
Prototyping Tools for Game Writers

Henrik Engström1
• Jenny Brusk1

• Patrik Erlandsson1

Received: 11 April 2018 / Accepted: 30 May 2018 / Published online: 5 June 2018

� The Author(s) 2018

Abstract A game is best evaluated by playing it and prototyping is therefore an

important activity in game development. Game writers and narrative designers are

responsible for the narrative structure of a game, which may have a varying degree

of interactivity to it. The aim of this paper is to analyse the role of prototyping tools

for game writers. There is a limited range of such tools available, of which Twine is

one of the most established. Most of these tools have a text-based programming

interface for modelling of game mechanics. This paper presents Deig—a proto-

typing tool for creating point-and-click adventure games. In Deig, game mechanics

is modelled graphically using nodes from a set of primitives. We present an

interview study where game writing students reflect on their experience of using

Deig and Twine as prototyping tools. The result shows that both tools have their

merits and complement each other. Deig was found to be intuitive for modelling of

game mechanics, which lead students to create interactive narratives. Twine was

found to be more useful for experimental writing. The conclusion of this work is

that there is a need for a diverse set of prototyping tools to support game writing.

Keywords Computer game � Game writing � Narrative design � Pototyping � Tools

& Henrik Engström

henrik.engstrom@his.se

Jenny Brusk

jenny.brusk@his.se

Patrik Erlandsson

patrik.erlandsson@his.se

1 School of Informatics, University of Skövde, Box 408, 541 28 Skövde, Sweden

123

Comput Game J (2018) 7:153–172

https://doi.org/10.1007/s40869-018-0062-y

http://orcid.org/0000-0002-9972-4716
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-018-0062-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s40869-018-0062-y&domain=pdf
https://doi.org/10.1007/s40869-018-0062-y

1 Introduction

Game development is a collective activity, where individuals from a range of

disciplines collaborate to create a complex product, and where the player is involved

in the creation of the experience. Programming, graphics, audio and game design

are well established disciplines in game development. In the last decades, game

writing has been added to this list (IGDA no date; Dinehart 2011). Writing is mainly

a solitary work using traditional tools such as pen, typewriter or word processor. A

game writer however needs to collaborate with other disciplines, and the written

material is integrated into a complex game production system. The game mechanics

may be integrated with the narrative, which means writers need to handle branching

narratives. Moreover, testing is essential in game development (Schell 2008). None

of this is supported by traditional writing tools. The lack of a universal tool or

format has been identified as the biggest challenge for game writers (Francis 2015).

The complexities of game writing have been handled in a range of different

ways: from individual authors who claim they keep the model in their head (Despain

2008) to large team projects where writers and computer scientists create highly

advanced AI-based interactive fiction (Koenitz 2016). An intermediate approach,

commonly used, is to model branching narratives using Twine (Twinery.org 2018)

or similar tools. In Twine, game mechanics can be modelled using a traditional

scripting language. The programming environment provided in Twine lacks most

features found in modern integrated development environments. Writers, who

typically have a non-technical background, use Twine to write less logic-driven

games (Friedhoff 2013).

The aim of this paper is to analyse the role of tools for game writers who want to

prototype narrative and mechanical elements. This is done through a case study

where Twine and Deig, a novel tool for dialog-based adventure games, are

compared. A class of game writing students at the University of Skövde have used

booth tools in different assignments. Their experiences and reflections have been

analysed through semi-structured interviews. The result shows that both Twine and

Deig were found to be useful prototyping tools but with quite different benefits.

While Twine allows for more traditional authoring, and has a potential for

innovative gameplay, the threshold to create new game mechanics was found to be

high. Deig, on the other hand, is limited to a specific genre, but was conceived to be

intuitive and very easy to learn. This made it possible for persons with limited

programming proficiency to model game mechanics. The students reported insights

into the complexities of interactive storytelling from working with Deig, which they

had not got from working with Twine.

2 Background

Almost 20 years has passed since the ‘‘ludology versus narratology’’ debate

dominated the scholarly discussions on computer games (Aarseth 2012). Today, it is

hard to find anybody who claims that computer games cannot be studied from a

154 Comput Game J (2018) 7:153–172

123

narrative perspective or that the ludic dimensions of games make them different

from non-interactive narration. Aarseth (2012), for example, presents a ludic-

narrative design-space with four independent, ontic dimensions: world, objects,

agents and events. He gives examples on how different games can be positioned at

the pure story–pure game scale along these dimensions. Game mechanics is a

central element in most games. There exist many definitions of game mechanics,

used in different contexts such as game analysis and game design (Sicart 2008). One

popular example of the latter is the Mechanics Dynamics Aesthetics (MDA)

framework (Hunicke et al. 2004). In MDA, mechanics is defined in terms of the

algorithms and data; dynamics is the run-time behavior of the mechanics; and

aesthetics is the emotional response evoked in the player. A similar perspective is

presented by Järvinen (2008) who emphasizes that mechanics can be seen as the

verbs of the game. When dialogs are used in games, they provide conversing to the

list of verbs.

2.1 Game Writing and Narrative Design

The International Game Developers Association (IGDA) describes game writers as

‘‘…those in the video game industry who write dialogue scripts, construct

overarching narrative structure, produce documentation and articles, and a myriad

of other writing tasks…’’ (IGDA, no date). IGDA does not define the role of a

narrative designer but as the name indicates, rather than writing, their main

responsibility is to design game narrative structures. Dinehart (2011) defines a

narrative designer’s role to ‘‘… champion story, craft compelling narrative

elements, and define the systems through which they will be delivered to the

player. Interactive Narrative Design is a new craft waiting to be further defined and

explored’’. Given the large interest from scholars in the theoretical understanding of

narratives in games, there is an appalling lack of interest to study game writing, as

an applied activity. In the research database Scopus (Burnham, 2006) a search for

‘‘Game Writer’’ returns 5 publications and a search for ‘‘Narrative designer’’ returns

6. As a comparison, a search for ‘‘Game Designer’’ returns almost 1000 articles in

Scopus. The scholarly interest has a strong bias towards theoretical reasoning and

descriptive models rather than prescriptive (Koenitz 2016). Joyce (2015) presents a

list of essential criteria that should be considered to best balance story and player

agency. This list is based on previous scholarly discussions and experiences from

playing games. The closest Joyce gets to applied writing is a brief discussion on the

need for a ‘‘drama management system’’. This refers to studies from the AI research

community where there is an interest in interactive fiction. These approaches are

experimental, involves very advanced computational models, and do not represent a

pragmatic view of game writing.

There is a need for more studies on game writing and on how game writers, in

practice, can combine narrative and mechanics in games.

Comput Game J (2018) 7:153–172 155

123

2.2 Tools in Game Development

Tools are vital parts of game development (O’Donnell 2011) and they play an

important role in the creative process. In their study of creativity within the video

game industry, Lê et al. (2013, p. 55) state that ‘‘[d]uring the creative process,

technology first acts as a medium between ideas and their realization’’ and they add

that, for games, ideas have to be implemented and tested before they make sense. It

is for this reason Schell (2008) argues that developers should ‘‘pick a fast loop

engine’’ to support early testing and iterative development. In the games industry,

prototyping is commonly used in the early phases of a development process

(Kasurinen et al. 2014; Schmalz et al. 2014) and companies expect their tools to

support prototyping and allow for change (Kasurinen et al. 2013).

A distinction can be made between the full-fledged game engines used to develop

the final game and lightweight prototyping tools that allow for rapid prototyping of

ideas. In game production, the tool-chain used can be of pivotal importance

(Murphy-Hill et al. 2014). Companies create and use pieces of software that glues

together the various tools used by different disciplines. This pipeline can be highly

specialized to specific company configurations and is typically not available when

game engines are released (O’Donnell, 2011). Custom made tools for game writers

may be part of this tool-chain. It is, however, notable that Excel is commonly

mentioned as an interchange format between game writers and programmers

(Despain 2008; Francis 2015). This indicates that there is a lack of specialized tools

for game writers.

Prototyping tools are different to the production tools in that they allow for quick

modelling of specific characteristics of a game and may not be part of the tool-chain.

Nelson and Mateas (2009) present a requirement analysis of tools to support game

design and the result of this study shows a variation in requirements from different

designers. Some preferred to focus on the interface while others requested easy to

use tools for modelling of game mechanics.

2.3 Prototyping Tools for Game Writing

There exist a large number of tools for rapid prototyping of games for specific game

genres or limited subsets of games such as 2D, single player games etc. Popular

examples of such tools include GameMaker: Studio, Construct 2, RPG Maker and

Stencyl (Ciesla 2017). Most of these tools employ a combination of graphical

modelling primitives and a scripting language to enable modelling of game

mechanics. None of these tools are specifically targeting game writers and have very

limited support for dialog writing or creating a narrative.

On the other side of the spectrum, there are general purpose tools that can be used

to model narratives, game logic and user interfaces. Word processors and

spreadsheets are used extensively, as well as writing tools focusing on managing

text fragments, e.g. OneNote or Scrivener. For modelling of dependencies and

flows, tools such as Visio may be used (Despain 2008). None of these tools support

executing the modelled flow or testing the game.

156 Comput Game J (2018) 7:153–172

123

There exist a few tools that are specifically targeted towards game writers. The

most comprehensive is Articy:draft (Nevigo 2018) which support complex

modelling of hierarchical state-charts. Another example is Chat mapper, which is

targeted at dialog modelling. The mechanical behaviour in Chat mapper is modelled

using Lua scripts. Articy:draft and the full featured version of Chat mapper are

commercial products aimed at the tool-chain for game production. They are not

primarily focused to support rapid prototyping of games. Among the freely available

tools, Twine, Inklewriter and Ren’Py are examples of popular tools (Pixelles.ca

2017). Ren’Py (Renpy.org 2018) is a free tool focused on visual novels and its

primary interface to create content is through scripting. Twine and Inklewriter

(Inklestudios.com 2018) are both free tools for creating interactive stories, and both

offer sufficient capabilities for prototyping such content. The graphical modelling of

mechanics is limited in these tools, but both offer scripting languages, which can

support complex mechanics. Twine is currently the primary tool used to teach

interactive storytelling at the game writing program of the case presented in this

paper.

2.4 Twine

Twine is aimed at interactive storytelling and was originally developed by Chris

Klimas (Friedhoff 2013). In Twine, a game is created as a graph of connected

passages (Fig. 1, left). Each passage is written in a text panel (Fig. 1, right) where

prosaic text can be mixed with code segments and links to other passages. The core

functionality of Twine is to create hypertexts. A passage can be seen as a page in a

choose-your-own-adventure book. Links between passages are automatically added

to the graph based on the links in text (using the ‘‘[[Label-[Target passage]]’’-

syntax).

The main purpose of Twine is to provide a graphical interface for creating

branching stories. Twine does not, however, provide a smooth interface for the

programming elements. Friedhoff (2013, p. 5) writes: ‘‘Twine has an ambivalent

Fig. 1 The passage graph of a Twine game (left) and the specification of a passage (right)

Comput Game J (2018) 7:153–172 157

123

relationship with code’’ meaning that although Twine lacks much of the expected

support to implement mechanics, there is a community who creates technically

advanced Twine games. The main advantage of Twine, which has attracted a large

user base, is that it provides a ‘‘code-free’’ environment for creating games (Salter

2016).

3 Deig

Deig is a standalone Java program that can be used to model logic, author dialog,

debug and test dialog-based 2D adventure games. This allows for rapid prototyping

of games. The tool has evolved through a research project primarily focused on

including visually impaired players in a gaming experience (Engström et al. 2015).

As part of this project, two mobile games have been developed and released. During

the development of the first of these games, Frekvens Saknas (University of Skövde

2015), the developers identified a need for a tool to support the dialog authoring. A

number of candidates were evaluated, including Twine, but none were found to

feature the required capabilities. Instead, the first version of Deig was developed and

used in the tool-chain. This first version was later extended to be used as a

prototyping tool in game design and game writing courses. Deig has then been

further extended and used in the development of Marvinter (University of Skövde

2017), a game produced in collaboration with the national Swedish Radio as part of

their traditional, 24-episode advent calendar series. Marvinter was developed to

include visually impaired players and hearing-impaired players. The game’s

narrative was intertwined with the narrative of the radio calendar. The total play

time of the game was on average 7.2 h and it contained 10,000 recorded voice

acting lines. As Deig aims to include visually impaired players, it uses TTS

synthesis to enable rapid prototyping and testing of dialog. Deig games can be

played directly in the editor but they can also be exported to Unity where

prototyping assets (images and sounds) can be replaced with production quality

assets (using Unity’s systems for animations, lightning, 3D sound etc.).

The version presented and evaluated in this paper is Deig 1.1. This version has

been extended and revised and is available for public download (http://deig.se). It

can be run on Windows, OSX, and other desktop systems with a Java runtime

environment. This free version does not include the proprietary text-to-speech

(TTS) system used in the present study. Instead, it contains a number of free TTS

alternatives and an API to add additional TTS modules.

3.1 Modelling Primitives

A game created in Deig is composed of a number of chapters (levels). Each

chapter contains a number of locations, which in turn contains a number of

interactables. When a game is played, the player is located in one of the locations

and can be in one of two states: exploration state, where interactables can be found

and activated; and dialog state, where the player can engage in a traditional menus-

based dialog with the characters of the game. The logic of the game is modelled

158 Comput Game J (2018) 7:153–172

123

http://deig.se

using a set of flow nodes, which are used to create a graph for each interactable. For

each location, there are two special types of interactables: enter interactable and

exit interactable. These interactables are triggered automatically when the player

enters and exits a location respectively.

Figure 2 shows the main window of Deig. The window has three main panels: a

list of locations (upper left), a list of interactables (lower left) and a main panel

(right). The properties of a location can be edited in the list in the upper left corner.

In Fig. 2, the location ‘‘Bedroom’’ is selected, and its graphical representation is

shown in the main panel. There are two interactables in the Bedroom: Bed and

Door. The positions of these interactables are marked with circles in main panel.

3.2 Modelling of Game Mechanics

The dialog and logic of an interactable is modelled using a set of flow nodes

connected in a single-entry, directed cyclic graph (Fig. 3).

There are eight different node types that form the modelling language of Deig:

Act, Dialog, Set variable, Condition, Fork, Transit, Dice, and Code (see Table 1).

Each node can have one or more input connections and zero or more output

connections (Fig. 4). When a node graph is traversed and a node has more than one

output connection, the output is selected based on user input (the dialog node) or the

node’s logical behaviour (all other nodes). If a node has no output connection, the

game returns to exploration mode. In the case of the transit node, this is preceded by

the execution of the current location’s exit nodes (if any) followed by the new

location’s enter nodes (if any). The exploration then starts in the new location.

All node types, except the fork node, have inspector dialogs where the specifics

of a node are modelled. For dialog authoring, the act node editor is used, shown in

Fig. 5.

The dialog text is written as a sequence of lines. For each line, the character name

and an emotion are specified. For the main character, the line can also be flagged to

Fig. 2 The main window of Deig, with some sample game content

Comput Game J (2018) 7:153–172 159

123

Fig. 3 A node graph used to model the dialogs and logic of an interactable

Fig. 4 A node can have one or
more inputs (arrows leading to
the node) and zero or more
outputs (arrows leading from the
node)

Table 1 The eight flow node types used to model dialog and logic in Deig

Icon Description Icon Description

Act node—a sequences of dialog

lines

Fork node—selects the first output the first time,

the second all other times

Dialog node—enables the user to

select a dialog choice

Transit node—changes the active location for the

player

Set variable node—sets the value

of a named variable

Dice node—randomly selects an output.

Condition node—selects an output

based on conditions using

variables

Code node—miscellaneous actions related to

game state (chapter transits etc.) and multimedia

(sound etc.)

160 Comput Game J (2018) 7:153–172

123

be inner monolog. When played, emotions and inner monolog are expressed

visually through different speech bubbles (Fig. 6).

4 Case Study

The role of tools for game writers have been analysed through a case study with

game writing students taking a course on dialog systems for games. In this course

they used both Twine, which they had prior experience of, and Deig, which was new

to them. Through semi-structured interviews their experiences and reflections have

been analysed.

4.1 Respondents and Course Module

The game writer programme at the University of Skövde is one of very few

dedicated programmes in this area in the world (Sheldon and Toftedahl 2016). It is

one of six 3-year bachelor programmes within computer games development at the

University. The other programmes major in programming, graphics, audio, music

and game design. In addition to courses focusing on their major, all programmes

contain collaborative game development projects where students from all

disciplines develop a 2D game (first year) and a 3D game (second year). The

students participating in this study were all second-year students, half-way through

their education. They had taken an introductory course to procedural programming;

an introductory course to game design and prototyping using GameMaker: Studio;

Fig. 5 The act node editor
where dialog lines can be added
and edited

Fig. 6 Play testing in Deig

Comput Game J (2018) 7:153–172 161

123

and they had used Twine in previous courses. They had participated in the first game

project but not yet in the second-year project.

The course module studied in this paper is focused on dialog systems for game

writers. The course contains two major assignments. The first is an individual

assignment where each student develops a dialog-based game using Twine (version

2.2.1). In the second assignment, students in groups of 2–3 develop a dialog-based

game using Deig. The students were given an introductory lecture followed by an

individual 3-h practical exercise in using Deig. The group then had 5 days to

complete the game. The assignment was finished with a play-test session where

groups tested each other’s games. The interviews were held in direct connection to

this test session.

4.2 Method

The interviews were held with the groups that had been working together with Deig.

The choice of the small group interview format was made to create a peer

environment similar to a format already established in many courses. The interview

followed a semi-structured protocol (DiCicco-Bloom and Crabtree 2006) with three

main sections: subjects’ background, their perception of the assignments and the

tools, and specific elements of Deig (Appendix 1).

Questions regarding their perception of the tools and difference between Twine

and Deig were gradually made more and more specific. This made it possible for

subjects to raise observations regarding differences before they were explicitly

asked about it. In the end of the interview, subjects were asked if they wanted to add

anything.

All interviews were recorded and transcribed. The transcribed material has been

coded and analysed using MAXQDA 2018 (Verbi 2018). A first step in the analysis

of the interview material was to identify recurring themes, which were then used to

code the transcripts. All interviews were held in Swedish. Cited quotes from

interviews have been translated into English. Text marked with italics indicates that

a clear emphasis was put on that word in the interviews. Ellipsis (…) marks longer

pauses.

The respondents were informed that participation was voluntary, that they are

anonymous, and that the recordings will be deleted after transcription. A written

consent was signed by all participants.

5 Results

There were 19 students who were actively taking the course and they produced 16

Twine games individually (3 did not complete the assignment in time). All groups

completed the Deig task and created 8 games.

The Deig games have a playtime between 10 and 20 min. All games have

meaningful gameplay in that there are clear goals for the player to achieve and there

are consequences to the actions made. On average, a game has 300 dialog lines and

162 Comput Game J (2018) 7:153–172

123

involves 4 characters in addition to the protagonist. Figure 7 shows the logical

model of an interactable in one of the produced games.

The Twine games produced in the module are more varied than the Deig games.

A majority has a linear progression without any repeated passages. Figure 8 shows

the simplest (left) and most complex (right) structure of the 16 games. Note that

these are models for complete games while the model in Fig. 7 is for one of 20

interactables in that game.

The produced prototyped were play-tested by primarily other students and

instructors on the course. All prototypes were high fidelity with respect to the

interactivity but there were differences in terms of visual design fidelity. The Twine

prototypes were in general low fidelity with the major interaction through a text-

based interface. These games were played in a web-browser on a desktop computer.

These games resemble game which Friedhoff (2013) claims is typical in the Twine

community. The Deig prototypes contained both graphics and audio and were tested

in two different versions: initially these games were tested in the low-fidelity player

Fig. 7 An example of a logic model for an interactable

Fig. 8 Examples on the structure of two produced Twine games

Comput Game J (2018) 7:153–172 163

123

of Deig on a desktop computer. The final games were tested in high fidelity versions

on tablets. In this version, many graphics and audio elements have production

quality. This type of prototype has been used extensively in play tests conducted in

the production of Marvinter (University of Skövde 2017).

In total 16 students (7 females, 9 males) chose to participate in the study. The

average age of subjects were 23 years. All eight Deig teams were represented in the

material. One of the interview sessions was held with a single respondent, another

with a team of three respondents. The remaining six sessions were held with two

respondents. The duration of interviews ranged from 16 to 25 min (on average

20 min).

5.1 Themes

A general observation from the initial analysis of the material is that the eight

groups gave a relatively uniform picture. Saturation was reached after approxi-

mately two-thirds of the groups. A number of recurring themes have been identified

in the material. These themes can be coarsely clustered where the first four themes

are more geared towards the comparison between Twine and Deig, while the last

three themes are more general reflections. The first four concern: the author

experience; modelling of structure; intuitiveness; and usability. The three remaining

themes relate to: game dynamics; implications of audio-visual elements; and

programming proficiency.

5.1.1 Author Experience

All teams expressed that there was a clear difference between Twine and Deig when

it came to the freedom to write. Twine was perceived as more open where Deig is

focused on a specific genre. As one subject put it: ‘‘… I want to create an adventure

game… I don’t know how to program but I don’t give a shit about it, then [Deig] is

the way to go’’ (S14). Deig was appreciated for the simplicity to write dialogs but

several subjects expressed that they lacked the freedom to write long prosaic texts.

Several subjects expressed that they found Deig to be more oriented towards games

and Twine more towards creative writing. One subject stated that ‘‘… you use it in

two completely different ways. This [Deig] was much more towards games but

when I write Twine projects the feeling is much more that I try to write… something

that could be in a book’’ (S7). This is in line with another subject who stated:

‘‘Twine is also somehow a bit more serious and this leads you to write some kind of

short story, and you just write straight away and you know that the player will

actually read this later’’ (S11).

At the same time, Deig was appreciated for its focus on dialog and several

subjects found that it had helped them to develop their dialog writing skills. All

groups reported that they felt that they had created a story in the Deig task. Some

groups discussed how the authoring process had been affected by the nature of the

tool and that it guided their creativity in certain directions. ‘‘The story came to life

by itself in some way, I think’’ (S9).

164 Comput Game J (2018) 7:153–172

123

5.1.2 Modelling of Structure

It was very clear from the interviews that Deig was perceived to be very intuitive for

modelling the structure of the story and game. All groups expressed this. For

example, when asked for spontaneous reactions to the Deig-exercise, one subject

replied: ‘‘Actually, my first reaction to this program was: shit this is actually

intuitive…’’ (S3). Another subject responded to the same question: ‘‘I found [Deig]

to be super agile. Especially considering we have worked with Twine previously,

which was much more complicated for creating trees and such things… so this has

been a much easier tool to work with… to understand… to see the structure of

everything…’’ (S7). Another subject was asked to describe the difference between

Twine and Deig when it comes to modelling the logics of the game: ‘‘much easier in

[Deig] I think… to have a passage with five, six if-statements becomes super

complex [laugh] in Twine… and… in [Deig] it feels—simpler to keep track of’’

(S6).

A few respondents expressed that they were aware of the potential of Twine to

create advanced game mechanics through scripting but they also expressed that it

was a complex task: ‘‘… if you have an idea then it is possible to do it in Twine. It

may not be easy. You should probably not do it in Twine. But you can [laugh]’’

(S14). Others argued that Deig emphasised a different kind of creative expression

than Twine: ‘‘… you can focus more on how to structure… mechanics… compared

to Twine and similar [programs] where the focus is much more on… like write and

write…’’ (S5).

Half of the groups mentioned limitations in Deig with respect to modelling of

structure. One subject found that Deig lacked timing-based mechanics; two others

expressed concerns regarding the layout of flow-nodes when the graph grew big.

Finally, one subject expressed concerns that logical disjunctions could not easily be

expressed.

5.1.3 Intuitiveness

All groups expressed clearly that they appreciated the intuitive interface of Deig and

that they quickly had learned to use it. One subject spontaneously stated that ‘‘… it

feels as in each course we take we get some new program to learn… but this one

[Deig] was surprisingly… it was surprisingly quick to learn.’’ (S3). This opinion was

expressed by a large number of subjects. They also found Deig to be easy to work

with and that they quickly could create prototypes: ‘‘It is possible to do something

very quickly without any real programming experience’’ (S14). It was furthermore

perceived to be even quicker than Twine: ‘‘… if you compare with like… the game

that we actually made now and if you were to do it in Twine. So this was made in a

couple of days’’ (S6). The same subject concluded: ‘‘… and if we had made it in

Twine it would for sure take more than a week’’ (S6).

Finally, one clear trend in the material is that subjects enjoyed working and

playing with Deig. This is an important quality of a game prototyping tool; it should

support playfulness even in the construction phases. As one subject stated: ‘‘I

enjoyed the program [Deig] very much, it was very fun to play in’’ and he continues

Comput Game J (2018) 7:153–172 165

123

‘‘… I even sat and played with it in my spare time’’ (S9). It is likely that the

perceived swiftness when modelling games in Deig contributes to the fun. Another

contributing factor may also be the TTS, which makes it possible to hear the written

dialog with different voices.

5.1.4 Usability

Many subjects reported that they lacked features in Deig that they were used to have

in similar applications. This can be seen as usability issues. The most commonly

mentioned missing feature was support for an undo-function. Other features that

were mentioned were spell-checker, support for object renaming, support for

snapping in the node graph and better integration between Deig and the exported

Unity game with respect to text-layout. In most cases subjects explicitly remarked

that they did not consider these limitations to cause any major obstacles: ‘‘… small

sources of irritation that might grow. Nothing that is game breaking. Nothing that

makes it impossible to continue… at least not that I have noticed, but sources of

irritation, yes’’ (S12).

5.1.5 Game Dynamics

Game dynamics is the run-time behaviour that emerge when the game mechanics is

acting on player input (Hunicke et al. 2004). A majority of the groups reported that

the Deig assignment had given them an understanding for game dynamics. This is

something that can be gained from working with Twine as well, but it appears that

the characteristics of Deig made game dynamics more apparent to them. The

comments regarding dynamics can be divided into two types. The first type of

comments related to how introduction of game mechanics and user choice lead to

complex logical models. When questioned on what they had learned from the Deig

module, one subject stated: ‘‘I would say how quickly it gets complicated. How

quickly it… kind of… a few choices make everything… extremely so much more…
it not just… like writing a script for a movie where it’s just straight’’ (S7).

The second type of comments are insights on how to write for games where the

dialog is affected by game mechanics. For example, one subject stated: ‘‘It is

possible to develop Twine to be strongly… explorative too, but it is more… it is

more complex to do it, while in [Deig] it comes naturally to have an explorative

perspective on it’’ (S11). This subject uses the term explorative to characterize the

freedom of players to give input to the system.

Another subject (S3) discussed the situation where a player returns to a character,

that she has interacted with previously. The subject expressed that it made a huge

difference to the player experience to have variations in the dialog. This could, for

example, be to have three or four different greeting lines that the game alters

between, when the player returns several times.

Play testing had an important role for subjects to realise the implications of game

dynamics. The games had been subject for frequent testing, including internal play

testing within the group as well as tests by instructors and other students: ‘‘… it is

166 Comput Game J (2018) 7:153–172

123

relatively quick to kind of go through what you have, and kind of test and test again,

and then invite the others’’ (S16).

5.1.6 Implications of Audio-Visual Elements

One difference between Twine and Deig that was highlighted by all groups is the

presence of graphical assets and multi-voiced TTS. There were remarks that this had

both positive and negative implications to the creative process. The TTS was

generally conceived to be constructive in the writing process in that it helped to

analyse the length and quality of spoken lines. One subject explained: ‘‘… even if it

sounds very cracked and robot-like. So you still notice if it is too much or if it is too

slow or… ‘God this is boring to listen to.’’’ (S3). Several groups also reported that

they were inspired by the characteristics of the voices and that it affected how they

perceived their own characters: ‘‘… that the voice also affects how you write to that

character, so I found it interesting to reflect on this kind of interaction’’ (S15).

Although most comments regarding TTS were positive, some groups also expressed

worries that it could have a negative impact on the writing and that there were

limitations to it: ‘‘… it can also be a problem that… you tend to… it can be the

reason many choose to do comedy games just because they laugh so much at it [the

TTS]. It could be a bit harder to do more serious games in this manner.’’ (S12).

Several subjects noted that the presence of graphics made it unnecessary to write

descriptions of the environment. It was appreciated that the graphics made it

possible to quickly prototype a ‘‘real game’’, but some subjects did not appreciate

how the available graphics guided the stories towards a certain genre. At the same

time, they were aware that the alternative would be to create their own graphical

assets, which would be much more time consuming.

5.1.7 Programming Proficiency

All subjects participating in the study had taken a course in introductory

programming and a course in game design and prototyping. Still, many subjects

revealed an inability to analyse and discuss programming concepts. Boolean

variables were frequently referred to as ‘‘true or false’’ and several subjects had

problems characterizing the node graph and talked about it as ‘‘the grid’’ or as

‘‘dots’’. Another example is a subject who, when talking about conditional dialog

options, expressed: ‘‘If all conditions for showing is running at the same time, then

you will never have the chance to trigger the condition to remove the alternative…’’

(S5). Although it may be possible to follow the line of argument, the concepts of

running and triggering a condition are not well defined. This indicates a low

programming proficiency. Despite this, all subjects stated that they felt that they

mastered the mechanical modelling in Deig to a high degree. The subjects who

exposed greater programming proficiency expressed that Twine allowed for flexible

modelling of mechanics, but they also acknowledged that it may be a complex task

to achieve, as exemplified in the quote from S14 in the section modelling of

structure above.

Comput Game J (2018) 7:153–172 167

123

5.2 Discussion

Both Twine and Deig were perceived to be useful tools for prototyping games but

subjects expressed that they saw fundamental differences between them. Deig was

perceived to be easier to learn and use for modelling of the mechanics of the game,

while Twine offers more freedom for authoring text-centred interactive stories.

The group of students participating in the study had experience from a

programming course and from a game design course using GameMaker: Studio.

Still, most subjects revealed a limited familiarity with programming concepts and

many of them expressed that they found it challenging to use the scripting functions

in Twine. Even though Twine offers rich capabilities through scripting, it is in

practice unavailable to game writers unless they have sufficient understanding of

programming fundamentals. In Deig, all subjects were able to fully comprehend the

mechanism to model game mechanics in the course of a week. As a consequence,

many subjects reported that they had realised how complex interactive writing can

be and that they had realised what the consequences can be when a player is given

control of the order of actions. These are very important insights for game writers,

and it is notable that many subjects had not got it from their previous work with

Twine.

An interesting observation from the interviews is that the presence of graphics

and audio, including TTS, affected the writing process, even in a prototyping stage.

This emphasizes the importance of integrating the writing process with the other

disciplines of game development. Writing in isolation may produce an expression

that makes audio and graphics redundant or dissonant.

A general observation from the analysis of the interviews is that all groups made

comparisons between Twine and Deig at an early stage of the interview, before they

were explicitly asked to compare the tools. In several teams there was no need to

explicitly ask for a comparison. This indicates that the similarities and differences

identified were not far-fetched but came naturally from experience with both tools.

The general impression from the interviews is that most subjects appreciated both

Twine and Deig for different reasons.

5.3 Limitations

The results presented in this study are based on experiences from a relatively

homogenous group of students. They do not represent actual game development

practices. It is, however, important to note that that Deig has been used by

developers with professional experience to produce games that have reached a large

audience and been well perceived (Riis 2017). The results from the interviews

resembles, to a large extent, anecdotal observations made during the development of

these games. For example, the swift creation of prototypes made possible through

Deig was found to be invaluable in the production of the 24 episodes of Marvinter.

The majority of these episodes went through several major revisions and

restructurings.

A limitation in the presented study is that the students had prior experience of

using Twine when they approached Deig. This will affect the learning curve and

168 Comput Game J (2018) 7:153–172

123

their perception of Deig. The assignments for the respective tools also differed,

which may impact on the comparison.

The interview was conducted by an instructor in the course, which may affect the

respondents, even though they were clearly informed that the instructor had no role

in the remaining examination of the course. The students were moreover aware that

the researcher conducting the study had developed Deig. This may limit subject’s

openness to express criticism. The choice of the peer small group interview format

will however likely have increased the subjects’ openness to express their opinions

and share their thoughts. This format has been found to have this effect when

interviewing children (Mauthner 1997).

6 Conclusions

In this paper we present Deig—a prototyping tool for creating dialog-based point-

and-click adventure game. It has been used in a course module for second year game

writing students. The students have been interviewed about their experiences after

working with Deig in comparison to Twine, which they also used in the same

module, as well as in previous courses.

The results showed that students perceived the two tools to have similarities, but

a number of fundamental differences were also observed. Deig was found to be very

easy to use for modelling of game mechanics, rapid prototyping and play testing.

The subjects enjoyed working and playing with the features of the editor and they

reported insights on the nature of interactive narratives. Twine, on the other hand,

was found to be more open-ended with respect to writing, but also that modelling of

game mechanics was perceived to be complex. Theoretically, Twine can support

practically any game through its scripting language, but it was not perceived as a

viable option for the game writer students in this study. Those few subjects that

indicated that it may be possible to achieve were well aware that it would be time

consuming and complex. It appears that both tools were found to be useful but in

different ends of the ludo-narrative design space (Aarseth 2012). Deig supported

rapid prototyping of ludic-oriented concepts while Twine supports rapid prototyping

of narrative-oriented concepts. The recommendation from this study, for game

writers with little programming experience that wants to develop games that has

dialog closely connected to game mechanics, is to use Deig. The graphical scripting

capabilities of Deig has a much lower threshold than the text-based scripting of

Twine.

An observation that can be made from the presented work is that the prototyping

tool has an effect on the creative process. Twine invites to write long passages of

text where Deig and its use of speech synthesis emphasises short dialogs and

interactivity. Game writers may use any of these tools to create interesting gaming

experiences but these may be drastically different. For some games, the lack of

choice and interactivity may even be central to the experience (Salter 2016).

Traditionally, games are designed to provide players with meaningful choices and

agency (Salen and Zimmerman 2004). Which tool to use may depend on personal

preference (Nelson and Mateas 2009), but it may also be affected by the target

Comput Game J (2018) 7:153–172 169

123

context for the final game. For solitary game writers, the prototyping tool may be

the same as the production tool. For development teams, though, the target game

engine may be more or less compatible with the prototyping tool. As was noted in

this study, the presence of audio and graphical assets affected the direction of game

writing and geared the process towards a gaming experience where other disciplines

produce elements that contributes to the narrative. Text based tools such as Twine

offers a space for individual game production (Salter 2016), but the main stage for

game writers is in team-based production of 2D and 3D games. For those products,

audio and graphics plays an important part in creating and conveying the narrative.

A future study will focus on the role of speech synthesis in the creation of dialog-

based games. Another future work is to extend this study to include other tools used

by game writers to prototype games. Chat Mapper, for example, is a tool similar to

Deig, but where Lua scripting is used to model logic and with a different interface to

the dialog modelling and play testing. A possible approach for this comparison

would be to use heuristic evaluation and similar theoretical methods. Another

important future work is to study how professional game writers in the game

industry are working and what tools they are using. Within such a scope it would

also be important to study the programming proficiency and computational thinking

(Wing 2006) among professional game writers. Game writing and narrative design

is an under-researched area despite the large scholarly interest in the descriptive

understanding of narratives in games.

Compliance with Ethical Standards

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of

interest.

Informed consent Informed consent was obtained from all individual participants included in the study.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

Appendix 1: Interview Protocol

Background

What is your prior experience of: game development; game engines; programming?

How do you perceive your role as a game writer? What tools do you think you

will use?

Reflections on the Assignments and Tools

What are your spontaneous reactions?

What are the most important insights this module has given you?

170 Comput Game J (2018) 7:153–172

123

http://creativecommons.org/licenses/by/4.0/

What are the strengths and weaknesses of Deig?

To what extent did you feel you created: a narrative; an interactive game?

To what extent did you feel that you master the features of Deig for creating

game logic?

Describe how you perceive the differences between Deig and Twine when it

comes to:

• creating a narrative;

• creating game logic.

Elements of Deig

How did you perceive the possibilities to: test and debug; play on tablet; use speech

synthesis?

Other

Do you want to add anything else?

References

Aarseth, E. (2012). A narrative theory of games. In Foundations of digital games conference (pp

129–133). ACM.

Burnham, J. F. (2006). Scopus database: A review. Biomedical Digital Libraries, 3(1), 1–8. https://doi.

org/10.1186/1742-5581-3-1.

Ciesla, R. (2017). Mostly codeless game development. Berkeley, CA: Apress.

Despain, W. (2008). Interactive script formatting. In W. Despain (Ed.), Professional techniques for video

game writing. Boca Raton: CRC Press.

DiCicco-Bloom, B., & Crabtree, B. F. (2006). The qualitative research interview. Medical Education,

40(4), 314–321. https://doi.org/10.1111/j.1365-2929.2006.02418.x.

Dinehart, S. (2011). What is a narrative designer? http://narrativedesign.org/2011/09/what-is-a-narrative-

designer-3. Accessed 30 March 2018.

Engström, H., Brusk, J. & Östblad, P. A. (2015). Including visually impaired players in a graphical

adventure game: A study of immersion. IADIS International Journal on Computer Science and

Information System, 10(2), 95–112.

Francis, B. (2015). Writing, honest tales from the trenches of AAA game, Gamasutra. https://www.

gamasutra.com/view/news/250657/Honest_tales_from_the_trenches_of_AAA_game_writing.php.

Accessed 1 April 2018.

Friedhoff, J. (2013). Untangling twine: A platform study. In DiGRA conference.

Hunicke, R., LeBlanc, M. & Zubek, R. (2004). MDA: A formal approach to game design and game

research. In AAAI workshop on challenges in game AI (pp. 1–5).

IGDA. (no date). IGDA game writing SIG: About the game writing SIG. http://www.igda.org/members/

group_content_view.asp?group=121051&id=421185. Accessed 30 March 2018.

Inklestudios.com. (2018). Inklewriter. Inklestudios.com. Accessed 1 Apr 2018.

Järvinen, A. (2008). Games without frontiers: Theories and methods for game studies and design.

Tampere: University of Tampere.

Joyce, L. (2015). Creating collaborative criteria for agency in interactive narrative game analysis. The

Computer Games Journal, 4(1–2), 47–58.

Comput Game J (2018) 7:153–172 171

123

https://doi.org/10.1186/1742-5581-3-1
https://doi.org/10.1186/1742-5581-3-1
https://doi.org/10.1111/j.1365-2929.2006.02418.x
http://narrativedesign.org/2011/09/what-is-a-narrative-designer-3
http://narrativedesign.org/2011/09/what-is-a-narrative-designer-3
https://www.gamasutra.com/view/news/250657/Honest_tales_from_the_trenches_of_AAA_game_writing.php
https://www.gamasutra.com/view/news/250657/Honest_tales_from_the_trenches_of_AAA_game_writing.php
http://www.igda.org/members/group_content_view.asp%3fgroup%3d121051%26id%3d421185
http://www.igda.org/members/group_content_view.asp%3fgroup%3d121051%26id%3d421185
http://Inklestudios.com

Kasurinen, J., Maglyas, A. & Smolander, K. (2014). Is requirements engineering useless in game

development? In Lecture notes in computer science (including subseries lecture notes in artificial

intelligence and lecture notes in bioinformatics) (pp. 1–16).

Kasurinen, J., Strandén, J. P. & Smolander, K. (2013). What do game developers expect from

development and design tools? In ACM international conference proceeding series (pp. 36–41).

Koenitz, H. (2016). Interactive storytelling paradigms and representations: A humanities-based

perspective. In R. Nakatsu, M. Rauterberg, & P. Ciancarini (Eds.), Handbook of digital games

and entertainment technologies. Singapore: Springer.

Lê, P. L., Massé, D., & Paris, T. (2013). Technological change at the heart of the creative process:

Insights from the videogame industry. International Journal of Arts Management, 15(2), 45–59.

Mauthner, M. (1997). Methodological aspects of collecting data from children: Lessons from three

research projects. Children and Society, 11(1), 16–28. https://doi.org/10.1111/j.1099-0860.1997.

tb00003.x.

Murphy-Hill, E., Zimmermann, T. & Nagappan, N. (2014). Cowboys, ankle sprains, and keepers of

quality: How is video game development different from software development? In International

conference on software engineering (Vol. 2568226, pp. 1–11). ACM.

Nelson, M. J. & Mateas, M. (2009). A requirements analysis for videogame design support tools. In

International conference on the foundations of digital games (pp. 137–144). https://doi.org/10.1145/

1536513.1536543.

Nevigo. (2018). Articy:draft. https://www.nevigo.com. Accessed 1 Apr 2018.

O’Donnell, C. (2011). Games are not convergence: The lost promise of digital production and

convergence. Convergence, 17(3), 271–286.

Pixelles.ca. (2017). An extensive list of free narrative game engines. https://pixelles.ca/2017/04/an-

extensive-list-of-free-narrative-game-engines/. Accessed 1 April 2018.

Renpy.org. (2018). Ren’Py. renpy.org. Accessed 1 Apr 2018.

Riis, J. (2017) SR Christmas calendar game Marvinter released, Nordic Game News. https://nordicgame.

com/sr-christmas-calendar-game-marvinter-released/. Accessed 1 April 2018.

Salen, K., & Zimmerman, E. (2004). Rules of play: Game design fundamentals. Cambridge: MIT Press.

Salter, A. (2016). Playing at empathy: Representing and experiencing emotional growth through twine

games. In Serious games and applications for health (pp. 1–8). IEEE.

Schell, J. (2008). The art of game design: A book of lenses. Amsterdam: Elsevier.

Schmalz, M., Finn, A. & Taylor, H. (2014). Risk management in video game development projects. In

Proceedings of the annual Hawaii international conference on system sciences (pp. 4325–4334).

Sheldon, L. & Toftedahl, M. (2016). Beginning with the word: Building a game writing program. San

Fransisco: game developers conference. https://www.gdcvault.com/play/1023044/Beginning-with-

the-Word-Building.

Sicart, M. (2008). Defining game mechanics. The International Journal of Computer Game Research,

8(2).

Twinery.org. (2018). Twine. Twinery.org.

University of Skövde. (2015). Frekvens Saknad. https://itunes.apple.com/se/app/frekvens-saknad/

id969079265. Accessed 1 Apr 2018.

University of Skövde. (2017). Marvinter. https://itunes.apple.com/se/app/marvinter/id1299687281.

Accessed 1 Apr 2018.

Verbi. (2018). MAXQDA. Berlin: Verbi Software GmbH.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

172 Comput Game J (2018) 7:153–172

123

https://doi.org/10.1111/j.1099-0860.1997.tb00003.x
https://doi.org/10.1111/j.1099-0860.1997.tb00003.x
https://doi.org/10.1145/1536513.1536543
https://doi.org/10.1145/1536513.1536543
https://www.nevigo.com
https://pixelles.ca/2017/04/an-extensive-list-of-free-narrative-game-engines/
https://pixelles.ca/2017/04/an-extensive-list-of-free-narrative-game-engines/
http://renpy.org
https://nordicgame.com/sr-christmas-calendar-game-marvinter-released/
https://nordicgame.com/sr-christmas-calendar-game-marvinter-released/
https://www.gdcvault.com/play/1023044/Beginning-with-the-Word-Building
https://www.gdcvault.com/play/1023044/Beginning-with-the-Word-Building
https://itunes.apple.com/se/app/frekvens-saknad/id969079265
https://itunes.apple.com/se/app/frekvens-saknad/id969079265
https://itunes.apple.com/se/app/marvinter/id1299687281

	Prototyping Tools for Game Writers
	Abstract
	Introduction
	Background
	Game Writing and Narrative Design
	Tools in Game Development
	Prototyping Tools for Game Writing
	Twine

	Deig
	Modelling Primitives
	Modelling of Game Mechanics

	Case Study
	Respondents and Course Module
	Method

	Results
	Themes
	Author Experience
	Modelling of Structure
	Intuitiveness
	Usability
	Game Dynamics
	Implications of Audio-Visual Elements
	Programming Proficiency

	Discussion
	Limitations

	Conclusions
	Open Access
	Appendix 1: Interview Protocol
	Background
	Reflections on the Assignments and Tools
	Elements of Deig
	Other

	References

