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Abstract
Employing the methods of separation of variables and matched eigenfunction expansions for velocity potential, analytical 
solutions are proposed for a water wave radiation problem of a floating semi-porous compound cylinder in finite ocean depth. 
The configuration of the semi-porous compound cylinder is such that it consists of an impermeable inner cylinder rising 
above the free surface and a coaxial truncated porous cylinder around the lower part of the inner cylinder with the top of the 
porous cylinder being impermeable. The condition on the porous boundary is defined by applying Darcy’s law as in Wil-
liams et al. (Ocean Eng 27:1–28, 2000) . The translational motions in the x- and z-directions, i.e., surge and heave motions, 
are investigated. A mathematical model is developed which can be considered as an extension of a number of the earlier 
works, e.g., Kokkinowrachos et al. (Ocean Eng 13:505–538, 1986) and Calisal and Subancu (Ocean Eng 11(5):529–542, 
1984), in which significance of porosity of the structure was neglected. Numerical investigation is taken up here in order to 
examine the influence of submerged depth, radii, porous coefficient, and water depth on added mass and radiation damping, 
two most important entities in radiation problems, with respect to surge and heave motions. It is found that the variation of 
porous coefficient, radii, and depth has a significant influence on the added mass and damping coefficients for the semi-porous 
compound cylinder. The added mass is found not sufficiently affected by lower values of porous coefficient G, but exhibits 
significant variation corresponding to higher values of G. Another important observation is that the damping coefficients 
oscillate alternately between negative and positive values which can be attributed to coupled behavior between different 
motions. The results establish that an appropriate optimal ratio of various parameters may be considered in designing ocean 
structures with minimum adverse hydrodynamic effect. The effectiveness of the present model is validated by comparing it 
with an available result which shows an excellent agreement.
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1  Introduction

Porous media concept naturally occurs in a number of 
areas of applied science and engineering such as filtration, 
mechanics, petroleum engineering, construction engineer-
ing, hydrogeology, geophysics, biology, biophysics, mate-
rial science, etc. Porous structures reduce the waveloads 
and wave run-up, and they are found to be very useful in 
the construction of floating airports, bridges, piers, docks, 

wave power conversion system, etc. Vertical circular cylin-
ders are found to be more appropriate for use in the construc-
tion of coastal and offshore structures. The objective here is 
focused on designing marine structures that can resist vari-
ous adverse atmospheric conditions. Therefore, investigation 
in the area of hydrodynamics has laid special emphasis on 
developing an optimized system in order to find a way to 
avoid significant hydrodynamic impacts.

For designing marine structures, it is very important to 
consider a number of appropriate atmospheric conditions 
and then propose a precise prediction of hydrodynamic 
impact with the structures. Therefore, of late, one focal point 
of research has specifically been to optimize a system/struc-
ture to avoid significant adverse hydrodynamic impacts. A 
concept that has gained attention is the use of porous struc-
tures which, through the pores on its surface, can contribute 
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immensely in reducing the influence of wave-body inter-
action. At current time, many countries have been explor-
ing the possibility of extracting offshore wind energy as an 
alternative and reliable source of non-conventional energy. 
For instance, South Korea has initiated one such project to 
check the feasibility of extracting and utilizing offshore wind 
energy [12]. The main goal of our present work is to find a 
suitable mean to reduce wave impact for which use of porous 
structures is seen as a possible remedy.

Calisal and Subancu [5] investigated hydrodynamic coef-
ficients for vertical composite circular cylinders at finite 
water depth using matching technique through the continuity 
of pressure and normal velocity at the separation of surfaces. 
They also discussed the limiting value of the added mass 
for zero frequency. Yeung [33] investigated a set of data 
for added mass and wave damping for a floating circular 
cylinder in finite depth water. He calculated added mass and 
damping coefficients for heave, sway, and roll motions as 
well as the coupling coefficients for sway and roll motions. 
Bhatta [2] elaborated a boundary value problem for heave 
motion due to a vertical circular cylinder in water of finite 
depth. Potentials were derived by the separation of vari-
ables method and he discussed various effects of draft and 
radius on added mass and damping coefficient. Black et al. 
[3] explored the variational formulation of Schwinger [11] 
for water wave problems which was found to be extensively 
used for a discontinuous wave. They also discussed total 
scattering cross-section, for each of bottom and surface cyl-
inders of circular plane. Berggren and Johansson [4] pre-
sented hydrodynamic coefficients of a circular wave energy 
device consisting of a buoy connected to a submerged cir-
cular plate. They used matched eigenfunction expansions 
method for calculating unknown coefficients. Narrow space 
analysis was elaborated in their investigation and a good 
agreement was observed with energy relations. Williams and 
Abul-Azm [27] considered an array of floating circular cyl-
inders and examined the hydrodynamic interactions between 
the members which occurred when any member underwent 
prescribed forced oscillations. They calculated added mass 
and damping coefficient for 2–6 cylinders which led to the 
important result that, for certain parameter combinations, the 
effect of neighboring bodies on the total wave field produced 
values of the hydrodynamic coefficients on individual mem-
bers which showed significant deviation from those for an 
isolated cylinder. While considering the heave oscillations 
of a submerged vertical cylinder, McIver and Evans [17] 
observed an interesting occurrence of negative added mass. 
They discussed the effect of free surface for the occurrence 
of negative added mass. They found that added mass became 
negative when the depth of submergence was small and free 
surface effects were remarkable. Williams and Li [28] inves-
tigated hydrodynamic forces and coefficients for a freely 
floating compound cylinder consisting of a surface-piercing 

cylindrical column resting on a larger, concentric cylindrical 
base. For certain parameter combinations, negative surge/
sway added mass coefficients were observed. The numeri-
cal results for the hydrodynamic quantities were verified by 
the linear radiation/diffraction program UHWAVE. Linear 
wave interaction with a wave energy device comprising of 
two coaxial vertical circular cylinders of different radii was 
investigated by Wu et al. [31]. They established that, at low 
frequencies, a relatively larger radius of the submerged cyl-
inder had a significant influence on the hydrodynamic coef-
ficients and exciting forces/moments.

Jiang et al. [13] considered the motion of a submerged 
vertical cylinder in finite water depth and observed that 
added mass tended to increase corresponding to a reduction 
in water depth, whereas radiation damping was observed 
to be quite insensitive to any variation in depth. Yu et al. 
[32] described a semi-analytical method for examining 
wave radiation by a truncated cylinder of arbitrary cross-
section. They mainly discussed added mass and damping 
coefficients for four types of cross-sections, namely, circu-
lar, cosine, elliptical, and quasi-elliptical. They also inves-
tigated the effect of draft of the cylinder on wave radiation. 
A hybrid integral equation method was developed by Yeung 
and Wang [34] for finding added mass, damping coefficients, 
and exciting forces for a spar-like structure. They explored 
the corresponding heave motion of the structure along with 
the motion of the internal free surface under incident wave 
excitation. Bhatta and Rahman [1] considered the scattering 
and radiation aspects for a floating solid cylinder in finite 
depth. They calculated the wave loading by decomposing 
the total velocity potential into four: one scattered potential 
and three radiated potentials. For convenience, they split 
the fluid domain into interior and exterior regions in order 
to derive the velocity potentials.

Now we discuss some significant works related to scatter-
ing and damping arising out of linear water wave interaction 
with porous structures. For modeling a wave-induced flow in 
any porous medium, the model that has found the maximum 
attention is probably the one devised by Sollitt and Cross 
[25]. In this model, two important aspects are consideration 
of dissipation of wave energy inside a porous medium, and 
evaluation of the linearized friction term f by using Lorentz 
Principle and an iterative procedure. Chwang [7] described a 
porous wave-maker theory by which the hydrodynamic pres-
sure distribution as well as the total force on the wave-maker 
were investigated. Further, he established the significance 
of both wave effect and porous effect parameters. Darwiche 
et al. [8] investigated wave interaction with a semi-porous 
cylindrical breakwater and they derived a very important 
result that the wave force acting on the structure reduced 
due the semi-porous region of the cylinder. Adopting the 
familiar eigenfunction expansion method, Williams and Li 
[29] investigated water wave interaction with an array of 
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surface-piercing bottom-mounted porous cylinders and they 
evaluated the corresponding hydrodynamic forces. Williams 
et al. [30] carried out an extension of the previous problem 
by considering water wave interaction with a floating porous 
cylinder. They concluded that the porosity, the size, and the 
location of the porous region had considerable effect on the 
hydrodynamic forces. Sahoo et al. [20] took up the problem 
of scattering of oblique incident surface waves by porous 
vertical barriers in finite depth. They studied the problem 
for four different types of barriers and made the observation 
that the finite angle of incidence and the porosity of the bar-
riers had a paramount role in reducing the reflection of the 
incident waves.

Park et al. [18] discussed the wave exciting forces act-
ing on an array of floating porous circular cylinders while 
considering the diffraction problem. To calculate the wave 
forces, the fluid domain was divided into three regions, 
namely, a single exterior region (only water), N interior 
regions (inner part of the porous cylinders) and another N 
regions consisting of the bottom faces of the porous cyl-
inders. They investigated the wave exciting forces due to 
different modes of motions on an array of truncated porous 
circular cylinders for various numbers of the porous circu-
lar cylinders and various values of angles of the incident 
wave and porosity of the circular cylinders. Zhao et al. [36] 
discussed water wave interaction with a porous cylinder 
containing an inner horizontal porous plate which acted as 
an obstruction to render wave dissipation more effective. 
They carried out a series of model tests in a basin in order 
to compare the theoretical works and computed works. 
They found that an increase in porosity reduced the wave 
exciting forces and the efficiency of wave dissipation. Zhao 
et al. [37] further developed theoretical and experimental 
studies on the interaction of water waves with a truncated 
circular cylinder. The cylinder, which was partly made of 
porous materials, comprised of a porous sidewall and an 
impermeable bottom. They observed that the phenomenon 
of the sloshing mode that occurred at a certain wavenum-
ber had an impact on the breakwaters. They also found that 
the damping coefficient consisted of two parts: in addition 
to the component of conventional wave radiation damping, 
there did exist a second component caused by porosity. 
Based on linear water wave theory, Zhao et al. [38] carried 
out theoretical as well as experimental investigations on 
the interaction between waves and an array of porous cir-
cular cylinders with or without an inner porous plate. Each 
cylinder in the array was partly made of porous materials 
and it specifically consisted of a porous sidewall and an 
impermeable bottom. In addition, an inner porous plate 
was fixed horizontally inside the cylinders. They mainly 
discussed the hydrodynamic coefficients and wave eleva-
tion, and studied the role of the draft of the cylinders, the 
location of the inner porous plate, and the spacing between 

adjacent cylinders. Park and Koo [19] discussed interac-
tion of water waves with partially porous-surfaced circular 
cylinders comprising of a porous-surfaced body near the 
free surface and an impermeable-surfaced body with an 
end-capped rigid bottom below the porous region. They 
calculated wave exciting forces and wave run-up for dif-
ferent various porous-portion ratios and wave conditions.

Mandal et al. [16] discussed the hydroelastic analysis 
of gravity wave interaction with a system of concentric 
porous and flexible cylinders in which the inner cylinder 
was considered to be rigid, while the outer cylinder was 
considered as porous and flexible. They mainly investi-
gated three cases, namely, (a) surface-piercing truncated 
cylinders, (b) bottom-touching truncated cylinders, and 
(c) completely submerged cylinders extended from the 
free surface to the sea-bed. They also analyzed the effects 
of porosity and flexibility of the outer cylinder in atten-
uating the hydrodynamic forces and dynamic overturn-
ing moments for different cylindrical configurations and 
wave characteristics. Das and Bora [9] considered a verti-
cal porous structure placed on an elevated impermeable 
sea-bed and discussed wave reflection by considering two 
types of bottom topography in the form of a 2-step and a 
p-step bottoms. Higher values of the reflection coefficient 
were observed corresponding to lower values of poros-
ity. Das and Bora [10] further investigated oblique linear 
wave damping by a vertical porous structure placed on a 
multi-step bottom topography in which the following cases 
were considered: (i) a solid vertical wall placed at a finite 
distance from the porous structure and (ii) an unbounded 
water medium after the porous structure. By using the 
separation of variables technique, Sarkar and Bora [22] 
evaluated hydrodynamic forces arising out of water wave 
interaction with a surface-piercing bottom-mounted com-
pound porous cylinder. It was found that variation in val-
ues in parameters such as radius, draft, and porosity had an 
immense effect on both hydrodynamic loads and wave run-
up. In a similar manner, by considering wave interaction 
with a floating compound porous cylinder in finite depth, 
Sarkar and Bora [23] evaluated the hydrodynamic load—
the behavior of which was observed to be steady in the 
lower frequency. However, significant fluctuations were 
observed due to occurrence of resonance in the neighbor-
hood of a specific frequency. Sarkar and Bora [24] further 
investigated diffraction of ocean waves by a specific type 
of cylinders, namely, a floating surface-piercing truncated 
partial-porous cylinder and then a surface-piercing bot-
tom-mounted truncated partial-porous cylinder, by treating 
both cases separately. Numerical experiments were carried 
out in order to analyze the impact of various parameters 
such as porous coefficients, draft ratio, the ratio of inner 
and outer radii, the water depth on the quantities such as 
hydrodynamic force, moment, and wave run-up.
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This article describes an investigation carried out on 
radiation of a floating surface-piercing semi-porous com-
pound cylinder in water of finite depth. Since all motions 
are not very significant, we discuss only two translational 
motions in the x- and z-directions, i.e., surge and heave 
motions, respectively. We split the region into four and find 
the respective potentials by utilizing the given conditions. 
For accomplishing this, suitable matching conditions, due to 
continuity of pressure and velocity, along the vertical bound-
aries are applied to derive and solve a system of linear equa-
tions. Evaluation of those radiated potentials allows us to 
calculate the hydrodynamic coefficients, namely, added mass 
and damping coefficients, due to the motion of the struc-
ture. These coefficients play a crucial role for a structure in 
motion, however, small it may be. Added mass and damping 
coefficient for surge and heave motions are obtained for dif-
ferent values of radii, draft, porosity, and depth ratios. This 
mathematical model can be considered as an extension of a 
number of the earlier works, e.g., Kokkinowrachos et al. [14] 
and Calisal and Subancu [5], in which porosity in the struc-
ture was not taken into account. It is strongly felt that the use 
of porous structures to reduce wave loads is more appropri-
ate than non-porous structures. This motivates us to consider 
a semi-porous compound cylinder and determine the surge 
and heave hydrodynamic coefficients. Subsequently, the 
effect of porosity and other parameters on the hydrodynamic 
coefficients is demonstrated through various graphs. To the 
best of our knowledge, work on radiation by such kind of 
composite cylinders has not been accomplished by anyone 
earlier. To sum it up, the model developed here establishes 
that corresponding to certain combination of the wave and 
structure parameters, it is possible to reduce the wave loads 
on the structure under consideration. It is expected that 
this structure and the associated model are likely to show a 
new direction in tackling such ocean engineering problems 
involving porosity of the structure. Obtained results are com-
pared with available ones the outcome of which points to an 
excellent agreement which confirms the effectiveness of the 
present model.

2 � Mathematical formulation

It is known that a rigid floating structure in ocean can undergo 
six degrees of freedom: three translational motions in the x-, 
y-, and z-directions known as surge, sway, and heave, respec-
tively, and three rotational motions about x-, y-, and z-axes 
known as roll, pitch, and yaw, respectively. Considering the 
fluid to be incompressible, homogenous, and inviscid, and 
the motion irrotational, a train of waves of small amplitude is 
assumed to be incident on a vertical floating surface-piercing 
semi-porous compound cylinder with its porous region having 
a porous coefficient G. The upper surface and the lower surface 

of the lower cylinder are located at z = −h1 and z = −h2 , 
respectively, where the z-axis is considered vertically upwards 
(Fig. 1). Here we plan to discuss surge and heave radiation by 
the cylinder for a wave of amplitude H incident on it where the 
finite depth of water is h3 . Let a and b(> a) , respectively, be 
the radii of inner and outer cylinders. Taking cylindrical coor-
dinate system (r, �, z) and due to physical considerations and 
convenience, we consider the following four regions: Region 
I (r ≥ b,−h3 ≤ z ≤ 0) ; Region II (a ≤ r ≤ b,−h1 ≤ z ≤ 0) ; 
Region III (a ≤ r ≤ b,−h2 ≤ z ≤ −h1) , and Region 
IV (0 ≤ r ≤ b,−h3 ≤ z ≤ −h2) . Further, we introduce 
the velocity potentials �j(r, �, z, t) as �j(r, �, z, t) = 
Re [�j(r, �, z) exp (−i�t)] with �j, j = 1, 2, 3, 4 referring to 
the potentials in Regions I, II, III, and IV, respectively, where 
� is the angular wave frequency, i =

√
−1 the usual imaginary 

quantity, and Re denotes the real part of [.].
Each potential �j, j = 1, 2, 3, 4, satisfies Laplace’s equation 

in respective flow regions:

Subsequently, the boundary conditions on the free surface 
z = 0 and the sea-bed z = −h3 can be written as

(1)∇2�j = 0, j = 1, 2, 3, 4.

(2)
��j

�z
−

�2

g
�j =0; z = 0, j = 1, 2,

(3)
𝜕𝜙1

𝜕z
=0; z = −h3, r > b,

(4)
𝜕𝜙4

𝜕z
=0; z = −h3, 0 < r < b,

Fig. 1   Floating surface-piercing semi-porous compound cylinder
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where g represents the usual acceleration due to gravity. The 
boundary conditions on the moving solid surface (Ss) and 
porous surface (Sp) of the structure are given by Williams 
et al. [30] as

where � is the structural velocity, � is the outward normal 
to the surface (Ss or Sp) . and w(r, �, z) is the spatial compo-
nent of the normal velocity W(r, �, z, t) of the fluid passing 
through the semi-porous cylinder from the exterior region 
to the interior region with W(r, �, z, t) given by

The fluid flow through the porous walls obeys Darcy’s law. 
Therefore, the flow velocity is linearly proportional to the 
pressure difference across the boundary of the porous cyl-
inder as can be seen from Taylor [26]. The hydrodynamic 
pressure P(r, �, z, t) = Re [p(r, �, z) exp(−i�t)] at any point in 
the fluid domain can be deduced from the linearized Ber-
noulli’s equation as p = i���, where � is the fluid density. 
Therefore, the boundary condition at the porous wall r = b 
can be written as [15]

where � is the coefficient of dynamic viscosity, k0 is the inci-
dent wavenumber, L a coefficient having the dimension of 
length, and �1 and �3 , respectively, are the velocity poten-
tials in the fluid region r > b and porous region b < r < a . 
Some more information about this porous coefficient G is 
detailed in Appendix.

Furthermore, the radiated velocity potential in the exte-
rior region satisfies the Sommerfeld radiation condition in 
the following form:

where �m
rad ,1

 is the radiated potential in the m-th mode in 
Region I. On the porous cylinder surface r = b , the poten-
tials satisfy the following matching conditions:

(5)
��

�n
=�.� on Ss,

(6)
��

�n
=�.� − w(r, �, z) on Sp,

(7)W(r, �, z, t) = Re [w(r, �, z) exp(−i�t)].

(8)w(r, �, z) =
Li��

�
(�1 − �3) = ik0G(�1 − �3),

(9)lim
r→∞

√
r

�
��m

rad ,1

�r
− ik0�

m
rad ,1

�
= 0, for m = 1, 2,

(10)𝜙1 =𝜙2; r = b, −h1 < z < 0,

(11)
𝜕𝜙1

𝜕r
=
𝜕𝜙2

𝜕r
; r = b, −h1 < z < 0,

3 � Radiated potentials in the sub‑domains

The total velocity potential can be decomposed into incident 
and radiated components as follows:

where �1 = 1 and �j = 0 , for j = 2, 3, 4 , �m is the structural 
displacement in the m-th mode and �m

rad ,j
 is the radiation 

potential in the m-th mode in the j-th region. The radiation 
modes are numbered in such a way that m = 1, 2 correspond 
to surge and heave motions, respectively. The incident poten-
tial is given by

where Jn(k0r) denotes Bessel function of first kind of order 
n. Using eigenfunction expansion method, as in Calisal and 
Subancu [5], the radiated velocity potential in Region I takes 
the following form:

where � = 1 for m = 1 and � = 0 for m = 2 , and Am
j
 are the 

undetermined coefficients. The wavenumbers kj 
(j = 0, 1, 2, 3,…) can be derived from the following disper-
sion relation by using the technique devised by Chamberlain 
and Porter [6]:

The radial eigenfunctions Tm
j
(kjr) have the following form:

(12)
𝜕𝜙1

𝜕r
=
𝜕𝜙3

𝜕r
; r = b, −h2 < z < −h1,

(13)𝜙1 =𝜙4; r = b, −h3 < z < −h2,

(14)
𝜕𝜙1

𝜕r
=
𝜕𝜙4

𝜕r
; r = b, −h3 < z < −h2.

(15)�j = �j� inc +

2∑
m=1

�m�
m
rad ,j

,

(16)

� inc = −
igH

�

cosh k0(z + h3)

cosh k0h3

∞∑
n=0

�nJn(k0r) cos n�,

with

�n =

{
1 n = 0,

2in n ≥ 1,

(17)�m
rad ,1

(r, �, z) =

∞∑
j=0

Am
j
cos kj(z + h3)T

m
j
(kjr) cos ��,

�2 =

{
gkj tanh kjh3; j = 0,

−gkj tan kjh3; j ≥ 1.
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Here H(1)
�
(kjr) is the Hankel function of first kind (or Bes-

sel function of third kind) of order � and K�(kjr) the modi-
fied Bessel function of second kind of order � . The radi-
ated velocity potential in Region II satisfying the structural 
boundary conditions is given by (Wu et al. [31])

where Bm
j
 and Cm

j
 are the undetermined coefficients and �m

2
 

represents the particular solution due to the dependent mode. 
�j are obtained from the following expression:

The radial eigenfunctions Sm
j
(�jr) and Rm

j
(�jr) have the fol-

lowing forms:

for m = 1, 2, where H(2)
�
(�jr) is the Hankel function of sec-

ond kind of order � and I�(�jr) the modified Bessel function 
of first kind of order �.

The term �m
2

 appearing in Eq. (18) has a very impor-
tant role in permitting the radiated potentials to satisfy the 
otherwise difficult non-homogeneous boundary conditions 
on the body surface. In Region II, the particular solutions 
�m

2
 are given as follows:

The suitable expression for the radiated potential in Region 
III satisfying structural boundary conditions is (Wu et al. 
[31])

Tm
j
(kjr) =

⎧
⎪⎨⎪⎩

H
(1)
� (kjr)

H
(1)�

� (kjb)
; j = 0,

K� (kjr)

K�
�
(kjb)

; j ≥ 1.

(18)
�m

rad ,2
(r, �, z) =

∞∑
j=0

[{(Bm
j
Sm
j
(�jr) + Cm

j
Rm
j
(�jr))

cos �j(z + h1)} +�m
2
] cos ��,

�2 =

{
g�j tanh �jh1; j = 0,

−g�j tan �jh1; j ≥ 1.

Sm
j
(�jr) =

⎧
⎪⎨⎪⎩

H
(1)
� (�jr)

H
(1)�

� (�jb)
; j = 0,

I� (�jr)

I�
�
(�jb)

; j ≥ 1,

Rm
j
(�jr) =

⎧
⎪⎨⎪⎩

H
(2)
� (�jr)

H
(2)�

� (�jb)
; j = 0,

K� (�jr)

K�
�
(�jb)

; j ≥ 1,

(19)�1
2
=0,

(20)�2
2
=z +

g

�2
.

where Dm
j
 and Em

j
 are the undetermined coefficients, and �j 

are obtained from the following:

The radial eigenfunctions Vm
j
(�jr) and Wm

j
(�jr) have the fol-

lowing forms:

The particular solutions for Region III are as follows:

The radiated velocity potential for Region IV is (Wu et al. 
[31])

where Fm
j

 are the undetermined coefficients and �j are 
obtained from the following expression:

The radial eigenfunctions Um
j
(�jr) have the following form:

The particular solutions for Region IV are given by

(21)
�m

rad ,3
(r, �, z) =

∞∑
j=0

[{(Dm
j
Vm
j
(�jr) + Em

j
Wm

j
(�jr))

cos�j(z + h2)} +�m
3
] cos ��,

�j =
�j

h2 − h1
, j = 0, 1, 2,… .

Vm
j
(�jr) =

{ r−�

b−�−1
; j = 0,

K� (�jr)

K�
�
(�jb)

; j ≥ 1,

Wm
j
(�jr) =

{ r�

b�−1
; j = 0,

I� (�jr)

I�
�
(�jb)

; j ≥ 1.

(22)�1
3
=0,

(23)�2
3
=z.

(24)

�m
rad ,4

(r, �, z) =

∞∑
j=0

[Fm
j
cos �j(z + h3)U

m
j
(�jr) +�m

4
] cos ��,

�j =
�j

h3 − h2
, j = 0, 1, 2,… .

Um
j
(�jr) =

{ r�

b�−1
; j = 0,

I� (�jr)

I�
�
(�jb)

; j ≥ 1.

(25)�1
4
=0,

(26)�2
4
=

[
(z + h3)

2 −
r2

2

]
1

2(h3 − h2)
.
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4 � Added mass and damping coefficient

The solution to the radiation problem for structures in motion 
in ocean yields the important hydrodynamic coefficients, i.e., 
added mass and damping coefficients. They are connected to 
the real and imaginary parts of the hydrodynamic reaction 
loads on the body arising due to prescribed body motions. The 
hydrodynamic force in the x- and z-directions (i.e., surge and 
heave) due to the motion of a cylinder in mode m = 1, 2 can 
be found out by carrying out integration of the corresponding 
pressure distribution over the cylinder surface. Non-dimen-
sional surge added mass and damping coefficients can be 
obtained from the following (Calisal and Subancu [5]):

where V is the volume of the cylinder.
Similarly, non-dimensional heave added mass and damping 

coefficients are given by (Calisal and Subancu [5]) as

5 � Surge motion

5.1 � Calculation of unknown coefficients

By applying the boundary condition for the surge motion 
(m = 1) at r = a for −h1 < z < 0 and the orthogonality of the 
eigenfunctions, we get the following relationship between the 
potential coefficients B1

�
 and C1

�
 appearing in �2:

(27)

�11

�V
+ i

�11

�V�
=�2 ∫

0

−h1
∫

2�

0

�m
2
(a, �, z)a cos � dzd�

+ �2 ∫
−h1

−h2
∫

2�

0

�m
3
(a, �, z)a cos � dzd�

+ �2 ∫
−h1

−h2
∫

2�

0

�m
1
(b, �, z)b cos � dzd�

− �2 ∫
−h1

−h2
∫

2�

0

�m
3
(b, �, z)b cos � dzd�,

(28)

�33

�V
+ i

�33

�V�
=�2 ∫

b

0 ∫
2�

0

�m
4
(−h2, �, z)r drd�

− �2 ∫
b

a ∫
2�

0

�m
3
(−h2, �, z)r drd�

− �2 ∫
b

a ∫
2�

0

�m
2
(−h1, �, z)r drd�

+ �2 ∫
b

a ∫
2�

0

�m
3
(−h1, �, z)r drd�.

(29)
(
S1
�
(�ja)B

1
�
+ R1

�
(�ja)C

1
�

)
R�� =A� , � ≥ 0.

Applying the matching conditions given by Eqs. (10) and 
(11) for the depth −h1 < z < 0 , along with the orthogonality 
of the eigenfunctions, we obtain

Next, using Eq. (6) for the depth −h2 < z < −h1 , the match-
ing condition (12) and the orthogonality of the eigenfunc-
tions, we get

Further, from the matching condition given by Eq. (14) 
across the boundary r = b in the interval −h3 < z < −h2 , 
and using the orthogonality of the eigenfunctions, we get

where 

(30)

∞∑
j=0

A1
j
T1
j
(kjb)Q�j −

(
B1
�
S1
�
(��b) + C1

�
R1
�
(��b)

)
R��

=
igH

� cos k0h3
�1J1(k0b)Q�0, � ≥ 0,

(31)

∞∑
j=0

A1
j
T1�

j
(kjb)Q�j −

(
B1
�
S1

�

�
(��b) + C1

�
R1�

�
(��b)

)
R��

=
igH

� cos k0h3
�1J

�
1
(k0b)Q�0, � ≥ 0.

(32)

(
V1�

�
(��b) − ik0GV

1
�
(��b)

)
D1

�
N��

+

(
W1�

�
(��b) − ik0GW

1
�
(��b)

)
E1
�
N��

+ ik0G

∞∑
j=0

A1
j
T1
j
(kjb)P�j

= −
igH

� cos k0h3
�1J1(k0b)P�0 + B� � ≥ 0,

(33)

(
D1

�
V1�

0
(��b) + E1

�
W1�

�
(��b)

)
N�� −

∞∑
j=0

A1
j
T1�

j
(kjb)P�j

= −
igH

� cos k0h3
�1P�0J

�
1
(k0b), � ≥ 0.

(34)

∞∑
j=0

A1
j
T1�

j
(kjb)S�j − F1

�
U1�

0
(��b)L��

=
igH

� cos k0h3
�1J

�
1
(k0b)S�0, � ≥ 0,

(35)Q�,j =∫
0

−h1

cos ��(z + h1) cos kj(z + h3)dz,

(36)R�,� =∫
0

−h1

cos ��(z + h1) cos ��(z + h1)dz,
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In order to evaluate the hydrodynamic coefficients, it is 
required to find the unknown coefficients Am

j
 , Bm

j
 , Cm

j
 , Dm

j
 , 

Em
j

 , and Fm
j

 . Truncating the infinite series given by Eqs. 
(29)–(34) after some terms N = 20 , the values of the coef-
ficients are computed. Excellent convergence is accom-
plished by truncating the expansion series after the first 20 
terms. Similar convergence is shown in details in [22]. As a 
consequence, the following linear system of algebraic equa-
tions is found for determining the unknown coefficients:

w h e r e 
Xd = [Ad

1
,Ad

2
,… ,Ad

N
,Bd

1
,Bd

2
,… ,Bd

N
,Cd

1
,Cd

2
,… ,Cd

N
,Dd

1
,Dd

2
,… ,Dd

N
,Ed

1
,Ed

2
,… ,Ed

N
,Fd

1
,Fd

2
,… ,Fd

N
]t , 

Td are coefficient matrices and Yd are the right-hand vectors.
The method adopted in Sarkar and Bora [22] is followed 

here too.

5.2 � Validation of present model

To validate our present analytical model developed for solv-
ing the problem, we deem it suitable to compare one of the 
results with that of Williams and Li [28], i.e., when the cyl-
inder is considered to be a floating compound cylinder (the 
curved surface of the bottom cylinder is considered imper-
meable). The relevant parameters in our problem are recon-
sidered conforming to the work of Williams and Li in order 
to convert to the same physical problem. Here we consider 
the values G = 0 , h1∕h2 = 0.50 , h2∕h3 = 0.67 , b∕h3 = 1 , 
and a∕b = 0.60 . Figure 2 presents an excellent agreement 
between both results for the dimensionless added mass for 
the surge motion of the cylinder. In view of this validation, 

(37)T�,� =∫
−h1

−h2

cos��(z + h2) cos��(z + h2)dz,

(38)P�,j =∫
−h1

−h2

cos��(z + h2) cos kj(z + h3)dz,

(39)S�,j =∫
−h2

−h3

cos ��(z + h3) cos kj(z + h3)dz,

(40)L�,� =∫
−h2

−h3

cos ��(z + h3) cos ��(z + h3)dz,

(41)A� =∫
0

−h1

cos ��(z + h1)dz,

(42)B� =∫
−h1

−h2

cos��(z + h2)dz.

(43)TdXd = Yd,

our model can be considered to be efficient and hence can 
be utilized to study and analyze different aspects of various 
parameters for our subsequent experiments and also for such 
problems in general.

5.3 � Numerical discussion

Here we discuss the effects of various parameters on the 
surge hydrodynamic coefficients acting on the cylindrical 
structure. The results are presented graphically and relevant 
observations are presented.

Figure 3 presents the convergence of added mass for surge 
motion with respect to N against wavenumber correspond-
ing to different values of N for a∕b = 1∕2 , h1∕h2 = 1∕2 , 
h2∕h3 = 1∕2 , and G = 1 . It can easily be concluded from 
this figure that consideration of N = 20 provides satisfactory 
accuracy of evaluation of hydrodynamic coefficients, and 
therefore, for all subsequent figures, N = 20 will be consid-
ered whenever the requirement arises.

In Fig. 4, the non-dimensionalized added mass 
�11

�V
 for 

surge motion against wavenumber is discussed correspond-
ing to different values of radius ratio a/b corresponding to 
h1∕h2 = 1∕2 , h2∕h3 = 1∕2 , and G = 1 . It is observed that 
added mass oscillates alternately between negative and posi-
tive values for increasing values of k0h1 . This type of added 
mass is also observed in the works of McIver and Evans [17] 
and Wu et al. [31]. The amplitudes of the oscillation are 
higher in the range 2 < k0h1 < 3 . It is also observed that for 
decreasing a/b, i.e., when the radius of the inner cylinder 
tends to be much smaller compared to that of the outer 
porous cylinder, the added mass increases. It may have hap-
pened due to more energy concentration near the inner 
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Williams and Li [28]



278	 Marine Systems & Ocean Technology (2020) 15:270–285

1 3

cylinder and thus resulting in an increase in added mass. 
Figure 5 shows the non-dimensionalized added mass 

�11

�V
 for 

surge motion against wavenumber corresponding to different 
values of porous coefficient G for h1∕h2 = 1∕2 , h2∕h3 = 1∕2 
and a∕b = 1∕2 . The observation is that the added mass are 
not significantly affected by G. One important observation 
is that added mass does not vary much for different smaller 
values of G, say, when we take G = 0, 1, 2 . This is due to the 

fact that the added mass for the semi-porous cylinder 
depends on the potential coefficients Am

j
 , Bm

j
 , Cm

j
 , Dm

j
 , Em

j
 , 

and Fm
j

 which do not change appreciably. Subsequently, this 
is the reason added mass do not get changed for such smaller 
values of porosity coefficient G. However, if we consider a 
large range of values of G from 0 to 30, then it is observed 
that, for increasing values of G, the oscillating behavior of 
the graph becomes more pronounced. In Fig. 6, the non-
dimensionalized added mass 

�11

�V
 for surge motion against 
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wavenumber is analyzed corresponding to different values 
of h2∕h3 for h1∕h2 = 1∕2 , a∕b = 1∕2 , and G = 1 . Similar 
pattern of graph is observed here just as in Fig. 4. The ampli-
tude of added mass becomes higher in 2 < k0h1 < 3 . The 
oscillation gets shifted towards left for decreasing values of 
h2∕h3 . There is a shift observed in the maxima of these 
curves which may be due to the phase shift of the wave when 
the draft of the cylindrical system changes. The non-dimen-
sionalized added mass 

�11

�V
 for surge motion against wave-

number corresponding to different values of h1∕h2 for 
h2∕h3 = 1∕2 , a∕b = 1∕2 , and G = 1 are shown in Fig. 7. The 
oscillation is observed to get shifted towards right for 
decreasing values of h1∕h2 . Figure 8 illustrates the non-
dimensionalized damping coefficient 

�11

�V�
 for surge motion 

against wavenumber corresponding to different values of 
radius ratio a/b for h1∕h2 = 1∕2 , h2∕h3 = 1∕2 , and G = 1 . If 
a floating body is in motion in waves, then the motion in 
general involves six degrees of freedom. Negative damping 
coefficient usually appears in the so-called coupled terms. 
The motion in surge and yaw directions are always coupled 
which means that the surge motion is going to get influenced 
by the yaw motion. Therefore in the results, the yaw induced 
surge damping is negative which implies that it is not only 
added mass that can be negative, the occurrence of which is 
a quite familiar phenomenon, but damping coefficients can 
also take negative values under certain conditions. This type 
of phenomenon happens due to the coupled behavior 
between different motions. Similarly the motion in heave and 
pitch are always coupled. In that case also, the added mass 

and damping coefficient may be negative. Here the damping 
coefficient oscillates alternately between negative and posi-
tive values. This type of behavior of damping coefficient is 
also observed in the works of Wu et al. [31], Zheng et al. 
[39], and Zheng and Zhang [40]. The value of the damping 
coefficient becomes higher in 2 < k0h1 < 3 and lower in 
3.5 < k0h1 < 4 . Non-dimensionalized damping coefficient 
increases with decreasing radius ratio a/b, i.e., when the 
radius of the inner cylinder gets much smaller than that of 
the outer porous cylinder in 2 < k0h1 < 3 . The occurrence 
of maxima and minima for added mass for the structure may 
be due to the constructive and destructive interference 
between the incident and reflected waves.

Figure 9 presents the non-dimensionalized damping 
coefficient 

�11

��V
 for surge motion against wavenumber cor-

responding to different range of values of G  for 
h1∕h2 = 1∕2 , h2∕h3 = 1∕2 , and a∕b = 1∕2 . The behavior 
of those curves is similar even when G takes different val-
ues. However, the variation is observed to be more pro-
nounced for higher values of G. Similar type of behavior 
as observed in Fig. 5 for added mass is observed here too. 
Next, Fig. 10 shows the non-dimensionalized damping 
coefficient 

�11

��V
 for surge motion against wavenumber cor-

responding to different values of h2∕h3 for h1∕h2 = 1∕2 , 
a∕b = 1∕2 , and G = 1 . In the lower wavenumber range for 
decreasing values of h2∕h3 , amplitude of the damping coef-
ficient is observed to get shifted towards left. In other 
words, this happens when the draft of the lower cylinder 
with respect to its lower surface is reduced which implies 
a position of the cylinder further away from the sea-bed. 
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Figure 11 shows damping coefficient 
�11

��V
 for surge motion 

against wavenumber corresponding to different values of 
h1∕h2 for h2∕h3 = 1∕2 , a∕b = 1∕2 , and G = 1 . The oscilla-
tion is observed to get shifted towards right for decreasing 
values of h1∕h2 . In other words, this happens when the 
draft of the lower cylinder with respect to its upper surface 
is reduced which makes the cylinder closer to the free 
surface.

6 � Heave motion

6.1 � Calculation of unknown coefficients

Using the boundary condition for the heave motion (m = 2) 
at r = a for −h1 < z < 0 and the orthogonal property of the 
eigenfunctions, we get the following relationship between 
the potential coefficients B2

�
 and C2

�
 appearing in �2:

Applying the matching conditions given by Eqs. (10) and 
(11) for the depth −h1 < z < 0 , along with the orthogonality 
of the eigenfunctions, we obtain

From Eq. (6) for the depth −h2 < z < −h1 and the matching 
condition (12), along with the orthogonality of the eigen-
functions, we get

(44)
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S2
�
(�ja)B

2
�
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�
(�ja)C

2
�

)
R�� =0, � ≥ 0.

(45)
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A2
j
T2
j
(kjb)Q�j −

(
B2
�
S2
�
(��b) + C2

�
R2
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(��b)
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R��

=
igH

� cos k0h3
�1J1(k0b)Q�0 − C� , � ≥ 0,
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T2�

j
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�
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�
R2�
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(��b)
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R��
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igH
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Fig. 9   Damping coefficient for surge motion against wavenumber cor-
responding to different values of G for h
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Fig. 10   Damping coefficient for surge motion against wavenum-
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Further, from the matching condition given by Eq. (14) at 
r = b in the interval −h3 < z < −h2 , and using the orthogo-
nality of the eigenfunctions, we get

where Q�j,R�� , T�� ,P�j,S�j , L�� are given by Eqs. (35)–(40) 
and

6.2 � Numerical results

Here we discuss the effects of various parameters on the 
heave hydrodynamic coefficients acting on the cylindri-
cal structure. The results are presented graphically and the 
observations are analyzed.

Figures 12, 13, and 14 show the added mass for heave 
motion against the wavenumber for different values of radius 
ratio a/b, porous coefficient G, and draft h2∕h3 , respectively. 
For all the cases, an oscillating nature is observed. Both 
minimum and maximum values of 

�33

�V
 are attained at spe-

cific values of k0h1 for all values of a/b, G, and h2∕h3 . The 
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(51)D� =ik0G∫
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z cos��(z + h2)dz,

(52)E� =
−b

2(h3 − h2) ∫
−h2

−h3

cos ��(z + h3)dz.

value of added mass 
�33

�V
 increases with an increase in the 

value of a/b, i.e., for the situation of increasing radius of the 
inner cylinder or decreasing radius of the outer cylinder. 
Also the presence of the porous region influences the 
impacts faced by the compound cylinder. It can be seen from 
Fig. 13 that with an increase in the value of the porous coef-
ficient G, the added mass decreases. As the value of G 
increases, it allows more wave to pass through the structure 
but reduces the resistance of the structure to the wave 
motion. Thus, with a reduction in the value of G, the added 
mass acting on the cylinder increases. The added mass is 
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Fig. 12   Added mass for heave motion against wavenumber corre-
sponding to different values of a/b for h
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also observed to be affected by the draft ratios. It is observed 
from Fig. 14 that the maximum value of the added mass get 
reduced for higher values of h2∕h3.

Figures 15, 16, and 17 show the damping coefficient 
�33

��V
 for heave motion against the wavenumber for differ-

ent values of a/b, G, and h2∕h3 , respectively. In this case 
also, an oscillating behavior is observed. At low frequen-
cies (wavenumbers), the component of the damping coef-
ficient increases as a/b increases, i.e., when the radius of 
the upper cylinder gets closer to that of the lower cylinder. 
The heave damping coefficient is remarkably influenced 

by the porosity of the structure. It can be observed from 
Fig. 16 that an increase in damping coefficient is associ-
ated with a reduction in the values of the porous coeffi-
cient. Figure 17 presents damping coefficient 

�33

��V
 for 

heave motion against wavenumber corresponding to dif-
ferent values of h2∕h3 for h1∕h2 = 0.37 , a∕b = 0.50 , and 
G = 1 . The oscillation is observed to get shifted towards 
right for increasing values of h2∕h3 . In other words, this 
happens when the draft of the lower cylinder with respect 
to its lower surface is increased which means the cylinder 
further away from free surface or getting closer to the 
sea-bed.
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Fig. 14   Added mass for heave motion against wavenumber corre-
sponding to different values of h
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Fig. 15   Damping coefficient for heave motion against wavenum-
ber corresponding to different values of a/b for h
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Fig. 16   Damping coefficient for heave motion against wave-
number corresponding to different values of G for h
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7 � Conclusion

Employing linear water wave theory, radiated potentials 
are derived for each sub-domain considered by taking into 
account the presence of a floating surface-piercing semi-
porous compound cylinder in finite ocean depth. Eigen-
function expansion approach and separation of variables 
technique are utilized in solving this radiation problem 
governed by Laplace’s equation. Various matching condi-
tions are applied to derive a system of linear equations for 
determining the unknown coefficients. Non-dimensional-
ized added mass and damping coefficients due to surge and 
heave motions are evaluated. Further, the effect of radius, 
depth, and porosity on the added mass and damping coef-
ficient are examined. For surge motion, as the radius ratio 
a/b of the cylinder decreases, added mass, and damping 
coefficient both increase. It is observed that added mass 
oscillates between positive and negative values before con-
verging corresponding to higher values of k0h1 . Such type 
of peculiar behavior of added mass is also observed in the 
works of McIver and Evans [17] and Wu et al. [31].

It is observed that the yaw induced surge damping is 
negative which implies that it is not only added mass that 
can be negative, the occurrence of which is a quite famil-
iar phenomenon, but damping coefficients can also take 
negative values under certain conditions. This type of phe-
nomenon can be attributed to coupled behavior between 
different motions. The damping coefficients are found to 
oscillate alternately between negative and positive values. 
A similar phenomenon was also observed by Wu et al. 
[31], Zheng et al. [39], and Zheng and Zhang [40]. It is 
also noticed from Fig. 9 that for surge motion, the added 
mass is not sufficiently affected by lower values of porous 
coefficient G. On the other hand, consideration of a large 
range of values of G shows added mass exhibiting varia-
tion for higher G. But for the heave motion, added mass 
is influenced by the porous coefficient G (Fig. 13) − it 
decreases as G increases. With respect to the effect of the 
gap between the cylinder and depth, it is clearly observed 
from Fig. 14 that for fixed values of the radii and porous 
coefficient, the added mass for heave motion increases 
as h2∕h3 , i.e., the submergence of the lower face of the 
outer (porous) cylinder, decreases. Then, with respect to 
the heave motion, keeping h2∕h3 and G fixed, the damp-
ing coefficient increases as the value of radius ratio a/b 
increases. For fixed values of porous coefficient and radii, 
it is observed that the oscillation of damping coefficient 
for surge motion gets shifted towards right for decreasing 
values of h1∕h2 . The study on wave interaction with con-
centric porous cylinder system is likely to be of immense 
help in the design of effective coastal/offshore structures 
such as (i) offshore fishing cage, (ii) floating production 

storage (FPS), (iii) tension-leg platform (TLP), and (iv) 
jack-up (space truss like) oil rigs as the proposed system 
will experience less load on the main structure. On the 
other hand, circular porous cylinder, and floating cage can 
be effectively used in the marine environment for (i) oil 
spill containment, (ii) temporary protection during coastal 
construction works, and (iii) augmentation of existing 
breakwaters for seasonal protection. It is expected that 
the results obtained in this work will provide necessary 
background for designing appropriate and efficient struc-
tures for reducing wave loads on such type of structures 
installed for various marine applications.

The obtained results are validated by comparing one result 
with an available result (Williams and Li [28]) and a satisfac-
tory agreement is noticed thereby implying the effectiveness of 
the mathematical model and subsequent results of the present 
work.
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Appendix: Porous coefficient G

The dimensionless porous parameter G can be defined as 
G =

L��

�k0
 , as was used by Chwang [7]. In general, being com-

plex, it can be expressed as Gr + iGi (Yu [35]), where Gr and 
Gi , respectively, denote the real and the imaginary parts. In 
practice, G always possesses positive real and imaginary parts 
except when the resistance effect against the flow dominates 
the inertial effect of the fluid inside the porous material in 
which case G becomes real. Similarly, when the inertial effect 
dominates the resistance effect, G becomes purely imaginary. 
The parameter G may be viewed as a Reynolds number for the 
flow passing through the fine pores of the wall (Chwang [7]). 
It is also a measure of the porous effect of the wall. G = 0 
implies that the porous wall is impermeable. On the other 
hand, as G approaches infinity, the porous wall is completely 
permeable to fluid, that is, there would be no porous wall at 
all. Basically here we work with Darcy’s law, which is appli-
cable for low Reynolds number flow through porous wall. Also 
Sankarbabu et al. [21] proposed to choose G as
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with h as the draft of the structure.
Initially, the value of G for a given porosity is obtained by 

trial and error method. On substitution of the obtained G and 
other known values in the above expression, the unknown 
material constant (L) for the given porosity of the outer cyl-
inder is calculated. Based on linear extrapolation, the mate-
rial constant values for other porosities are computed result-
ing in values of G.

Conforming to the assumptions and conditions used in 
this work, G is taken to be real since the flow dominates the 
inertial effect of the fluid inside the porous cylinder.
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