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Abstract
Electrification of the transportation sector through electric vehicles (EVs) is promoted by environmentalists and government 
agencies in order to encourage sustainable growth. EVs as a random load may take a toll on the stability and reliability of 
the power system. However, they can also help to improve the grid performance if operated in coordination with the load 
profile. In this paper, the impact of EV fleet integration in the unbalanced distribution network has been observed. A proba-
bilistic EV model for charging and discharging of EVs is proposed, in which both the arrival and departure time of EVs is 
modelled as a normal distribution and the distance travelled is modelled as a lognormal distribution taking into account the 
spatial temporal features of EV charging. The charging-discharging schedule of EVs is optimized using Genetic Algorithm 
(GA) with the aim of obtaining a flattened load profile. The developed algorithm was tested on IEEE 13-bus unbalanced 
test distribution network, and the results show that the optimized EV integration has resulted in flattening the load profile 
(gap between maximum and minimum demand reduced to ~ 18 kW), improvement in the voltage profile and reduction in the 
network unbalance as depicted by the decrease in the maximum neutral current drawn (~ 28%). The proposed model can be 
implemented for practical distribution system planning and can be an effective tool in balancing the unbalanced network in 
the era of rapidly increasing EVs in the real-time distribution system.

Keywords Electric vehicle · Probabilistic modelling · Unbalanced distribution system · Load curve flattening · Neutral 
current · Genetic algorithm

Nomenclature
Yprim  Primitive Admittance Matrix
Ysystem  Main System Admittance Matrix
Iinj  Injection Current
Vn  Node Voltage
IN  Neutral Current
Iph1  Current in Phase 1
Iph2  Current in Phase 2
Iph3  Current in Phase 3
t  Instant of time
Pch(t)  Effective Charging Power at time t
Pin(t)  Power flowing into the storage element 

at time t
PlossCh(t)  Power loss during charging at time t

E(t)  Energy stored in the storage element at 
time t

∆tch  Time period of charging
Pdch(t)  Effective Discharging Power at time t
Pout(t)  Power flowing out of the storage element 

at time t
PlossDch(t)  Power loss during discharging at time t
∆tdch  Time period of discharging
n  Number of EV in the fleet
tan  Time of arrival of  nth EV
td

n  Time of departure of  nth EV
Dn  Distance travelled by  nth EV
fN  Normal distribution function
X  A random variable
μ  Mean of the probability distribution
σ  Standard deviation of probability 

distribution
fLN  Log Normal distribution function
SOCi  Initial state of charge
SOCmin  Lower limit of State of Charge
SOCmax  Upper Limit of State of Charge
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AER  All Electric Range of the Vehicle
B  Battery Capacity
r  Rated Charge Power
tc

n  Time taken by  nth EV for complete 
charging

Ec
n  Energy required by  nth EV to get fully 

charged
Actual_Load(t)  Real power demand of the test feeder at 

time t
Target_Load  The 24-hour average load of each phase
Pt

bus  Active power demand of test bus at time 
t

xt
n  State of  nth EV at time t

Pavg  Average load of the test bus
tend

n  Time at which charging ends for  nth EV
EV  Electric Vehicle
GA  Genetic Algorithm
BEV  Battery Electric Vehicle
CAGR   Compound Annual Growth Rate
V2G  Vehicle to Grid
G2V  Grid to Vehicle
VPP  Virtual Power Plant
ICT  Information and Communication 

Technologies
DER  Distributed Energy Resource
LV  Low Voltage
OpenDSS  Open Distribution System Simulator
COM  Component Object Model
3P4W  Three Phase Four Wire
A  Ampere
kW  Kilowatt

Introduction

The Electrical Power System is continuously evolving due 
to variables like – depletion of available natural reserves of 
fossil fuels, adoption of renewable resources along with the 
threat of climate change etc., which are the main causes of 
sustainable development approach. This change in the power 
system is characterized by the introduction of futuristic tech-
nology, addition of new loads (for example EVs), increased 
popularity of cleaner and greener sources of energy etc. The 
transportation sector is a major contributor to the increasing 
level of harmful emissions and greenhouse gases; therefore, 
the electrification of this sector can prove to be a propitious 
solution to fight global warming concerns and reduce the 
carbon footprint, and this would be more advantageous when 
these vehicles are charged using electricity produced from 
greener and sustainable sources such as biomass, wind or 
solar [1]. About 80% of Passenger rail and 50% of Freight 

Wagons are electrified worldwide, which do not release 
any direct carbon emissions into the environment [2]. With 
recent developments, the aviation sector is also moving 
towards electrification [3]. In this paper we shall focus only 
on Battery Electric Vehicles [4].

Unlike other loads, EVs due to their dispatchable char-
acteristic, can provide more energy security, however, their 
successful implementation is hindered due to – high initial 
capital investment needed, lack of suitable charging infra-
structure especially in developing nations, battery replace-
ment required after a specific tenure, degradation of bat-
tery capacity etc. [5]. In spite of these reasons, the Global 
EV market has expanded exponentially and is expected to 
grow strongly in the forthcoming years [6]. The Electric 
Vehicle market in India is anticipated to grow at an impres-
sive compound annual growth rate of 66.52% during the 
forecast period of 2022–2029 [7]. Conventionally EVs were 
modelled in unidirectional mode in the distribution network, 
which meant the energy could only flow from the grid to the 
vehicle (G2V). The development of the concept of Virtual 
Power Plants, along with advanced Information and Com-
munication Technologies, have enabled EVs to now be mod-
elled in a bi-directional mode in the distribution network by 
enabling charging through G2V while acting as a load on the 
grid, as well as discharging through Vehicle to grid while 
acting as Distributed Energy Resource [8]. This bidirectional 
flow of electricity can serve many purposes such as Grid 
Stabilization—by providing additional power during peak 
demand times, V2G helps to stabilize the grid and prevent 
blackouts or brownouts; Energy Storage—EVs can act as 
mobile energy storage units, storing excess energy produced 
during off-peak times or from renewable sources like solar 
and wind, and discharging it when needed, thereby enabling 
the integration of renewable energy resources by providing a 
flexible storage solution. Therefore, EVs can provide many 
ancillary services in the power system when utilized with an 
organized approach, such as – load levelling / load curve flat-
tening, reduction in the peak load, power loss minimization 
etc. which will not only assist in balancing the distribution 
network but will also prove to be economical to the utility 
as well as the end-users [9]. It should be remembered that, 
for EVs to provide such services, there is a requirement of 
an EV aggregator which would regulate the participation 
of EVs in the electricity market and make the system more 
flexible [10].

The majority of research conducted on EV integration 
has been concerned with balanced distribution networks. In 
[11], only the impact of asymmetric EV charging on volt-
age profile of a low voltage grid has been studied, and the 
results show that uncoordinated EV charging can cause 
significant voltage imbalance; however, it does not discuss 
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about mitigating the network imbalance and uncertainties 
from different possible allocations. While [12] investigates 
the impact of probabilistic EV charging on IEEE European 
LV test case which shows that optimized smart charging 
helps to improve the overall performance of the system; 
this paper also supports the fact that probabilistic methods 
are more appropriate and accurate than deterministic worst-
case approaches due to the temporal and spatial uncertain-
ties in EV arrivals and departures and that capturing these 
uncertainties can lead to better planning and management 
of the grid. In [13], the impact of EV fleet integration on 
neutral current of the system is discussed and optimized 
using Differential Evolution algorithm; a significant reduc-
tion in neutral current is observed along with an improve 
in the voltage profile of the test network; however, it does 
not consider a probabilistic approach to model the EVs. In 
[14] the combined objective of cost benefit analysis, load 
levelling and optimization of probabilistic EV fleet using 
mixed integer programming has been discussed. While [15], 
extends the optimization of probabilistic modelling of EVs 
with an aim of achieving minimum operational cost along 
with distribution feeder reconfiguration using GA in 33-bus 
radial distribution network, which is again a balanced test 
system. In [24], an energy management system is designed 
to optimize the integration of renewable energy sources 
and electric vehicles in microgrids. Using Support Vector 
Regression for precise prediction of EV charging demands 

and a self-adaptive dragonfly algorithm for optimization, 
the study addresses the significant challenge of balancing 
renewable energy intermittency with increasing EV charging 
needs. Tested on the IEEE 69-bus test system, the approach 
demonstrated high accuracy in demand prediction and a 
notable reduction in total operation costs, emphasizing its 
potential to enhance the efficiency and reliability of renew-
able microgrids while supporting the growing adoption 
of electric vehicles. The paper [25] proposes a framework 
incorporating advanced intelligent methods and evolution-
ary algorithms to address uncertainties related to renewable 
energy, EV charging, and market fluctuations. The papers 
[25] & [26] compare three charging schemes namely—coor-
dinated, uncoordinated, and smart charging; and support the 
fact that optimal switching and smart charging results in 
optimization in real-time based on grid conditions, energy 
prices, and user preferences, offering the most significant 
cost reductions.

It is pertinent to mention that a power distribution sys-
tem is inherently unbalanced and EV fleet modelling is not 
deterministic. The shortage of published research on the 
optimized charging-discharging of EVs in an unbalanced 
network highlights a potential research gap. The research 
presented in [16], shows a deterministic approach to ana-
lyse the impact of EV fleet integration in an unbalanced dis-
tribution network. This paper presents a novel approach to 
model an electric vehicle (EV) fleet within an unbalanced 

Table 1  Comparison Between Various Studies Conducted On EVs

Study Name Parameters in 
Optimization

Stochastic 
Approach

Neutral Current 
Impact Studied

Objective of Optimization Simulated Grid

EV Load Time

This Study ✓ ✓ ✓ ✓ ✓ Load Levelling, Reduction in 
Neutral Current

IEEE 13-Bus Unbalanced 
System

Umar, Reza, Mahmoud, 
Joakim & Joakim (2021)

✓ ✓ ✓ ✓ Minimizing net-load Variance IEEE European LV test feeder, 
unbalanced

Helm, Hauer, Wolter, Wenge, 
Balischewski & Komarnicki 
(2020)

An asymmetric power flow 
calculation analyzing the 
impact of uncoordinated 
EV charging on voltage 
stability

LV Grid

Islam, Lu, Hossain & Li. 
(2019)

✓ A method to reduce the neu-
tral current at the support-
ing feeder, by optimizing 
the voltage unbalance

EV Penetrated Unbalanced 
Distribution Grid

Singh & Tiwari (2020) ✓ ✓ ✓ ✓ Minimize losses in the system 
by utilizing V2G operation 
of the EVs

IEEE 33-Bus Balanced System

Kaur & Kaur (2022) ✓ Impact of EV deployment in 
unbalanced system has been 
observed—Deterministic 
Approach

IEEE 13-Bus Unbalanced 
System
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distribution system, employing MATLAB and OpenDSS 
through a COM interface to establish a robust foundation. 
The Table 1 illustrates a comparison of different studies con-
ducted on electric vehicles with this study.

The investigation into the impact of probabilistic EV 
deployment in which both the arrival and departure time of 
EVs are modelled as a normal distribution and the distance 
travelled is modelled as a lognormal distribution taking into 
account the spatial temporal features of EV charging, on 
various parameters such as active power demand, voltage 
profile and neutral current of the test feeder is significant.

Furthermore, the optimization of the charging-discharging 
schedule of the integrated EV fleet is performed using GA 
with an aim of achieving load levelling, which adds a unique 
dimension to the research and contributes novel insights to 
the field. The novel contribution of this work is as follows –

• The spatial temporal features of EV charging are con-
sidered in the study of EV integration on active power 
demand, voltage profile and network unbalance.

• Impact of EV integration is studied on unbalanced radial 
distribution network.

• Optimization of the charging-discharging schedule of the 
integrated EV fleet for load flattening is investigated.

• The impact on Neutral Current in the distribution system 
is studied.

System Modelling and Problem Formulation

System Modelling

In India, the three phase four wire configuration is com-
monly used for distribution networks. The Power Flow of 
Unbalanced Distribution Network solution is generated tak-
ing into consideration the limitations that arise due to high 
resistance to reactance ratio of the distribution feeders [17]. 
The power flow results are obtained by solving the equation 
given in (1) [18] –

The presence of unbalance in the phases, which may 
arise due to any reason such as load fluctuations, can lead to 
large neutral current in the network that causes power qual-
ity issues and decreased network efficiency. The  (IN) Neutral 
Current in the system is computed as –

Research suggests that coordinated EV charging-dis-
charging can reduce the neutral current and hence, the unbal-
ance in the network [13, 19].

(1)Iinj(V) = YsystemV

(2)IN = Iph1 + Iph2 + Iph3

Electric Vehicle Modelling in OpenDSS – each vehicle 
is modelled as a Storage Element [16] in OpenDSS and its 
general structure is depicted in Fig. 1 [18].

• The storage element acts as a constant power consuming 
load during the charging period and is represented by the 
equations given in (3) and (4) –

• The storage element acts as a power generator during 
the discharging period which has the ability of injecting 
active power into the system and is represented by the 
equations given in (5) and (6) –

Probabilistic EV Parameter Modelling – In this 
research we assume that the charging-discharging schedule 
is to be formulated for a residential car park where the EVs 
are available in the evening when the residents come home 
from their jobs, up until the commencement of their next trip 
in the following morning. The EVs are modelled probabil-
istically by taking into account key variables such as time 
of arrival and departure of EVs, AER-All Electric Range of 
EVs, daily distance driven etc. [15].

The arrival time of the EV  (ta) and departure time of the 
EV  (td) is assumed to have a normal distribution, while the 
daily driven distance of the EV (D) is approximated to fol-
low lognormal distribution taking into account the spatial 
temporal features of EV charging, as depicted by the forth-
coming equations [15].

(3)Pch(t) = Pin(t) − PlossCh(t)

(4)Ech(t + Δt) = Ech(t) + Pch(t)
∗Δtch

(5)Pdch(t) = Pout(t) + PlossDch(t)

(6)Edch(t + Δt) = Edch(t) − Pdch(t)
∗Δtdch

(7)ta = fN
(
Xa,�a, �a

)

Fig. 1  Storage Element General Structure
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Where μ is the mean and σ is the standard deviation 
and a, d & D are the subscripts for time of arrival, time 
of departure and distance driven by the Electric Vehicles 
respectively. These parameters are used to calculate the 
initial State of Charge  (SOCi) of  nth EV using the Eq. (10), 
where AER is the All-Electric Range of the vehicle and 
 Dn is the distance driven by  nth EV which is calculated 
probabilistically as depicted in Eq. (9).

The total time required for  nth EV to get fully charged 
 (tc

n) is calculated using the Eq. (11) and similarly the total 
energy required for  nth EV to get fully charged  (Ec

n) is 
calculated using Eq. (12).

Where, B is the battery Capacity of the Electric Vehi-
cle and r is the rated charge power. We have assumed the 
efficiency of charging / discharging to be 100%.

Optimization of Charging‑Discharging Schedule 
of EVs

The charging-discharging schedule of EVs is optimized 
with the aim of obtaining a flattened load profile through 
Genetic Algorithm (GA) in MATLAB [20], where the 
objective function is formulated on the basis of Eq. (13), 
subject to constraints discussed further –

Here, the Actual_Load(t) is the real power demand 
of the test feeder at time t, and the Target_Load is the 
24-h average load of each phase. In order to achieve a flat 
load profile, the EVs will be required to charge during the 
off-peak period for Valley Filling and discharge during 
the peak period for peak shaving. Therefore, the fitness 
function is formulated in order to minimize the difference 
between the instantaneous load and the average load of 
each phase on the test bus as given in Eq. (14).

(8)td = fN
(
Xd,�d, �d

)

(9)D = fLN
(
XD,�D, �D

)

(10)SOCi = 1 −
Dn

AER

(11)t
n

c
=

(1 − SOCi).B

r

(12)E
n

c
=
||
|

(
1 − SOC

i

)
.B
||
|

(13)Min
{
Sqrt

(
Σt

[
Actual_Load(t) − Target_Load

]2)}

Where, f is the function to be minimized using GA, t 
is the time period (24 h in this study),  Pt

bus is the active 
power demand of test bus at time t, n is the number of EVs 
in the fleet,  xt

n is the state of  nth EV at time t which can 
be 0 (idling), + 1 (discharging) or -1 (charging) and  Pavg 
is the average load of the test bus. The fitness function 
given in (14) is an extension of equation given in (13) to 
our system, which is optimized subject to the following 
constraints.

The constraints specified in (15) and (16) describe the 
fundamental states of  nth EV when it is connected and not 
connected to the grid. The constraint given in (17), helps 
to maintain the SOC within safe limits, which are taken 
as  SOCmin = 20% and  SOCmax = 100%; and it is ensured 
through the constraint in (18) that at the end of parking 
period any EV is fully charged. It is worth noting that the 
battery SOC is an effective optimizing constraint for EVs 
as it ensures battery health by preventing overcharging and 

(14)Min(f ) = Sqrt
(
Σt

[
Pt

bus −
{
r.Σnx

t
n

}
− Pavg

]2)

(15)xtn = 0∕ − 1∕ + 1when t ∈
[
ta, td

]

(16)xtn = 0 when t ∉
[
ta, td

]

(17)SOCmin < SOC < SOCmax

(18)En
c
= Σtx

t
n.r

Fig. 2  COM Interface between OpenDSS and MATLAB



 Smart Grids and Sustainable Energy            (2024) 9:34    34  Page 6 of 14

deep discharges. Moreover, it helps to provide predictable 
performance, ensuring sufficient charge for mobility needs 
while participating in grid services.

Methodology

For the purpose of analysis, we have used MATLAB 
R2015a and OpenDSS through COM interface as depicted 
in Fig. 2 [21].

The stepwise approach for optimization is shown in the 
Flow diagram presented in Fig. 3, while the steps followed 
for the research are summarized below –

• The network parameters such as system load, voltage 
regulations, maximum number of iterations, load profile 
etc. are declared and the 24 h load flow is run for each 
case.

• An EV fleet is initialized at the suitable busbar, for which 
the charging-discharging is optimized using GA.

• The best solution is obtained by solving and comparing 
the objective function given in Eq. (14), subject to con-
straints given in Eqs. (15) – (18), till the stopping condi-

tion is reached, which is reaching the maximum number 
of iterations in our case. After this, the best solution is 
exported to OpenDSS for running the daily load flow and 
the necessary computations are performed.

Case Study

For the purpose of this research, we have considered the 
IEEE 13-bus unbalanced distribution system [22], which 
is the most basic form of unbalanced network available 
for analysis. It operates at 4.16 kV and has one source, a 
regulator, with a number of short unbalanced transmission 
lines and shunt capacitors. It consists of two single-phase 
buses, three two-phase buses, while the rest other buses are 
three-phase. It should be noted that the scope of this study is 
limited to examining the impact of an EV fleet on the basic 
IEEE test system. However, future research can be extended 
to incorporate a real-time distribution system to obtain more 
realistic results.

The system modelled on MATLAB with OpenDSS COM 
Interface and is run under basic conditions for which the 
power flow results are obtained and verified with the IEEE 
datasheet [22]. The power flow results are computed by 

Fig. 3  Flow Chart for Optimization using GA
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OpenDSS by solving the equation given in (1) using the 
Fixed-Point Iteration Method as shown below –

Where n varies from 0 to N, until the solution converges.

• The network is analysed for various cases as discussed 
further.

• GA is used to optimize the charging-discharging sched-
ule.

• A comparison of results is presented for the various 
cases.

EV Fleet Size & Location

The EV modelled has three operating states, viz. (-1) charg-
ing or G2V, (+ 1) discharging or V2G and (0) idling [18]. 
The EV fleet is modelled on bus 634 which is the Low Volt-
age (LV) bus of the system, as shown in Fig. 4.

(19)Vn+1 =
[
Ysystem

]−1
Iinj

(
Vn

)

The fleet consists of 75 EV units, with 25 EVs in each 
phase. The EV penetration with the given number of vehi-
cles is about 20% on bus 634. It is important to recognize 
that penetration level of EVs significantly influences the 
charging-discharging optimization. A higher EV penetra-
tion enhances demand response capabilities, facilitates 
the integration of intermittent renewable resources, boosts 
the potential for V2G services etc. Also, optimal charging 
strategies at higher penetration levels can lead to economic 

Fig. 4  Modified IEEE 13-Bus Network

Table 2  EV Specifications

Spec Rating

Battery Capacity 24 kWh
Rated Charge Power 3.3 kW 

(Slow 
Charging)

All Electric Range 315 km
No. of EVs in each phase 25
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benefits, reduced cost of electricity, and also lower green-
house gas emissions.

The Table 2 shows the modelled EV capacity for a single 
EV, which is taken from the Tata Tiago EV specifications 

having a Rated Charging Power of 3.3 kW for standard 
charging and a Battery Capacity of 24 kWh [23].

Cases

The daily load flow is computed for each case, with a time 
period of 24 h with an interval of 1 h. The cases consid-
ered in the research are listed in Table 3.

Results and Discussion

The analysis is performed in MATLAB and OpenDSS 
through COM interface to obtain the test bus results. The 
conventional loads on the bus 634 follow the default load 
shape as depicted in the Fig. 5.

IEEE 13 Bus System without EV Fleet

This case is run without any EV integration. The active 
power and neutral current profiles observed after running 

Table 3  Cases Studied Sr. No Case Description

A No EV Integration IEEE 13 Bus Network without any EV Integration
B Uncoordinated

Charging
Unoptimized charging of EVs with only G2V (Grid to Vehicle)

C Coordinated Charging-
Discharging

Genetic Algorithm optimized charging and discharging

Fig. 5  Default Load Profile

Fig. 6  Active Power Profile – 
No EV Integration
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load flow, for bus 634 are shown in Figs. 6 and 7. The 
Table 4 depicts the various parameters observed for this 
scenario. This case establishes the basis for our study, sup-
plying the baseline values of power consumption and neutral 
current in the unbalanced distribution network that we seek 
to optimize with EVs.

Uncoordinated Charging

In this case it is assumed that each EV starts charging as 
soon as it arrives. The charging is continuous at the rated 
charge power (3.3 kW) and the end time of charging  (tend

n) 
of  nth EV is determined as depicted in Eq. (20).

Where,  ta
n is the time of arrival of  nth EV determined 

probabilistically as given in Eq. (7) and  tc
n is the time 

(20)tend
n = ta

n + tc
n

required by  nth EV to get fully charged as given in Eq. (11). 
The state of  nth EV at time t,  xt

n for this case, where only 
charging is taking place is described below –

In this scenario, each EV behaves as only a load, as 
depicted in (21), that can only charge or consume power 
from the network at a fixed rate (rated charge power). The 
active power and neutral current profiles at bus 634 for 
this case are presented in Figs. 8 and 9 respectively. The 
Table 5 shows the parameters observed for this case.

It can be seen from the graphs that the peak load and 
neutral current drawn have increased in this case due to the 
uncoordinated nature of charging. The Table 6 shows the 
comparison between the Case A (without EV Fleet) and 
uncoordinated charging case. Uncoordinated EV charging 
can significantly impact the electric grid by causing over-
loads, voltage fluctuations, and increased peak demand. This 
may result in inefficient energy use and higher operational 
cost.

The EV load on the grid is increasing rapidly and such 
uncoordinated charging can prove fatal for the stability of 
the power system. Therefore, there is a need for developing 
a coordinated charging-discharging strategy for this rapidly 
increasing special load on the system, such that its dispatch-
able characteristics can be used to the fullest for increasing 
the reliability of the power network.

(21)xtn = 0∕ − 1when t ∈
[
ta, tend

]

(22)xtn = 0when t ∉
[
ta, tend

]

Fig. 7  Neutral Current Profile – 
No EV Integration

Table 4  Observed Parameters – No EV Integration

Parameters Phase

1 2 3

Maximum Demand (kW) 162.55 121.46 121.54
Minimum Demand (kW) 93.67 70.12 70.13
Average Demand (kW) 133.91 100.12 100.17
Max Neutral current
(A)

19.89
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Coordinated Charging Discharging

In this case, we have optimized the charging and discharging 
of EVs using GA in MATLAB. This approach for optimiza-
tion is very useful when dealing with stochastic environ-
ment due to its inherent adaptability which allows to handle 
the complexity introduced by such variables and iteratively 

refine the strategies, converging towards an optimal or near-
optimal solution.

The EV fleet behaves as a load as well as a power source 
according to the duty cycle computed from the optimization. 
This method proves beneficial in managing the dynamic and 
uncertain nature of factors such as grid demand, user prefer-
ences etc. in the context of EVs. Our decision variable is the 

Fig. 8  Active Power Profile – 
Uncoordinated Charging

Fig. 9  Neutral Current Profile – 
Uncoordinated Charging
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charging-discharging matrix of the EV fleet for 24 h which 
is of the order of (24 X 75 = 1800 variables), that is 600 
variables per phase. The fitness function and the constraints 
for GA are given in the Eq. (14) and Eqs. (15) to (18) respec-
tively. The implementation of optimization through GA is 
carried out as per the following –

• Parent Selection is done using Roulette Wheel Selec-
tion.

• Crossover – Two rows are entirely exchanged among 
two randomly selected parents.

• Mutation – This operation is adjusted to ensure that the 
final generated offspring follow the constraints.

The Fig. 10 shows the function cost plot for GA imple-
mentation with respect to iteration number. The active power 
and neutral current profiles are shown in Figs. 11 and 12 
respectively. The Table 7 shows the various parameters 
observed for this case. Coordinated EV charging offers sev-
eral benefits such as—Grid Stability; Voltage Regulation; 
Peak Demand Reduction; Enhanced Efficiency; Cost Savings 
and Improved Demand Response and Renewable Integration 
Opportunities.

It can be observed from the results obtained below that 
optimized EV integration has resulted in flattening the 
load profile and decreasing the maximum neutral current 
drawn at the test bus (634) and there is also an improve-
ment in the voltage profile of the test feeder.

The Table 8 shows the comparison between the unco-
ordinated charging case and the coordinated charging-
discharging case.

The observations that can be made for the coordinated 
charging-discharging case are as follows –

Table 5  Observed Parameters – Uncoordinated Charging

Parameters Phase

1 2 3

Maximum Demand (kW) 222.47 185.16 189.35
Minimum Demand (kW) 94.61 71.07 71.06
Average Demand (kW) 153.18 119.36 118.21
Max Neutral current
(A)

25.10

Table 6  Comparison of 
Parameters of Case B from 
Case A

Phase Maximum Demand Average Demand Max Neutral current

Un
coordinated Charging

1 ↑36.9% ↑14.4% ↑26.2%
2 ↑52.4% ↑19.2%
3 ↑55.8% ↑18.0%

Fig. 10  Function Cost Plot – 
GA



 Smart Grids and Sustainable Energy            (2024) 9:34    34  Page 12 of 14

• The peak load on the test bus reduces for all the three 
phases (by 27.3% for phase 1, by 26.8% for phase 2 and 
by 30.7% for phase 3) as can be observed in Table 8.

• There is also a decrease in unbalancing of the system 
as depicted by the reduction in the value of maximum 
neutral current drawn on the test bus (reduced by 28.2%).

Fig. 11  Active Power Profile 
– Coordinated Charging-Dis-
charging

Fig. 12  Neutral Current Profile 
– Coordinated Charging-Dis-
charging
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• It should also be noted that the gap between the maxi-
mum and minimum load decreases (by 88.2% for phase 1, 
by 80.5% for phase 2 and by 84.8% for phase 3) thereby 
resulting in a flattened load profile, which was the main 
objective of the optimization.

• There is also an improvement in the voltage profile of the 
test bus as depicted in Fig. 13, which shows a comparison 
of voltage profiles for all the three cases viz. base case (in 
blue), uncoordinated charging (in red) and coordinated 
charging-discharging (in yellow).

It should be noted that most of the research work on EV 
integration in the grid is simulated on balanced distribution 
system and randomness of the EV fleet is not considered. 
However, a power distribution system is inherently unbal-
anced and EV fleet modelling is not deterministic. This 
research is a step into that direction.

Conclusion

In this paper, the impact of probabilistic EV fleet integration 
in the IEEE 13 bus distribution network has been considered. 
It was observed that uncoordinated charging results in rise 
of unbalance on the test feeder (bus 634) as depicted by the 
increased neutral current drawn and also the rise in the peak 
load. These changes are undesirable and can prove fatal for the 
stability and reliability of the power network. Genetic Algo-
rithm based optimization model minimizes the fluctuations 
in the daily load and attain reduction in the peak demand of 
the system. With this proposed algorithm, it is observed that 
the peak demand and load fluctuations on the test bus reduce 

Table 7  Observed Parameters – Coordinated Case

Parameters Phase

1 2 3

Maximum Demand (kW) 161.84 135.58 131.25
Minimum Demand (kW) 146.81 113.38 113.28
Average Demand (kW) 151.66 120.36 117.89
Max Neutral current
(A)

18.03

Table 8  Comparison of 
Parameters of Case C from 
Case B

Phase Maximum Demand Gap in Max & Min 
Demand

Max Neutral current

Coordinated Case 1 ↓27.3% ↓88.2% ↓28.2%
2 ↓26.8% ↓80.5%
3 ↓30.7% ↓84.8%

Fig. 13  Voltage Profile Com-
parison
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along with the reduction in the neutral current drawn that aids 
in balancing the system. A flattened load profile is attained 
with appreciable reduction between the maximum and mini-
mum power demand (over 80%) along with improved volt-
age profile. Therefore, this optimized charging-discharging 
strategy of EVs can be used for improving the power system 
performance when used along with an EV aggregator.
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