virtual fields Qxy − 6.0 3.7 13
Stress-gauge Qxx − 0.26 0.12 0.50
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Results and Discussion

Kinematic Fields and Loading Pulse

Due to the large full-field data set obtained for each speci-
men the kinematic fields for a single representative specimen 
will be shown here. For this purpose, specimen 1-WC-F-
13Co was selected. The full-field displacement maps for this 
specimen are shown in Fig. 11 at the time point just after 
the wave has entered the specimen ( t = 7.0 μs ) and at a time 
after the wave has reflected ( t = 20.0 μs ). From the displace-
ment both the strain and acceleration fields were numerically 
derived after smoothing.

The strain fields for specimen 1-WC-F-13Co are shown 
in Fig. 12. These fields clearly demonstrate the heterogene-
ous nature of the IBII test. The strain magnitude is quite 
low with peak local strains on the order of 3 mm m

−1 for �xx 
and approximately half this value for the other strain com-
ponents. The �xx strain component clearly shows the com-
pressive pulse entering the specimen in Fig. 12a with the 
pulse reflecting and becoming tensile as shown in Fig. 12b. 
The acceleration fields for the same specimen are shown in 
Fig. 13 with peaks on the order of 8 × 10

6
m s

−2 . The strain 
rate fields for specimen 1-WC-F-13Co are shown in Fig. 14. 
The compressive strain rate reaches local values on the order 
of 1000 s−1 and 1500 s−1 in tension. Videos of the kinematic 
fields for this specimen (1-WC-F-13Co) are provided as 
supplementary material, videos for all other specimens are 
provided in the data repository detailed at the end of the 
manuscript.

Using the average of the acceleration over the field 
of view the input loading pulse from the projectile can 
be reconstructed. This is shown in Fig. 15 for specimen 

1-WC-F-13Co in addition to the loading pulse from the 
image deformation simulations. The experimental pulse 
peaks at an input load on the order of 200 kN in compres-
sion. Comparing the experimental loading pulse to the image 
deformation pulse shows some significant differences. The 
image deformation pulse has a much sharper rise time than 
the experimental pulse. This is expected as the experimental 
pulse will be shaped by the thin layer of copper tape used 
to trigger the waveguide as well as the glue used to bond 
the sample to the waveguide. There will also be some plas-
tic deformation in the projectile leading to a pulse shaping 
effect and increasing the pulse rise time. The experimental 
pulse is also much higher in magnitude than the loading 
pulse predicted by image deformation simulations. It is cur-
rently unclear why the experimental pulse is significantly 
larger in magnitude than the pulse predicted by the simula-
tions. The peak pressure of the impact pulse is normally 
driven by the impact speed and the material properties of the 
impactor. The measured impact speed for the pulse shown 
in Fig. 15 was 50.4 m s

−1 compared to the simulation which 
used an impact speed of 50 m s

−1 . Thus, it is possible that 
a difference in material properties (stiffness or density) is 
responsible for this discrepancy. Another possibility is that 
after the projectile exits the barrel it travels a further 250 mm 
before impacting the waveguide. Over this distance it is pos-
sible that the air escaping from the barrel.

Stiffness Identification

It is useful to directly compare the stiffness identification 
with the image deformation simulations presented in "Image 
Deformation Stiffness Identification" section to experimen-
tal data. This comparison can help to verify that the image 
deformation simulations are accurately representing the 

Fig. 11   Displacement fields 
(unsmoothed) for 1-WC-F-13Co 
before and after the wave has 
reflected. a ux field at t = 7.0 μs 
and b at t = 20.0 μs . c uy field at 
t = 7.0 μs and d at t = 20.0 μs
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experiments, allowing for appropriate selection of smooth-
ing parameters and error prediction. A comparison of the 
identified stiffness as a function of time for specimen 1-WC-
F-13Co and the image deformation simulation is given in 
Fig. 16. Stress–strain curves for specimen 1-WC-F-13Co are 
shown in Fig. 17a (compared to Fig. 8a for the image defor-
mation simulation). Finally, the identified stiffness over the 

specimen length using the stress-gauge equation is shown in 
Fig. 17b for specimen 1-WC-F-13Co and the image defor-
mation simulation.

The results in Figs. 16 and 17 show that the experiments 
and image deformation simulations show quite good agree-
ment with a few notable differences. For the optimised vir-
tual fields procedure the experimental data shows slightly 

Fig. 12   Strain fields for 1-WC-
F-13Co before and after the 
wave has reflected. a �xx field at 
t = 7.0 μs and b at t = 20.0 μs . 
c �yy field at t = 7.0 μs and d 
at t = 20.0 μs . e �xy field at 
t = 7.0 μs and f at t = 20.0 μs
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Fig. 13   Acceleration fields 
for 1-WC-F-13Co before and 
after the wave has reflected. 
a ax field at t = 7.0 μs and 
b at t = 20.0 μs . c ay field at 
t = 7.0 μs and d at t = 20.0 μs
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higher variability than the simulation and greater instability 
at the point of wave reflection. Also, for this specimen the 
tensile fracture occurs at 21.4 μs leading to a drop in stabil-
ity once the fracture zone becomes large enough to disrupt 
the identification. Differences between the image deforma-
tion simulation and experiments are expected as the image 
deformation simulation does not account for all experi-
mental errors. The two main sources of error that are not 
included in the image deformation simulations include grid 
defects and three-dimensional effects (e.g. non-uniformity 
of kinematic fields through-thickness). Both of these error 
sources will be discussed in detail in the limitations section, 
see "Limitations and FutureWork" section.

Fig. 14   Strain rate fields for 
1-WC-F-13Co before and 
after the wave has reflected. a 
̇𝜖xx field at t = 7.0 μs and b at 

t = 20.0 μs
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Fig. 15   Input loading pulse calculated from the average accelera-
tion over the field of view for specimen 1-WC-F-13Co (Exp.) and the 
image deformation simulations (ID.)

Fig. 16   Comparison of the iden-
tification using the optimised 
virtual fields for experiment 
1-WC-F-13Co (Ex.) to the 
image deformation simulation 
(ID.). a Identification for Qxx 
and b Qxy
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Fig. 17   a Stress–strain curves 
for specimen 1-WC-F-13Co. b 
Comparison of the identification 
using the stress-gauge equation 
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The identification of the isotropic stiffness components 
using the optimised virtual fields is shown in Fig. 18 for 
all specimens over the time period for which the identifica-
tion is stable. The identification is quite consistent between 
samples and compares well to the image deformation simu-
lations. The average identified stiffness components for each 

sample are summarised in Table 5. Unfortunately, it was not 
possible to identify the stiffness for specimen 3-WC-F-6Co 
due to difficulties bonding a grid to the sample. The identi-
fied stiffness Qxx using the stress-gauge equation is shown in 
Fig. 19 for all specimens with the average stiffness identified 
for each sampled being summarised in Table 5. As predicted 

Fig. 18   Identified stiffness using 
the optimised virtual fields 
method as a function of time for 
all specimens tested. a Identi-
fication of Qxx and b identifica-
tion of Qxy . Note that for clarity 
the time axis has been truncated 
to only include the time range 
over which the identification 
is stable. The reference value 
provided is the same as used for 
the image deformation simula-
tions with the reference bounds 
giving a scale to asses scatter in 
the data

(a)

(b)

Table 5   Identified isotropic stiffness components using the optimised virtual fields method (VF) and stress-gauge equation (SG)

The maximum width averaged compressive strain rate is also provided

Specimen Qxx (VF)(GPa) Qxy (VF)(GPa) E (VF) (GPa) � (VF) Qxx (SG)(GPa) E (SG) (GPa) ̇𝜖xx
y
(min)(s−1)

1-WC-C-13Co 496 114 470 0.23 545 516 − 1240
2-WC-C-13Co 538 112 515 0.21 532 509 − 1120
3-WC-C-13Co 498 119 470 0.24 543 512 − 737
Average 512 115 485 0.23 539 512 − 1030
1-WC-F-6Co 599 136 568 0.23 642 611 − 1170
2-WC-F-6Co 675 170 632 0.25 631 592 − 663
Average 637 153 600 0.24 637 600 − 916
1-WC-F-6Ni 592 131 563 0.22 597 568 − 1250
2-WC-F-6Ni 729 192 678 0.26 610 567 − 1360
3-WC-F-6Ni 628 151 592 0.24 607 571 − 1650
Average 649 158 611 0.24 604 569 − 1420
1-WC-F-13Co 550 128 521 0.23 557 527 − 1270
2-WC-F-13Co 628 165 585 0.26 554 516 − 1450
3-WC-F-13Co 549 137 515 0.25 547 513 − 873
Average 576 143 540 0.25 553 519 − 1200
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by the image deformation simulation the stiffness identified 
with the stress-gauge equation shows lower variability than 
the stiffness identified with the optimised virtual fields. Also, 
in Fig. 19 the specimens with 6% binder seem to exhibit 
more variability in the identified stiffness over the sample 
length with specimen 2-WC-F-6Co showing relatively large 
oscillations in the identified stiffness over the length. It is 
possible that this behaviour results from three-dimensional 
effects (i.e. non-uniformity of kinematic fields through thick-
ness). However, if this was the case then one would expect 
this to manifest in the optimised virtual fields procedure as 
well. For the optimised virtual field identification in Fig. 18 
2-WC-F-6Co shows no significant differences compared to 
other specimens. Future experiments will be required using a 
back-to-back camera configuration to investigate this further.

It is difficult to make strong comparisons between the 
different grades of tungsten carbide tested in this study as 
only three samples were tested for each grade. However, the 
two grades with 6% binder exhibit a higher stiffness than the 
grades with 13% binder content. Based on the simple rule of 
mixtures for composites this result is expected with a higher 
volume fraction of the softer constituent leading to a softer 
composite. This is also confirmed by quasi-static investiga-
tions on tungsten carbide cermets [16].

No high strain rate data is available for the elastic modu-
lus and Poisson’s ratio of tungsten carbide cermets. How-
ever, it is generally thought that the stiffness of engineering 
ceramics, such as tungsten carbide, will show no strain rate 
dependence. Therefore, direct comparisons can be made 
with the moduli identified in this study and quasi-static 
moduli in literature. The specific grades of tungsten carbide 
tested here were analysed in [21]. However, the modulus was 
evaluated in bending and included a number of complicating 
factors, as noted by the authors. Thus, the reported modulus 
in [21] only gives a lower bound on the true value. Getting 

et al. [16] tested a wide variety of tungsten carbide cermets 
in quasi-static compression measuring both the elastic mod-
ulus and Poisson’s ratio using strain gauges. From the data in 
Getting et al. the elastic modulus of tungsten carbide cermets 
with 6% cobalt binder lies between 625 and 638 GPa while 
cermets with 12% cobalt binder have a modulus between 
540 and 564 GPa. The Poisson’s ratio for all grades tested in 
[16] was between 0.19 and 0.22. These results compare quite 
well to results in Table 5 with the modulus values being 
lower than those of [16] ( ∼ 6% for the 6% binder and ∼ 8% 
comparing with the 12% binder from [16] to the 13% binder 
used in this study). The results of this study find a Poisson’s 
ratio that is higher than [16] by ∼ 20% . It is possible that this 
difference comes from differences in material constituents 
and manufacturing procedures as the cermets tested in [16] 
come from other manufacturers. However, it should also be 
noted here that some of the difference can be attributed to 
the experimental error as predicted by the image deforma-
tion simulations and the experimental errors in [16].

Overall, the results for the stiffness identification are 
extremely promising, given that the tungsten carbide cer-
mets tested here are stiff compared to many engineering 
materials and exhibit quite low strains. This suggests that 
the IBII test is a useful tool for investigating the stiffness of 
ceramic composites at high strain rates. It is also encourag-
ing that the stiffness identification for the tungsten carbide 
cermets tested here agree closely with literature values for 
the quasi-static stiffness. This confirms that there is no strain 
rate dependence for the elastic properties of tungsten carbide 
cermets at strain rates up to 1000 s−1.

Strength Identification

The tensile strength was determined for all specimens using 
the procedure described in [10]. This procedure will be 

Fig. 19   Identification of Qxx using the stress gauge equation for all 
specimens tested. Note that data within one grid pitch plus half a 
smoothing kernel (25 pixels) has been removed as this is corrupted by 
edge effects. For comparison purposes the y axis has been set to the 

same limits as Fig. 18a. The reference value provided is the same as 
used for the image deformation simulations with the reference bounds 
giving a scale to asses scatter in the data
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briefly outlined here using specimen 1-WC-F-13Co as an 
example. The first stage of the strength identification is to 
identify the first crack location from the raw unsmoothed 
strain maps. The crack location for specimen 1-WC-F-13Co 
is shown in Fig. 20. A virtual gauge area is then used to 
identify the strength at the crack location using the linear 
stress gauge equation. Here the virtual gauge had a window 
of 20 × 30 pixels [x, y], this area is illustrated in Figs. 20 
and 21a and b. The strength is taken as the maximum stress 
averaged over the gauge area using the stress field from the 
linear stress-gauge equation, denoted as �xx

A

,ult
(LSG) . The 

stress field from the linear stress-gauge equation is shown in 
Fig. 21a at the time in which the maximum stress is reached 
in the virtual gauge area. This shows reasonable agreement 
with the stress field reconstructed from the strain using the 
identified constitutive parameters as shown in Fig. 21b.

Two measures of stress can be obtained at the virtual 
gauge location, the first is from the linear stress-gauge equa-
tion and the second is calculated from the strains using the 
stiffness parameters identified previously. When the material 
fails the strains become non-physical and these two measures 
of stress will diverge. This is illustrated in 21c. The stress 
over the gauge area calculated from the linear stress-gauge 
can also be compared to the axial average stress at the frac-
ture location ( �xx

y ). This gives an indication of how much 
the moment term (second term in Eq. 11) is contributing to 
the strength or how ‘uni-axial’ the test is. It is also possible 
to construct a local stress strain curve over the gauge area 
as shown in Fig. 21d. For specimen 1-WC-F-13Co shown 
in Fig. 21 averaging over the small gauge area leads to a 
local stress–strain curve which is relatively noisy compared 
to those shown in Fig. 17a. This is a result of averaging 
the strains over a small window and the contribution of the 
moment term in the linear stress-gauge equation. This term 
includes spatial averages of ay which has a low signal to 
noise ratio. This is clearly shown in Fig. 21c when compar-
ing the different stress measures; the �xx

A

,ult
(LSG) term has 

the largest variability over time. Comparison of the fields 
in Fig. 21a and b shows that fracture does not occur at the 
location in the sample experiencing the highest strain and 
tends to occurs at the edge of the sample. As mentioned 
previously, cermets like tungsten carbide are defect sensi-
tive so the specimen will not necessarily fail at the location 
experiencing the highest stress.

It was possible to use this methodology to identify the 
strength for all tested samples except 3-WC-C-13Co which 
did not fail during the portion of the test that was imaged. 
Therefore the strength value reported for this specimen 
is the maximum LSG stress value through the recording 
period. The identified tensile strength for all specimens is 
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Fig. 20   Raw strain map showing the fracture location and virtual 
gauge area for specimen 1-WC-F-13Co

Fig. 21   Strength diagnostics for 
1-WC-F-13Co. a Stress field 
from the linear stress-gauge 
equation (LSG) (Eq. 11). b 
Stress field calculated from 
the measured strains using the 
identified constitutive param-
eters. c Comparison of stress 
measures as a function of time 
over the virtual gauge region. d 
Local stress–strain curve over 
the virtual gauge area
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summarised in Table 6. A comparison of the stress meas-
ures over time for a specimen from each group is shown in 
Fig. 22. These samples were selected to illustrate the dif-
ferent behaviours observed across all samples. In general, 
the linear stress-gauge provides the best agreement with the 
measured strain over the virtual gauge area, for example 
2-WC-F-6Co and 2-WC-F-13Co in Fig. 22b and d respec-
tively. However, for some specimens there is no significant 
difference between the standard stress gauge and the linear 
stress-gauge, see 1-WC-F-13Co in Fig. 21c and 3-WC-F-6Ni 
in Fig. 22c. Comparison of standard and linear stress gauge 
gives an indication of the in-plane tilt of the sample during 
the test. The larger the moment term of the linear stress-
gauge equation the larger the tilt.

The most interesting behaviour is exhibited by specimen 
1-WC-C-13Co shown in 22a. For this specimen the stress 
measures all follow closely until 17 μs into the test when 
they diverge while still in compression. A similar behav-
iour was shown by specimen 1-WC-F-6Co. It is possible 
that this is a result of three-dimensional effects. However, 
one would expect this to manifest immediately following 
the wave reflection from the free edge which is not the case 
here. The ‘S’ shape of the stress calculated from the strain 
is similar to that shown by 1-WC-F-13Co (Fig. 21c). It is 
interesting to note here that a similar ‘S’ shaped strain pro-
file is predicted by the image deformation simulations but 
given the difference in input loading pulse (see Fig. 15) care 
needs to be taken in making this comparison. The fact that 
something similar appears in the image deformation simula-
tions suggests that the cause of this divergence may be the 
error generated by reconstructing data at the free edge by 
extrapolation. If this is the case then future improvements 
in camera technology with larger pixel array sizes will sig-
nificantly reduce this error. However, further experiments 

Table 6   Identified strength for all tested samples using the linear 
stress-gauge equation ( �xx

A

,ult
(LSG) ) with the standard stress-gauge 

provided for comparison ( �xx
y

,ult
(SG))

*Did not fail during recording, maximum values reported
The quasi-static (QS.) reference strength is estimated as half the 
transverse rupture strength from [21]

Specimen �xx
y

,ult
(SG)(MPa) �xx

A

,ult
(LSG)(MPa) ̇𝜖xx

A
max(s−1)

1-WC-C-13Co 1250 1480 810
2-WC-C-13Co 1310 1820 990
3-WC-C-13Co 1060* 1340* 920
Average 1210 1550 910
QS. 0.5�TRS 

(MPa)
1740

1-WC-F-6Co 1250 1240 1000
2-WC-F-6Co 872 1550 800
Average 1060 1390 900
QS. 0.5�TRS 

(MPa)
1170

1-WC-F-6Ni 666 820 1400
2-WC-F-6Ni 788 1290 980
3-WC-F-6Ni 940 1070 1700
Average 798 1060 1400
QS. 0.5�TRS 

(MPa)
1330

1-WC-F-13Co 1370 1350 1200
2-WC-F-13Co 1150 1460 930
3-WC-F-13Co 918 1245 920
Average 1140 1350 1000
QS. 0.5�TRS 

(MPa)
1590

Fig. 22   Stress measures at the 
fracture location for one speci-
men from each group. These 
specimens were selected to 
represent the different behav-
iours observed across all tested 
specimens
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are needed to verify that three-dimensional effects are not 
responsible by using a back-to-back imaging procedure. This 
is discussed in further detail in the limitations section (see 
"Limitations and FutureWork" section ).

As data for the quasi-static tensile strength of tungsten 
carbide is not available it is difficult to comment on any 
strain rate sensitivity of the measured properties. Further-
more, it is well known that ceramics have considerable vari-
ability in measured strength which is correlated with the 
sample volume [17, 20]. While stressed volume effects are 
well characterised for the case of quasi-static loading this 
becomes more complicated for the case of dynamic loading 
because the stress distribution is time dependent (i.e. there 
is stress wave propagation). Leaving the problem of dynamic 
stressed volume effects aside, it is possible to have an esti-
mate of the quasi-static tensile strength by using the trans-
verse rupture strength taken from a bending test as described 
in "Model Configuration and Design Sweep Criteria" sec-
tion and [17]. Based on the three-point bending failure load 
reported in [21] the tensile strength can be estimated for the 
given grades of tungsten carbide as half the transverse rup-
ture strength, 0.5�TRS . These results are provided for com-
parison in Table 6. Comparing to the quasi-static strength 
estimations the dynamic experiments in this study mostly 
have a lower strength by 200–300 MPa apart from the WC-
F-6Co samples which show the opposite trend. Considering 
that the quasi-static strength estimates are not significantly 
outside the range of strength values reported for each group 
it is unlikely that there is any strain rate dependence for the 
tensile strength up to ∼ 1000 s

−1 . It should be noted that the 
sample sizes tested here are not meant to be large enough to 
perform statistical tests. However, this study clearly demon-
strates that this methodology is a viable method for obtain-
ing high strain rate strength data for brittle materials and 
could be used for larger investigations in the future.

At this point it is worth considering that the image defor-
mation sweep used to select the smoothing parameters opti-
mised the error on the identified stiffness components not 
the strength identification. It would be desirable to develop 
an image deformation procedure to select optimal smooth-
ing kernels for the strength identification and to estimate 
the associated error in the identified strength. This will be 
undertaken as future work and is discussed further in the 
following section.

Limitations and Future Work

This study has shown that the IBII test is an excellent tool for 
investigating the high strain rate properties of brittle materi-
als, using tungsten carbide cermets as an example. However, 
it is useful to discuss the limitations that have arisen when 
discussing the results as these give an indication of how 

the method can be improved in the future. The two main 
limitations of the method include grid defects and three-
dimensional effects which are discussed further below.

Grid Defects

This refers to small areas of missing grid that occur due to 
bubbles in the glue used to bond the grid to the sample. Grid 
defects can also manifest as small areas of grid that chip off 
the edge of the sample during the grid transfer procedure. 
These areas of missing grid have an effect on the variability 
of the identified properties as they vary from sample to sam-
ple. The errors associated with grid defects could be quanti-
fied using the image deformation procedures detailed in this 
work. Instead of using an ideal synthetic grid, a static image 
of an experimental specimen could be deformed by sub-pixel 
interpolation (as described in [28]). This procedure could 
be used to predict the error for each individual specimen. 
However, this is beyond the scope of the present work and 
may not be necessary as a new method of grid deposition 
has been developed which drastically reduces the occurrence 
of grid defects. This new method allows grids to be printed 
directly onto samples using a flat bed UV ink jet printer with 
pitches down to 0.33 mm. This has drastically reduced the 
problem of grid defects (especially for defects on the edges 
of the sample) and will be implemented where possible in 
future experiments.

Three‑Dimensional Effects

There are two key assumptions associated with the data 
processing used in these experiments. The first is that the 
specimen is in a state of plane stress and the second is that 
the kinematic fields are uniform through the thickness of the 
sample. The combination of these assumptions is equivalent 
to assuming that there is no through-thickness dispersion 
and that the test is only two dimensional. In practice, signifi-
cant misalignment at impact or geometrical imperfections 
of the sample could potentially lead to through-thickness 
dispersion. Obviously, it would be desirable to quantify if 
these assumptions hold and if they do not, what the resulting 
error on the stiffness and strength identification is. Here the 
ratio of thickness to the smallest in plane dimension is not 
unfavourable (height of 30 mm and thickness of 4 mm) so it 
is unlikely that the plane stress assumption has a significant 
effect. However, this could be investigated using the image 
deformation simulation procedure described in "Image 
Deformation Simulations" section by using a three-dimen-
sional finite element model where the thickness of the sam-
ple is progressively increased. This model could also be used 
to investigate the effects of geometrical imperfections such 
as non-square edges of the specimen. This will be under-
taken further as future work. To verify the uniformity of the 
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kinematic fields the experiment can be imaged in a back-to-
back configuration using two cameras. The kinematic fields 
on the front and back of the sample can then be matched to 
see if there is any through thickness non-uniformity. These 
experiments will also be conducted as future work.

With these limitations in mind it is useful to consider 
possible future work for developing the IBII method further 
and as well as other applications of the IBII test for obtaining 
high strain rate properties of brittle materials.

Error Analysis for Strength Identification

The image deformation procedure presented in this study 
focused on selecting smoothing parameters to minimise the 
error on the identified stiffness. It is likely that these are not 
the optimal parameters for identifying the strength of the 
material which is mostly dependent on the measured accel-
eration and not a combination of acceleration and strain. 
Furthermore, it was found that a significant contribution to 
the noise in the stress measured at the fracture location came 
from the moment term of the linear stress-gauge equation as 
a result of the ay acceleration. It will be useful to investigate 
using different smoothing kernels on the x and y components 
of the kinematic fields for strength identification purposes. 
Therefore, in the future an image deformation procedure 
will be developed for minimising the error on the identified 
strength. This will include using an explicit dynamics cohe-
sive zone model to replicate crack growth. The displace-
ment fields from this model can then be used to synthetically 
deform images, select optimal smoothing parameters and 
quantify the errors associated with the strength identifica-
tion procedure.

Application to Other Brittle Materials  This study has dem-
onstrated the potential of the IBII test for brittle materials 
with high stiffness and strength. There are several other 
materials that exhibit low strains to failure for which the 
high strain rate behaviour is of interest. This includes, soda-
lime glass, concrete, graphite, sapphire, boron carbide and 
silicon carbide. One of the most challenging cases will 
be testing armour ceramics such as boron and silicon car-
bide. These materials have bulk wave speeds on the order 
of 10 km s

−1 and will present a particular challenge to the 
temporal resolution of the camera which is currently limited 
to 5 Mfps at full resolution. Image deformation simulations 
will be extremely useful for designing the IBII test for these 
materials to understand and minimise identification errors.

Conclusion

The IBII test was successfully used to identify the high strain 
rate properties of various grades of tungsten carbide at strain 
rates on the order of 1000 s−1 . This study used the IBII meth-
odology to produce the first high strain rate data for the stiff-
ness and tensile strength of tungsten carbide cermets. The 
results of this study are summarised as follows:

1.	 Image deformation simulations are a vital tool for devel-
oping and assessing test methods based on full-field 
measurements. These simulations allow for the optimal 
selection of processing parameters and the estimation of 
the associated measurement errors.

2.	 The IBII test is extremely well suited for testing brittle 
materials at high strain rates as shown by the successful 
identification of the stiffness and strength of a series of 
tungsten carbide cermets at strain rates on the order of 
1000 s

−1 . This methodology does not require the sample 
to be gripped and does not require significant modifica-
tion to test high stiffness and high strength materials.

3.	 The identified stiffness components of all grades of 
tungsten carbide tested showed no significant strain rate 
dependence. Furthermore, the trends in the identified 
elastic modulus for different grades correlated well with 
quasi-static results (i.e. higher binder content leads to 
lower modulus).

4.	 The identified tensile strength for all tested cermets 
showed negligible strain rate dependence when com-
pared to estimates of the quasi-static tensile strength 
taken form transverse rupture tests.

Overall, this study demonstrates the potential of full-field 
measurements to provide high strain rate test data for brittle 
materials that is not currently available with other methodolo-
gies. In the future, ultra-high speed camera technology will 
improve leading to larger pixel arrays, higher frame rates and 
longer recording times. This will decrease measurement errors 
and allow for more complex tests to be performed. The authors 
hope that the IBII test method will become a standard test for 
obtaining high strain rate properties for brittle materials in the 
future.

Acknowledgements  The authors want to thank Dr Leslie Lamberson 
from Drexel University for providing the samples and for useful discus-
sions about the material. Dr Lloyd Fletcher and Prof. Fabrice Pierron 
acknowledge support from EPSRC through Grant EP/L026910/1.

Data Provision  All data supporting this study are openly available from 
the University of Southampton repository at https​://doi.org/10.5258/
SOTON​/D0607​.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​
iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, 

https://doi.org/10.5258/SOTON/D0607
https://doi.org/10.5258/SOTON/D0607
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


502	 Journal of Dynamic Behavior of Materials (2018) 4:481–504

1 3

distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.

Appendix

Derivation of the Linear Stress‑Gauge Equation

Here rigid body virtual fields will be used to illustrate the deri-
vation of Eq. 11 as described in [10]. The case under consider-
ation is a thin plate sample impacted on one edge as described 
in Fig. 1. The first virtual field describes a rigid translation in 
the x direction: 

Starting with the principal of virtual work (Eq. 1), three 
key assumptions are used to simplify the analysis: (1) the 
density, thickness and material properties of the specimen 
do not vary in space; (2) the kinematic fields are uniform 
through the thickness; and 3) the specimen is in a state of 
plane stress. Substituting the rigid body virtual field in Eq. 
(16) into the principal of virtual work gives:

where S is the surface of the specimen and l is the boundary 
of the specimen. As the traction vector T = � ⋅ n , Tx is given 
by the stress component �xx . Equation (17) now becomes:

Using overline notation to denote spatial averages (as 
described at the beginning of "Virtual Fields for Stiffness 
Identification" section) Eq. (18) simplifies to the stress-
gauge equation (Eq. 9).

Next, consider the virtual field that describes a rigid body 
translation in the y direction:

Applying the same assumptions as described for the 
first rigid body virtual field the principle of virtual work 
becomes:
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Using the overline notation in similar manner yields:

where �xy
y is the average shear stress in the cross section at 

the location x and ay
S is the surface average of the accelera-

tion from the free edge to x.
The final virtual field to be considered is a rigid body rota-

tion about the origin:

Using the same assumptions as for the previous rigid body 
virtual fields, the principle of virtual work becomes:

Applying the overline notation yields:

Now, Eq. (21) can be substituted into Eq. (24) to give:

where �xxy
y is the average of the first moment of the axial 

stress over the cross section at x and the acceleration terms 
in Eq. (25) are spatial averages over the specimen surface up 
to the transverse slice x.

Equations ( 9, 21 and 25) can now be combined to give 
a linear approximation of the axial stress distribution. Let 
the linear approximation of the �xx stress along y be denoted 
�xx(LSG) (LSG for ‘Linear Stress-Gauge’). �xx(LSG) can be 
expressed as follows:

where �a
xx

 and �b
xx

 are the coefficients of the linear func-
tion. Consider the first rigid body virtual field describing a 
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�∗
xy
= 0

(23)

hs∕2

∫
−hs∕2

�xxydy − x

hs∕2

∫
−hs∕2

�xydy

= �∫
hs∕2

−hs∕2

x

∫
0

(axy − ayx)dxdy

(24)�xxy
y
− x�xy

y
= �x(axy

S
− ayx

S
)

(25)�xxy
y
= �x(xay

S
+ axy

S
− ayx

S
)

(26)�xx(LSG) = �a
xx
+

y

hs
�b
xx
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translation in the x direction. Equation (26) can be substi-
tuted into Eq. (18) to obtain:

Evaluating the integrals and simplifying with the overline 
notation yields the coefficient �a

xx
:

which is equivalent to the standard stress-gauge equation 
(Eq. 9). Now, consider the virtual field describing a rigid 
body rotation. Substituting Eq. (26) into Eq. (23) gives:

Simplifying the integrals in Eq. (29) using the overline nota-
tion yields: 

The term �xy
y can be expressed in terms of acceleration aver-

ages using Eq. (21). Therefore, the coefficient �b
xx

 can be 
given by:

Finally, a linear approximation of the stress distribution, 
�xx(LSG) , is obtained by combining the results for the two 
linear coefficients with Eq. (26):
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