
Smart Grids and Sustainable Energy            (2024) 9:33 
https://doi.org/10.1007/s40866-024-00211-7

RESEARCH

Frequency Regulation Strategy in Islanded Microgrid With High
Renewable Penetration Supported by Virtual Inertia

Gourav Kumar Suman1 · Suman Yadav2 · Josep M. Guerrero3

Received: 13 February 2024 / Accepted: 17 June 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
The widespread adoption of power converter-based renewable energy sources (RESs) has led to a significant decline in
overall system inertia within interconnected power systems. This reduction in inertia poses a significant challenge, as it
increases the susceptibility of the interconnected power system to instability. To address this critical issue, this research
proposes an application of virtual inertia control as a means to enhance the frequency stability of interconnected power
systems characterized by a high penetration level of RESs. The proposed approach leverages a derivative control technique to
enable higher-level virtual inertia emulation. By introducing a second-order characteristic into the virtual inertia control loop,
the method emulates inertia, resulting in improved frequency stability and enhanced system resiliency. A dynamic model of
microgrid linked is developed and the frequency stability is ensured by a Fractional Order Proportional Integral Derivative
(FOPID) controller using Teaching Learning Based Optimisation (TLBO) algorithm. The problem is formulated with Integral
Time Squared Error (ITSE) of frequency deviation for determining the controller. The performance of the developed controller
is compared against conventional controllers in terms of the stability of the microgrid. In addition, the superiority of TLBO is
analysed by comparing it with other well-established algorithms in the literature. The suitability is established under various
scenarios of load and renewable uncertainties. Furthermore, the work also includes sensitivity verification of the controller
by parametric variation of the range of ±70%.
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Introduction

The increased depletion of fossil fuels and their adverse
effects on the environment has caused a surge of interest in
power engineers towards renewable energy resources. A dra-
matic increase has been observed in the number of distributed
generation systems mainly due to technological advance-
ments aswell as price drops.Besides, the increased incentives
by the government in certain developing countries like India
have led to an increased attraction towards renewable energy-
based generation systems. Concerning the above and the
increased energy demand, the shift towards renewables is
one of the most feasible solutions. Although beneficial, the
presence of renewable energy resources in the power system
causes numerous issues such as low reserve capacity, lesser
inertia, higher fault currents and weaker fault ride-through
capability. The two most commonly used renewable energy
resources namely solar and wind energy are highly unpre-
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dictable in terms of availability. Intermittency is an inherent
property of renewable energy resources, thus an increased
penetration of these resources in the system poses a severe
challenge to the frequency stability of the system [1].

Right through the beginning of renewable energy-based
systems, researchers have been in a constant attempt to
develop dynamic models suitable for these systems. In
one such attempt, a dynamic load frequency control (LFC)
model of a diesel engine and fuel cell-based microgrid unit
was proposed in [2]. The authors emphasised that a cer-
tain combination of renewable energy resources could serve
as benefactors in maintaining the frequency stability of a
microgrid-based system. The authors analysed the perfor-
mance of the designed model by applying step variation
of both the load and the renewable energy sources. The
renewable energy-based generation scheme has also seen
the inclusion of rapid-acting ultracapacitors as providers of
energy bursts in microgrids. Authors in [3], developed an
isolated microgrid system making use of ultracapacitors.
The main objective of implementing an ultracapacitor was
to improve the inertia of the system to stabilise the oscilla-
tions in the frequency dynamics of the system. It is worth
noting that the developed microgrid consisted of both con-
trollable and uncontrollable energy sources. As stated above,
the increased penetration of renewable energy resources in a
microgrid-based systemweakens the overall inertia. To over-
come the same, the work in [4] utilised tuning of the inertia
constant of the system in the LFC dynamics of the system.
The developed microgrid consisted of diesel generation as
the main source of energy supported by battery energy stor-
age systems (BESS) and ultracapacitors. The performance
was analysed both for the variation in the internal system
parameters and for the variation in the operating conditions.
For a similar nature of stability problem, the work in [5]
developed an optimal sizing scheme for BESS for a micro-
grid with high renewable penetration. The variables chosen
for optimisation were the power and energy ratings of the
BESS. A case study was done for an islanded system at
’Flinders Island’ in Australia utilising the results obtained
in the above optimisation. The authors emphasised optimal
sizing of the battery storage system for supporting the devi-
ations in the frequency dynamics. The work presented in [6]
considered improving the frequency dynamics of a micro-
grid systemwith a high share of renewable energy resources.
The authors employed a scheme for tapping the virtual iner-
tia potential of renewable energy resources by developing
a derivative control mechanism. The obtained results were
validated against numerous scenarios of variation such as
abrupt and variable changes in load and also for variations
in renewable energy penetration. The developed model was
observed to be beneficial. However, it was also noted that the
photovoltaic-based virtual inertia mechanism took longer to
settle the deviation in frequency compared to conventional

models of energy generation schemes. The authors placed
the development of a suitable mechanism to reduce the set-
tling time for damping the oscillations as a possible scope
of work. In addition, the authors also emphasised reducing
the demand for energy storage devices and PV systems for
supplying impulsive energy during smaller periods. Fini et al
analysed the loading aspect of aweakmicrogrid system in the
frequency dynamics of the system [7]. The work coordinated
the generation units and the connected loads to the system
in such a manner that the control reserve of frequency was
managed optimally. Two multiobjective optimisation prob-
lems were considered for attaining the solution for the above
problem. The developed method was deemed to be feasible
for the control of frequency with the variation in the inertia
of the system. It is also to note that the changes in the inertia
of the system presented only a feeble impact on the con-
troller. An elevated share of Renewable Energy Resources
in the power systems complicates the balancing process of
the grid and hampers the operation of the market. However,
certain dedicated devices may be added to the renewable
energy integrated systems to support in terms of variation of
power, and balancing of grids among others [8]. To begin
with, the generation based on renewable energy resources
is connected to the microgrids mainly implementing power
electronics interfaces. These interfaces in turn are limited in
terms of the delivery of power and thus could not generate
inertia property, thereby reducing the inertia of the entire
system. During an event of a disturbance, the inertial prop-
erty plays a significant role in damping down the oscillations
in the frequency deviation of the system [9]. It thus can be
inferred that the presence of power electronics converters
based on renewable energy generation schemes would affect
the frequency stability of the system. Excessive deviation of
frequency beyond the tolerable bounds may lead to an unde-
sirable shedding of loads or a chain of events including faults,
failure of equipment or protection action etc usually referred
to as cascading outages in the power system. Besides, an
excessive deviation in frequency may also lead to blackouts.
The intermittency of renewable energy may cause continu-
ous variation in frequency leading to a significant rise in the
rate of change of frequency. This in turn may lead to the phe-
nomenon of pole-slipping in generation units giving rise to
the tripping of protection systems [10]. The technical issues
faced while integrating a higher share of renewable energy
resources can also be handled with numerous newly devel-
oped technologies for instance advanced control techniques
and optimisation schemes.

RelatedWorks

The threats to stability may be overcome by the development
of certain auxiliary control schemes such as the inclusion of
virtual synchronous control in the renewable energy-based
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system. These control schemes emulate the behaviour of a
basic inertial system such as synchronous generators without
the need for actual rotating masses. There have been numer-
ous instances in the literature implementing the concept of
virtual inertia emulation for stabilisation of the dynamic per-
formance of power systems. In one of the earliest attempts,
the authors in [11] proposed a general scheme to emulate vir-
tual inertia in a two-area interconnected system. The authors
implemented a derivative controller to manage the stored
energy of converter devices in the interconnected Automatic
Generation Control (AGC) power system. The obtained
results provided appreciable results in terms of reduction in
peak deviation in the frequency and tie-line power, thereby
improving stability. In a similar attempt in [12], the authors
implemented the virtual synchronous power in HVDC links
to emulate inertia in a multi-area power system. The authors
reported sufficient improvement in the stability of the system
with the proposed virtual synchronous power-based HVDC
links. The authors in [6] attempted the provision of virtual
inertia by making a solar power generation system repli-
cate the behaviour of a conventional synchronous generator.
The scheme was emphasised to enhance the power handling
capacity of the microgrid system alongside the improvement
of the frequency response of the system. The developed sys-
temwas analysed for numerous scenarios including variation
in renewable injection to the microgrid system producing
effective results. However, the shortcoming of the work
included the longer time duration taken by the system to
stabilise the frequency deviation in the microgrid, making
it necessary to seek for alternative schemes. In a similar
attempt, the authors in [13], utilised derivative technique-
based virtual inertia control for energy storage units linked
to the system through an inverter. The performance of the
system was analysed by posing disturbances to the system
and the performance was reported to be fitting. The authors
in [14] suggested mitigation of the fluctuation in frequency
dynamics in microgrid systems caused due to the presence
of phase-locked loops in the inertial simulation. The work
implemented the coefficient diagram method to develop a
suitable control technique making use of the Chaotic Crow
SearchAlgorithm. The results obtainedwere suitable in com-
parison against conventional integral controllers.

From the literature, it is evident that the virtual inertia-
based control system can be established by implementing
energy storage systems coupled with inverters. These energy
storage devices supply the additionally required inertia power
in the system. This paper proposes a scheme of imple-
menting virtual inertia control in tandem with advanced
system controllers for stabilisation of frequency deviation
in a renewables-based microgrid system. The work employs
the derivative action of the frequency deviation to emulate
virtual inertia utilising a storage unit.

Contribution of theWork

The presentwork involves the followingmajor contributions:

• Implementation of FOPIDbased systemcontrollers oper-
ating in tandem with virtual inertia emulation controllers

• Analysis of dynamic effects of virtual inertia in the sys-
tem behaviour in terms of frequency deviation

• Comparison of the developed system with those avail-
able in the literature in terms of stability under numerous
perturbations

The implementation of the controller at the time of study
may have a drawback in that it requires additional computa-
tional resources. Furthermore, the developed controller must
be comparable to existing controllers in terms of depend-
ability and effectiveness of results. The work focuses on
the benefits of FOPID controllers in terms of performance
improvements.

SystemModelling

In the most general sense, frequency stability is depicted as
the balance between generation and demand. If there is a
significant difference in the generation and consumption of
power, there would be a deviation in the system frequency.
The inequality in the power balance would cause continual
deviation of the frequency. To regulate the frequency of the
system within the desired tolerance bounds the difference
between the generated power and the load demand must be
as minimal as possible. The power flow expression of such
a system can be given in terms of the load demand (PL ) and
total generated power (PG) of N units as Eq. 1,

PL =
N∑

i=1

PGi (1)

Implementing the swing equation describing the dynamics of
power imbalance in generation-load in terms of the deviation
in frequency and inertia, we obtain,

�Pm = �PL + 2 × H
d� f

dt
+ D × � f (2)

Where�PL denotes the change in demand,�Pm denotes the
change in themechanical power,� f denotes the deviation in
frequency, H is the inertia constant of the system and D is the
damping coefficient of the load. The term d� f

dt denotes the
rate of change of frequency with respect to time and is often
represented byROCOF (Rate ofChange of Frequency). If the
damping or the inertia of the system decreases, the deviation
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in frequency and therefore, the ROCOF increases. As far as
microgrids are concerned, the damping constants are smaller
compared to conventional power systems. The value of iner-
tia constant depends on the implemented synchronous units.
The expresssion relating the inertia constant of a microgrid
based system to that of the synchronous generator is given
by [9] as,

Hs =
∑

i

HDGi × SDGi

Ss
(3)

Wherein Hs , HDGi respectively represent the inertia constant
of the system and the DG unit in relation to their nominal
power outputs (SDGi and Ss respectively). From Eq. 3, it is
observed that the increased penetration of renewable energy-
based Distributed Energy systems with lesser or no inertia to
the microgrid system leads to a reduction in the overall iner-
tia. The implementation of RESs, though beneficial in terms
of environmental aspects deteriorates the inertial response
of the overall system, thereby causing a higher deviation in
frequency with change of demand. The considered system
consists of a Wind Power Generation System, Bio-Diesel
Generation System, Solar PV System, Battery Energy Stor-
age System, and Superconducting Magnetic Energy Storage

System. The overall system is as shown in Fig. 1. The solid
lines are implemented for exchanging the electrical energy
and the system control information is depicted in dashed
lines. The system base is of 15 MW. The Bio-Diesel genera-
tion system is 12 MW, The wind Energy Generation system
is considered to be 7MW, the Solar PVgeneration system is 6
MWand the SuperconductingMagnetic Energy Storage sys-
tem is considered to be 4.5 MW. The load is considered to be
15 MW. The systems implemented in the studied microgrid
are detailed in the upcoming subsections.

Wind Power Generation System

Of all the available renewable energy generation schemes, the
wind power generation method is considered one of the most
evolved and rapidly enhancing non-conventional methods.
Towards the end of 2021, the global installed wind capac-
ity amounted to 824.87 MW compared to about 539.58 MW
during the end of 2017. The total generation of power imple-
menting wind energy has increased by about 53% in the last
5 years making it one of the most progressive technology
amongst all other counterparts in the renewable paradigm. In
such a system, the output depends significantly on the speed
of the wind at the instant of evaluation. In general, the speed

Fig. 1 Model of microgrid implementing virtual-inertia based SMES
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of wind as described by authors in [15] is given as the resul-
tant of the gust wind, ramp wind, noise wind and the base
wind speed, mathematically,

Wind Velocity =Vb
w + Vg

w + Vr
w + Vn

w (4)

Where, Vw
b , Vw

g , Vw
r and Vw

n respectively represent the base,
gust, ramp and noisewind speed. There are several nonlinear-
ities linkedwith awind power generation unit, from adjusting
the pitch angle based on wind speed to its implementation
in dealing with frequency variation. The regulation of the
pitch angle aids in adjusting the wind turbine’s output power
between itsminimumand rated capacity. Thefirst order trans-
fer function model that ignores the non-linearities in order to
study the frequency behaviour of such a system is given in
Eq. 5 [16],

Gwg = Kwg

sτwg + 1
(5)

Bio-Diesel Generation System

In its most basic form, a bio-diesel engine generation system
is just a regular engine. The fuel used is what mostly distin-
guishes it as renewable. Biodiesel is used to power traditional
diesel engines. It is derived from crops and can be used either
pure or mixed. Contrary to its usual counterpart, the fuel
exhibits promising performance in terms of energy output
and is environmentally friendly [17]. In addition, a number
of studies have promoted the use of this green energy source
in place of diesel. The combustion and emission characteris-
tics of an effective mixture of a butanol isomer and safflower
extracts were emphasised by the authors in [18]. The power
generated by a biodiesel system is immediately influenced
by the engine’s action and the input valve, in contrast to the
synchronous generator of a typical diesel production unit. As
a second order system, the linearized model of the internal
combustion engine and valve action may be approximated as
Eq. 6 [19].

Gbd = KvKe

τvτes2 + (τv + τe) s + 1
(6)

Solar PV System

The renewable energy source with the greatest availability
is solar energy. The Solar Photo-Voltaic (PV) modules are
frequently cited as one of the greatest alternative energy
sources to fulfil the fast rising demand, thanks to techno-
logical advancements and the introduction of microgrids. It
is important to remember that, in comparisonwith alternative

non-conventional energy harnessing systems, solar PV units
require far less maintenance. Furthermore, these systems are
environmentally friendly and noise-free. According to [20],
the solar insolation and surface temperature at the place of
interest determine the power produced by the solar photo-
voltaic module, which is expressed mathematically as Eq. 7.

Ppv = ηϑ A

[
1 − θa + 25

200

]
(7)

η indicates the PV system’s percentage conversion efficiency,
ϑ represents the solar irradiance in W/m2, and A represents
the PV system’s surface area in m2 at θa ambient temper-
atures. The linearized model of solar PV generation unit is
presented as a first-order system given by Eq. 8 [21].

Gpv = Kpv

sτpv + 1
(8)

The solar PV generating unit is not dispatchable, hence it is
not involved in frequency control.

Battery Energy Storage System

Battery energy storage systems offer an efficient solution
for stabilising system dynamics. In the context of renewable
energy sources, which exhibit variability over time, bat-
tery units serve as suitable assets for supporting the system.
The advantage of high energy density, justify their utilisa-
tion in this regard. When there is excess power generated
from renewable sources, it can be used to charge the storage
units. Subsequently, during periods when renewable energy
sources experience a decline in power output, the stored
energy can be discharged to meet the demand. In terms of
mathematical modelling, the transfer function model for the
battery energy storage system can be represented as 9 [22].

Gbs = Kbs

sτbs + 1
(9)

By incorporating battery energy storage systems into the
microgrid infrastructure, the stability and reliability of the
system can be improved, while also enabling better inte-
gration of renewable energy sources. This approach facil-
itates the efficient utilisation of surplus energy and helps
address the intermittency challenges associated with renew-
able sources. The battery energy system is considered as a
dispatchable unit in this work.

SuperconductingMagnetic Energy Storage system

A magnetic field created over a superconducting coil is
used in magnetic energy storage systems to store energy.
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Its attributes include a quick reaction time, increased power
density, and extended cycle life [23]. The system includes
a refrigeration mechanism to maintain the superconducting
coil below the critical temperature for superconductivity [24].
The current (I) travelling through the coil generates a mag-
netic field proportional to its self-inductance (L). The energy
that has been stored is expressed as,

E = 1

2
× L I 2 (10)

The above energy relation’s time integral represents the
power that the systemdelivers.Aside from the cooling system
and superconducting coil, the system incorporates a power
conditioning system for delivering stored energy. The SMES
has been created as an ideal storage system for power stabil-
ity. The system is provided as a first-order transfer function
as given in Eq. 11 [25],

Gsm = Ksm

sτsm + 1
(11)

Strategy of Virtual Inertia Control Using SMES

The power generated by the virtual inertia system serves as
an alternative to the actual synchronous machine [26, 27].
It is particularly useful in systems with fluctuating renew-
able power, as it improves frequency stability. The system
compensates for the lack of physical inertia by employ-
ing a mechanism for injecting power. However, the default
operational limitations of the virtual inertia device are insuf-
ficient for providing reliable frequency support. To address
the non-linearities in low-inertia environments, an additional
robust controller is necessary. The notion of virtual inertia
control concerning the regulation of system frequency is gen-
erally based on the derivative action as presented in Fig. 2
[10].

If the derivative of the system frequency is proportionally
employed to adjust the active power reference of a con-
verter/inverter, it becomes possible to replicate inertia power
within the system. This replication serves to enhance the
system’s inertia response in the face of contingencies or dis-

turbances. The dynamics of the imitated active power are
expressed as Eq. 12 [28],

�Pι = J × d(� f )

dt
(12)

where J is the control constant expressed in terms of vir-
tual inertia, d(� f )

dt is the deviation of variation in frequency
of the system and Pι represents the imitated virtual power
concerning the deviation.

The emulation of virtual inertia requires an additional
energy storage device. There are numerous energy storage
systems available that could be implemented for attaining
the control application. Figure 3 depicts the dynamic model
of a general storage based system.

However, it is worth mentioning that the response time of
available energy storage systems such as batteries is slow.
The work proposes an implementation of a SMES-based
system which in turn bears an enhanced response time and
high power compared to the earlier counterpart. The dynamic
control scheme of the SMES-based system for emulation of
adequate inertia in the microgrid is depicted in Fig. 4.

The derivative control technique d� f
dt is utilised to deter-

mine the Rate of Change of Frequency (ROCOF) to augment
the active power set-point of the microgrid in response to
contingencies. As a result, the active power generated by
the SMES system is adjusted proportionally according to
the system frequency variations. Consequently, the SMES
would effectively emulate virtual inertia power, thereby
enhancing the overall system inertia, system frequency, and
performance in the context of integrating Renewable Energy
Sources (RESs). The dynamic equation relating the varia-
tion in system frequency to the emulated virtual power by
the SMES system is given as Eq. 13,

�Psmes = J

1 + sτc

(
Ksm × d (� f )

dt
− K f b × �Id

)
(Id + �Id ) (13)

where, Psmes is the emulated virtual power, τc is the time
constant of the converter, Ksm is the gain of the SMESunit. Id
is the current through the inductor,�Id depicts the deviation
in the current due to the disturbance. k f b is the negative
feedback gain to ensure that the inductor current attains its

Fig. 2 Dynamic model of
derivative action based inertia
control scheme implementing
Energy Storage System [10]
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Fig. 3 Dynamic model of
energy storage based inverter
system [10]

nominal value after the perturbation and equip for the next
disturbance. Table 1 describes the specific symbols used in
modelling.

The dynamic model of the microgrid is as shown in Fig. 5.

Uncertainties

There are various sources of uncertainty in power systems.
These might include changes in connected loads or changes
in the amount of power provided by renewable resources.
Proper modelling of the unknown parameters is important
while studying the power system dynamics. It is important
to remember that there is no way to precisely simulate power
system uncertainties. One of the major uncertainties in the
power system is the variation in connected loads, which is
determined by the community’s needs and environmental
conditions. The deviation model is constructed utilising the
normal distribution functionover themean and standard devi-
ation of variation. [30] defines the function as Eq. 14.

f (dl) = 1

σd
√
2π

× eA (14)

A = − (dl − x̄)2

2σ 2
d

(15)

Where f (dl) denotes the distribution function for load devi-
ation, σd denotes the standard deviation of the load and x̄
represents the mean variation of the load. The work also
includes analysis of the system concerning step variation,

sinusoidal variation, pulse variation and random variation to
study the effectiveness of the developed mechanism.

An Introduction to the Controller Mechanism

In addition to the virtual inertia control mechanism, the
present work focuses on designing a TLBO-based optimal
FOPID controller for the dispatchable unit to stabilise the
deviation in frequency of the developed microgrid model.
As well known, fractional order calculus involves math-
ematical manipulation of non-integer order [31]. Of the
numerous stated explanations of fractional calculus in the
literature, the Caputo definition is the most widely accepted
and involves the representation of the fractional order differ-
ential as Eq. 16,

aD
α
t = 1

� (n − α)
∫tα

f n (τ )

(t − τ)α−n+1 dτ (16)

It is necessary to choose an integer n such that (n-1)<
α < n. The work in [32] recommends implementing the
crone from for approximating the fractional-order transfer
function, which has been implemented in the current work.
Since its introduction by Podlubny et al. in 1997, the parallel
form of FOPID has grown in significance within the control
engineering community. The controller’s time domain rep-
resentation in terms of error signal (e(t)) is shown as Eq. 17,

u (t) = Kp.e (t) +
λ∫

t

Ki .e (t) + Kd .
dμ

dtμ
e (t) (17)

Fig. 4 Dynamic model of SMES based on virtual inertia [29]
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Table 1 Terms and meanings of the symbols employed

Symbols Nomenclature Value

Kwg, τwg gain and time constants of wind power generation 1, 1.5 s

unit respectively

Kv, τv, Ke, τe valve gain, valve actuator delay, engine gain 1, 0.05 s, 1, 0.5 s

and time constant of bio-diesel generation system

Kbs , τbs gain and time constants of battery energy storage unit 1, 0.1 s

Kpv, τpv gain and time constants of solar PV unit 1, 1.8 s

K f b, Ksm , τc, L Feedback gain, SMES control gain, 0.2, 0.6, 10 s, 2.65 H

converter time constant, Inductance of coil

Where Kp,Ki and Kd respectively represent the propor-
tional, integral and derivative control gains and λ, μ are the
order operators. The Laplace transform of Eq. 17 presents
the following transfer function for the FOPID controller,

C(s) = Kp + Ki

sλ
+ Kds

μ (18)

Wherein λ and μ are the order operators. A conventional
PID controller can be represented by single points in the λ

and μ space, however, a FOPID controller can be attained
by selecting any set of orders out of the infinite possibili-
ties. Thus, compared to a conventional PID controller with
integral order, a FOPID controller bears two more degrees of
freedom thereby enhancing the horizon of control design.

Formulation of the Objective Function

It is desirable to define a fitness function to be minimised
to obtain optimised parameters for the above controller. The
task assumed to be solved here is the stabilisation of the fre-

quency deviation. The Integral Time Squared Error of the
deviation in the frequency is considered the objective func-
tion. ITSE is a combination of both the integral time absolute
error and integral time squared error thereby sufficing the
need in terms of the setting time as well as large oscillations
in the response of the system. The fitness function is thus
defined as the minimisation of Eq. 19

(�) =
∫

t[� f ]2dt (19)

Subject to:

⎧
⎨

⎩

�pmin ≤ �p ≤ �pmax

�imin ≤ �i ≤ �imax

�dmin ≤ �d ≤ �dmax

In the above expression, � f depicts the deviation of the fre-
quency. The controller’s parameters are constrained within
lower and higher limits. The controller gain for virtual iner-
tia is also incorporated in the same objective function and

Fig. 5 Structure of the modelled microgrid
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is solved for simultaneously in the process. The formulated
objective function is minimised by optimisation algorithm
presented in the following sections.

Optimisation Algorithms - A Summary

An optimisation algorithm finds the best collection of solu-
tions for the fitness function stated for a given mathematical
issue. The algorithm sifts through the search space to find
the optimal variable combinations. Generally, an optimisa-
tion algorithm starts with an initial set of parameters and
searches the user-defined search space for the best possible
collection of solutions. The applicability of any solution is
limited by calculating the objective function for the obtained
variables in the optimisation scheme. The work implements
the TLBO algorithm for the minimisation of the defined
objective function. Furthermore, the performance of the
implemented algorithm is compared against a few of the
other well-established algorithms in the literature. The algo-
rithms are implemented in the MATLAB environment and
their codes are available in the MATLAB central library.
As mentioned above, the general working of the optimi-
sation algorithms is similar. However, the execution of the
algorithms depends on the basic mathematical framework of
their design. For additional insight into the mechanism of
the employed algorithms, a brief has been presented in the
upcoming sections.

Teaching Learning Based Optimisation

Teaching Learning Based Optimization (TLBO) is an opti-
mization method that was introduced in 2011 and has since
been widely applied to solve various engineering optimiza-
tion problems, regardless of their nature [33]. It has been
described in previous research [34] as a method that emu-
lates the teaching and learning process in a classroom. In
this method, the population is represented by the learners,
the variables to be optimized correspond to different topics
taught, and the fitness value is equivalent to the outcomes of
the classroom process.

The TLBO algorithm consists of two stages: the “Teacher
Stage” and the “Learner Stage.” In the Teacher Stage, the
objective is to improve the mean performance of the learners
based on their ability to learn from the teacher. For a given
step, denoted by ‘i’ with ‘d’ variables and a population size
of ‘n’ (where ‘n’ can take values from 1 to ‘z’), the average
performance for a variable ‘v’ is denoted as ‘ϒvi ’. The fittest
learner among the population is selected as the teacher for the
subsequent stage, and their achieved results serve as inputs
for the Learner Stage.

The Learner Stage involves collaboration among the
learners to enhance their individual performances. When
considering a pair of learners, denoted as P and Q, with dif-
ferent function values at the end of the previous stage, the
final values of the function are obtained as Eq. 20 [34],

I f ζ ′
P,i < ζ ′

Q,i ,

ζ ′′
v,P,i = ζ ′

v,P,i + ϑ
(
ζ ′

P,i − ζ ′
Q,i

)
and

i f ζ ′
P,i > ζ ′

Q,i ,

ζ ′′
v,P,i = ζ ′

v,P,i + ϑ
(
ζ ′

Q,i − ζ ′
P,i

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(20)

Where, ζ ′
P,i and ζ ′

Q,i respectively denote the values of learn-
ers P and Q at the end of first stage, ζ ′′

P,i and ζ ′′
Q,i are the

modified values of P and Q at the end of the learner stage.
ϑ denotes a random number between [0, 1]. The process
involved in TLBO algorithm has been depicted in Fig. 6.

Particle SwarmOptimisation

The Particle Swarm Optimisation (PSO) method, created in
the mid-1990s, is recognised as a well-established optimisa-
tion technique.Recent research [33, 35] shows itswidespread
use in engineering problem-solving. Developed by Kennedy
and Eberhart, PSO imitates natural flocking behaviour. Each
particle in the algorithm is controlled by parameters related
to position and velocity, representing a possible solution. The
algorithm explores the user-defined search space with an ini-
tial population of particles. Each particle tracks its best-found
position and current location. At the end of each iteration, a
velocity function updates particle positions. A random ele-
ment allows particles to move to new random positions,
reducing the likelihood of local minima. The objective func-
tion value for each particle is calculated at the end of each
iteration, and the algorithm terminates with the predefined
number of iterations.

GreyWolf Optimiser

Mirjalili et al.’s study [36] proposed theGreyWolfOptimizer
(GWO) algorithm, inspired by the natural hunting behaviour
and hierarchical structure of grey wolves. GWO begins with
a pack of wolves, each representing a solution’s efficiency.
Wolves are classified as alpha, beta, and delta, based on the
quality of their solutions. The GWO search technique mim-
ics how top hierarchy wolves direct hunting. An encircling
equation is used to approximate the solution and explore the
search area. The GWO algorithm comprises three stages:
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Fig. 6 Flowchart of TLBO algorithm (reproduced from authors’ own
work)

estimating or tracking, chasing, and attacking. The objective
function determines each wolf’s fitness at each iteration.

Genetic Algorithm

Genetic Algorithm mimics the process of evolution. Based
on natural selection and genetics, it follows the “survival of
the fittest” concept from Darwinian Theory. Developed by
Prof. John Holland around 1975, it maintains a population
of candidate solutions and searches the solution space by
sampling. The algorithm starts with a random selection of
candidates, calculates their fitness, and selects the best as
parents [37]. These parents reproduce through crossover and
mutation to produce the next generation, continuing until the

desired objective is met. Convergence is achieved when the
objective function is attained.

Firefly Algorithm

The Firefly Algorithm, introduced by Yang in 2008, is
inspired by the natural behaviour of fireflies, which use light
to attract mates. In this algorithm, each firefly represents a
potential solution, with its brightness indicating the qual-
ity of that solution [38]. Fireflies are attracted to each other
based on brightness, adjusting their positions accordingly.
The attractiveness decreases with distance, controlled by an
absorption coefficient. Fireflies move towards brighter indi-
viduals to improve fitness, with a randomization parameter
allowing exploration of the solution space. The algorithm
iteratively updates firefly positions until a stopping criterion,
such as a maximum number of iterations or a satisfactory
fitness value, is met. This nature-inspired method effectively
balances exploration and exploitation, making it suitable for
complex optimisation problems.

Optimisation of Controller - A Comparative
Study

The optimisation algorithms discussed in the previous sec-
tion are utilised to obtain the parameters of the controller
concerning the cost function depicted in Eq. 19. The math-
ematical behaviour of the mentioned algorithms is different,
however, to maintain uniformity, each of them is executed
for 100 iterations beginning with an initial population size of
50. The detailed settings and the elapsed time for each of the
algorithms are depicted in Table 2.

The performance of the implemented optimisation algo-
rithms compared in terms of their convergence is depicted
in Fig. 7. The values of the objective function are depicted
using a logarithmic scale such that the performances of the
algorithms are easily traceable. From the plots, it can easily
be observed that the value of the objective function obtained
usingTLBOsurpasses other optimisation algorithms by a fair
margin. It is necessary to determine the repeatability of the
optimisation algorithms in the context of the problem being
sought. There are numerous possible ways to obtain the sig-
nificance of the performance in terms of repeatability, the
most common one being the statistical measures or the con-
vergence analysis. However, this work implements Intraclass
Correlation Coefficient as an agreement between multiple
executions. The Intraclass Correlation Coefficient (ICC) is a
statistical measure commonly used to assess the reliability or
agreement between multiple measurements or observations.
In the context of optimization algorithms, ICC can be utilized
to determine the repeatability or consistency of algorithmic
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Table 2 Initial settings and
generation wise average
run-time of the optimisation
algorithms

Algorithm Parameters Values

TLBO Population Size 50

Generations 100

Computation time/gen. 15.31 s

PSO Swarm Size 50

Generations 100

Inertia Weight 0.7298

Inertia Weight damping ratio 1

Learning coefficients (personal, global) 1.4962

Computation time/gen. 16.74 s

GWO Population Size 50

Generations 100

Random vector r1 and r2 rand(0,1)

Computation time/gen. 19.67 s

GA Population Size 50

Generations 100

Mutation Index 0.0015

Crossover Index 0.65

Generations 1000

String Length 500

FA Population Size 50

Generations 100

Randomness 0.5

Attractiveness 0.2

Absorption 1

Computation time/gen. 22.41 s

performance across multiple runs. By treating each opti-
mization run as a measurement, ICC provides a quantitative
measure of agreement between the runs. Higher ICC val-

Fig. 7 Comparison of TLBO, PSO, GWO, GA and FA in terms of
convergence

ues indicate stronger agreement and better repeatability. ICC
has been widely applied in various fields, including psychol-
ogy, medicine, and social sciences, to evaluate the reliability
of measurements or assess the consistency of experimental
results [39]. Its utilization in optimization algorithm repeata-
bility analysis offers a robust statistical approach to ensure
consistent and reliable algorithmic performance. For a set of
data consisting of n data values. The ICC is given by [40] as
Eq. 21,

ICC = 1

nσ 2

n∑

i=1

(
xi,1 − x̄

) (
xi,2 − x̄

)
... (21)

where,

x̄ = 1

2n

n∑

i=1

(
xi,1 + xi,2...

)
(22)

σ 2 = 1

2n

{
n∑

i=1

(
xi,1 − x̄

)2 +
n∑

i=1

(
xi,2 − x̄

)2
...

}
(23)

The optimisation algorithms are evaluated for 150 execu-
tions with 100 iterations each. The ICC computed for each
of the algorithms are presented in Table 3. The significance
of the algorithms are represented as good reproducibility
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Table 3 Reproducibility of algorithms in terms of ICC

Algorithm Value of ICC Significance

TLBO 0.89 TRUE

PSO 0.92 TRUE

GWO 0.86 TRUE

GA 0.93 TRUE

FA 0.85 TRUE

for values between 0.5 and 0.75, ICC value above 0.75 are
marked as excellent. It is worth mentioning that the nearness
to 1 represents higher reproducibility by an algorithm. From
the ICC values it can be observed that the performance of
all the algorithms is commendable for the defined optimi-
sation problem. The performance of GA surpasses all other
algorithms followed by PSO and TLBO. According to the
“No-Free-Lunch”Theorem (NFLT), it is theoretically impos-
sible to have a universal optimization strategy that excels in
all scenarios [41]. The only way for one strategy to outper-
form another is if it is specifically tailored to the problem
at hand. This implies that no single algorithm can be the
best performer across all domains of optimization problems.
The effectiveness of an algorithm depends on how well it
aligns with the characteristics of the problem domain and
how efficiently it utilizes available information compared
to alternative algorithms. This highlights the importance of
selecting an algorithm that suits the specific application and
utilizes domain-specific knowledge effectively. Considering
the above evaluation of reproducibility and the NFLT, the
work utilises the optimal controller obtained from TLBO
algorithm for the designed hybrid microgrid system.

Comparison of the TLBO Based Controller with
Conventional Controllers

The performance of the TLBO based controller is compared
against those of the Tilt Integral Derivative (TID) and Pro-
portional Integral Derivative (PID) controllers. The readers
are encouraged to study the works presented in [42, 43] for
details on tuning the parameters of the aforementioned con-
ventional controllers for a chosen optimisation problem. The
performance of the implemented controllers in terms of the
ITSE are presented in Table 4.

Table 4 Comparison of the optimised controllers using TLBO con-
cerning the ITSE of the frequency deviation

TLBO Controller ITSE

FOPID 1.244 × 10−05

PID 9.373 × 10−05

TID 3.307 × 10−05

Fig. 8 Comparative frequency deviation plot of the microgrid using
TLBO-FOPID for a load deviation of 10% against TLBO-PID and
TLBO-TID

The behaviour of the controllers in stabilising the fre-
quency dynamics of the system are observed for a 10%
deviation in the load of the designed microgrid. The men-
tioned deviation is applied to the system at 5s of execution.
The performance of TLBO based FOPID controller is
superior compared to the other controllers. TLBO-FOPID
controller gives the smallest value of the ITSE followed by
TID. For a better insight on the dynamic performance of the
controllers, the stability of the microgrid is observed in terms
of frequency deviation for the aforementioned deviation in
load. The frequency deviation is as depicted in Fig. 8.

It can be observed that the TLBO-FOPID controllers
cause an overshoot of 9.96 × 10−05 pu with a settling time
of 0.986s. The performance of TLBO-TID follows that of
TLBO-FOPID with an overshoot of 2.2 × 10−03 pu and a
settling time of 2.876s followed by TLBO-PID with an over-
shoot of 6.7 × 10−03 pu and a settling time of 2.946s. The
lowest undershoot is observed with TLBO-TID controller
followed by TLBO-FOPID controller. The time specification

Table 5 Time specifications of the frequency deviation for a 10% devi-
ation in load under the action of TLBO-FOPID and other classical
controllers in terms of their Overshoot (Os), Undershoot (Us) and set-
tling time (ts)

TLBO Controller Os(pu) Us(pu) ts(s)

FOPID 9.96 × 10−05 −4.31 × 10−03 0.986

PID 6.79 × 10−03 −9.18 × 10−03 2.946

TID 2.20 × 10−03 −3.65 × 10−03 2.876
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Table 6 Comparison of the optimised controllers concerning the
absence of Virtual Inertia Component

TLBO Controller ITSE

FOPID 1.457 × 10−05

PID 1.084 × 10−04

TID 3.984 × 10−05

of the frequency response of the microgrid model is depicted
in Table 5.

The performance in terms of frequency stability as wit-
nessed in this section establishes TLBO-FOPID as an effi-
cient controller for the designed microgrid.

Contribution of Virtual Inertia Component

It is worth mentioning that the presence of a Virtual Inertia
component in themicrogrid steers the dynamics of the system
to improve stability. The same has been observed by imple-
menting the aforesaid optimisation scheme in the absence of
the Virtual Inertia component. The behaviour of the system
was observed for a 10% variation of the load applied at 5s of
simulation time. The ITSE of the frequency deviation depicts
a rise in the absence of the Virtual Inertia component. The
evaluated fitness in the absence of the Virtual Inertia compo-
nent is depicted in Table 6.

On comparison of the Tables 4 and 6, it is observed that the
value of the fitness decreases in the presence of the virtual
inertia component in the system. The ITSE of the system
frequency dynamics is observed to have increased by about
17%, 16% and 20% respectively for FOPID, PID and TID
controllers implementing the TLBO scheme.

Simulation and Analysis

The proposedmicrogrid as explained in the previous sections
is developed in MATLAB®/Simulink R2023a (9.14.0.224).
The implemented algorithms are developed as .m file. The
simulations were performed using an Intel PC (i7-8550U
CPU, 16GBRAM). Thework implemented certain scenarios
for analysis of the frequency control aspects of the controlled
microgrid model. The scenarios are broadly classified into
renewable-based scenarios, load-based scenarios and worst-
case scenarios. The load based scenario is further subdivided
into step variation and non-linear variation. In these scenar-
ios the load in the microgrid is varied and the performance
of the microgrid in terms of frequency deviation is observed.
In the renewable based scenario the input to the renewable
power generation system is perturbed and the performance
of the controller is observed in terms of deviation of fre-
quency. The last scenario namely, the worst-case scenario,
the frequency deviation of themicrogrid is observed by incor-
porating combined variation of the first two scenarios. The
developed scenarios for the frequency stability studies are
detailed in the following sections.

Load Based Scenarios

The step-variation in the loads of the microgrid is mod-
elled using the normal distribution function leading to the
first subset of the load based scenario. The same has been
implemented mathematically as given in Eq. 14. Besides,
the non-linear variation is implemented as given in [42] as
Eq. 24,

�PL = 0.003sin(4.36t)+0.05sin(5.3t)−0.01sin(6t) (24)

Fig. 9 (a) Scenario SI.I of step load variation in the microgrid (b) Scenario SI.II of non-linear load variation in the microgrid

123



   33 Page 14 of 20 Smart Grids and Sustainable Energy             (2024) 9:33 

Fig. 10 (a) Frequency response of microgrid for SI.I (b) Frequency response magnified for the period 90-100s SI.I (c) Frequency response of
microgrid for SI.II (d) Frequency response magnified for the period 90-100s SI.II

The cases are named as:

1. Case SI.I - Step variation in the load
2. Case SI.II - Non-linear variation in the load

The aforementioned cases are illustrated in Fig. 9 (a) and (b).
It could be observed from the plots that the load variations
in the microgrid are different from each other in terms of the
magnitude and are distinct in their duration of occurrences.

Fig. 11 (a) Load deviation
scenario SI.I (b) Variation in
output of Bio-Diesel Generation
(c) Variation in output of Battery
Energy Storage (d) Variation in
output of SMES
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The frequency response for the scenarios SI.I and SI.II in
the microgrid are depicted in Fig. 10 (a) - (d). The contribu-
tion of resources in sustaining the transient caused due to the
variation in load for scenario SI.I is as presented in Fig. 11.

Renewable Based Scenarios

The power developed by renewable energy-based systems
depends upon the input to the system, these are quite uncer-
tain bynature.As thewind speed exhibits continuous changes
concerning the weather conditions, the model developed for
analysis must be designed to map the uncertainties. The
above yields the significance of a probability model for wind
speed variation. The work in [44] implemented the Weibull
distribution function for modelling the wind speed as Eq. 25
[45],

f (vw) =
⎧
⎨

⎩

b

a
× cb−1 × e−cb f or vw ≥ 0

0 otherwise

⎫
⎬

⎭ (25)

c = vw

a
(26)

Where a, b respectively are the scale and the shape parame-
ters of the distribution function and vw represents the speed
of the wind. The power generated by the system is obtained
using thewind speed fromEq. 25. The relation ofwind power
output and the speed of the wind is given as Eq. 27 [44],

Pw (v) =

⎧
⎪⎪⎨

⎪⎪⎩

0
Prw × c
Prw
0

for 0 � vw � vci
for vci � vw � vr
for vr � vw � vr
for vw � vco

⎫
⎪⎪⎬

⎪⎪⎭
(27)

c =
(

v2w − v2ci

v2r − v2co

)
(28)

Where Pw(v) is the generated power as a function of the
wind speed, Prw is the power at the rated wind speed vr , vci
and vco are the cut-in and cut-out speed of the wind turbine
respectively. The uncertainty of solar power generation is
also developed as a probabilistic model making use of the
beta distribution function for the solar irradiance samples as
Eq. 29,

f (φ) = φα−1 × (1 − φ)β−1

B (α, β)
(29)

B (α, β) = � (α) � (β)

� (α + β)
(30)

Wherein φ represents the solar radiation, α and β are the
shape parameters and � represents the gamma function. The
power generated from the solar PV panels are obtained as a

relation of solar radiation (φ), solar radiation under standard
temperature and pressure (φs) and the selected radiation point
(φm) in terms of the rated power (Prs) as Eq. 31 [46],

Ps (φ) =
⎧
⎨

⎩

Prs × d
Prs × e
Prs

for 0 � φ � φm

for φm � φ � φstd

for φ � φstd

⎫
⎬

⎭ (31)

d =
(

φ2

φstd × φm

)
(32)

e =
(

φ

φstd

)
(33)

Fig. 12 (a) Scenario SII.I of variation of wind speed (b) Scenario SII.II
of variation of solar irradiance
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In the view of the above renewable variations, the scenario
is given as

1. Case SII.I - Variation of the wind speed
2. Case SII.II - Variation of the solar irradiance

The cases mentioned above are depicted in Fig. 12 (a), (b).
The frequency response for the scenarios SII.I and SII.II

in the microgrid are depicted in Fig. 13 (a) - (d).

Worst-case Scenarios

In the third set of scenarios, the combinations of variations
in the first and second set of scenarios are considered. The
cases formulated as as given below,

1. Case SIII.I - Simultaneous variation of wind and solar
power generation.

2. Case SIII.II - Simultaneous variation of load combined
with variation of wind and solar power generation.

The frequency response for the scenarios mentioned above
are depicted in Fig. 14 (a) - (d).

Sensitivity Analysis

Sensitivity analysis is a crucial process that examines the
impact of changes in internal parameters on the dynamic
behavior of a system. In this study, the focus is on assessing

the robustness of the FOPID controller in the presence of
perturbations in load and a constant deviation in renewable
power generation.Theoptimal FOPIDcontroller, determined
through prior research, is implemented to observe the sys-
tem’s sensitivity to the variations of ±70% in the internal
inertia of the microgrids. By conducting this analysis, we
gain insights into the controller’s ability to maintain stability
and performance under different operating conditions. The
frequency variation of the microgrid on the application of
non-linear variation in load as expressed in Eq. 24 for the
above variation is as depicted in Fig. 15. Themaximum over-
shoot for the applied input as caused by the nominal system
is observed to be 6.49×10−04 pu and that for the systemwith
deviation of +70% extends to 6.6 × 10−04 pu. For the vari-
ation of -70% the overshoot observed is about 6.4 × 10−04

pu. This observation emphasises on the robustness of the
obtained controller in terms of internal parametric variation.
The performance of the system in terms of deviation of fre-
quency tends to vary in the range of [1.38 - 1.69%] for±70%
variation in the internal parameters of the microgrid system.

The parameters of the optimal controllers as obtained in
the work are presented in Table 7.

Impact of inertia

If the effects of the mimicked virtual inertia on the system
are not examined, its efforts will be insufficient. This section
presents the system’s time-domain performance to assess the
influence of virtual inertia on its dynamic behaviour. A small-
signal stability-based version of the virtual inertia is included

Fig. 13 (a) Frequency response of microgrid for SII.I (b) Frequency response magnified for the period 90-100s SII.I (c) Frequency response of
microgrid for SII.II (d) Frequency response magnified for the period 90-100s SII.II
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Fig. 14 (a) Frequency response of microgrid for SIII.I (b) Frequency response magnified for the period 90-100s SIII.I (c) Frequency response of
microgrid for SIII.II (d) Frequency response magnified for the period 90-100s SIII.II

in the evaluation. By using a load deviation of 0.1 pu, the
impact of inertia variation is examined under the nominal
inertia and damping of the microgrid system. The analysis
is carried out using all three controllers developed above.
This ensures a comparative analysis of the controllers. The
frequency deviation for the case is shown in Fig. 16.

The plot shows that increasing the value of J for the SMES
unit reduces frequency transients and peak deviations. This
results in enhanced frequency dynamics in a perturbed sys-
tem. However, the response shows that higher inertia raises
the system’s settling time. This threatens the system’s stabil-
ity, hence it should be a requirement not to raise the value to

Fig. 15 Sensitivity analysis with variation in microgrid for ±70%
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Table 7 Optimal controller parameters as obtained by TLBO

Parameters C-I C-II

P -4.92 -0.68

I -10.21 -0.62

D -0.22 -0.61

λ 0.856 0.729

μ 0.973 0.154

a significantly larger level. It is worthwhile mentioning here,
that an increase in the value of inertia of the virtual inertia
emulation system deteriorates the stabilisation of the system
in terms of the settling time of the dynamics.

Response with Non-linearity in the System

The dynamics of the system are verified in the presence
of general nonlinearities of the electrical energy and com-
munication systems. Nonlinearities such as the Generation
rate constraint for the Bio-diesel generation system and time
delay for the Virtual Inertia component of the SMES have
been implemented for evaluation. For this study, the genera-
tion rate constraint is applied as 15% p.u, and the time delay
of propagation for the virtual inertia-based system is speci-
fied as 1.5s. Similar to the previous case, the dynamics of the
system response were analysed for 0.1pu perturbation in the
load. The frequency response of the system implementing all
three forms of optimal controllers is presented in Fig. 17.

The proposed TLBO-FOPID technique addresses the sys-
tem’s nonlinearities. The outcomes show a considerable
performance improvement when compared to TLBO-TID

Fig. 16 Effect of virtual inertia component over the frequency response
of the system

Fig. 17 Effect of nonlinearities over the frequency response of the sys-
tem

and TLBO-PID. This demonstrates that the technique can
adapt to and limit the consequences of nonlinear dynamics.
As a result, the system is more stable and robust under dif-
ferent operating conditions.

Conclusion

A weak microgrid system in terms of inertia and renewable
energy penetration namely the Wind and Solar generation
system and SMES unit is modelled. The article proposed
the application of a virtual inertia-based SMES controller
for stability studies of the designed microgrid system. The
additional controllers implemented for the biodiesel and
the battery energy storage system were attuned to utilising
the TLBO algorithm. The obtained controllers were com-
pared with conventional controllers in terms of their stability
dynamics. Besides, thework also incorporated a comparative
study of numerous well-established optimisation schemes
alongside the TLBO algorithm. The comparison was mainly
based on three scenarios, namely, the load-variation, renew-
able variation and the worst-case scenario, encompassing a
change �PL , �Pw and �Ppv . The significant outcomes of
the work are enlisted below:

1. Model of aweakmicrogrid systemwith renewable energy
sources and energy storage units is designed and analysed
in terms of frequency dynamics.

2. ITSE-based objective function was formulated for the
frequency dynamics for the selection of an optimal con-
troller against frequency deviation.
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3. Concerning the performance of the TLBO scheme
against other optimisation methods as depicted in Fig.
7, the chosen optimisation method is inferred to be as
superior. ICC analysis of the schemes infers the signifi-
cance of the TLBO scheme.

4. Based on the performance of the TLBO-FOPID against
other controllers developed implementing the same opti-
misation tool as presented in Tables 4 it is inferred that
the frequency stabilisation is appreciablewith the TLBO-
FOPID controller.

5. The increase in the inertial parameters of the system
causes a significant reduction in the value of fitness. This
signifies the favourable contribution of the virtual inertia
parameter to the dynamics of the system.

6. The effectiveness of the controller established in terms
of the system responses as presented in Table 5 for 10%
deviation in loads, establishes the superiority of the devel-
oped TLBO-FOPID over TID and PID controllers.

7. The overshoot implementing TLBO-FOPID controller is
obtained as 9.96 × 10−05 pu compared to 2.2 × 10−03

pu of that of the next suitable controller (TID). A similar
observation is made in terms of settling time.

8. The performance of the controller is analysed against
numerous scenarios in terms of load and renewable
deviation. The results depicted in Figs. 10, 13 and 14
demonstrate the effectiveness of the controller.

9. The sensitivity analysis performed for the internal para-
metric variation as well as the variation of the inertia of
the SMES-based system as presented in Figs. 15 and 16
depicts that the aforementioned variation in the parame-
ters does not cause significant damage to the stability of
the developed system.

It is thus concluded that the presented optimisation scheme
can prove to be an effective controller working in tandem
with virtual inertia-based SMES for maintaining the stability
of the microgrid system. The implementation of the devel-
oped mechanism may be verified for interconnection with
systems with diverse energy resources, potentially with the
inclusion of modern-day electric vehicles and storage tech-
nologies such as Ultracapacitors. It is worth noting that as
resources rise, the computational effort required to achieve
optimal configuration may inevitably increase. The horizon
of the work may be developed to interconnected microgrids
linked with tie-line power transmission. The future scope of
work may also be extended in terms of damping rate, as it
was also observed that too much of an increase in the iner-
tia induces a sluggishness in the system, thus making it take
longer to stabilise. Theoptimal configuration of the controller
may also be tested with an advanced hybrid combination of
optimisation algorithms to enhance local and global explo-
ration.

Acknowledgements J. M. Guerrero was supported by VILLUM
FONDEN under the VILLUM Investigator Grant (no. 25920): Center
for Research on Microgrids (CROM); www.crom.et.aau.dk.

Author Contributions G.K.S and S.Y. wrote the main manuscript,
J.M.G. Validated the work, all authors reviewed the final manuscript
and the revised version of the manuscript.

Funding J. M. Guerrero was supported by VILLUM FONDEN under
the VILLUM Investigator Grant (no. 25920): Center for Research on
Microgrids (CROM); www.crom.et.aau.dk.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Competing interests There is no competing interest of personal or
financial nature to disclose.

Ethical approval Not applicable as no animal or human subjects were
involved.

References

1. Aziz A, Oo AT, Stojcevski A (2018) Frequency regulation capabil-
ities in wind power plant. Sustain Energy Technol Assess 26:47–76

2. Abazari A, Monsef H, Wu B (2019) Coordination strategies of
distributed energy resources including fess, deg, fc and wtg in load
frequency control (lfc) scheme of hybrid isolated micro-grid. Int J
Electr Power Energy Syst 109:535–547

3. Alizadeh GA, Rahimi T, Babayi Nozadian MH, Padmanaban S,
Leonowicz Z (2019) Improving microgrid frequency regulation
based on the virtual inertia concept while considering communica-
tion system delay. Energies 12(10):2016

4. FiniMH,GolshanMEH (2018)Determining optimal virtual inertia
and frequency control parameters to preserve the frequency stabil-
ity in islanded microgrids with high penetration of renewables.
Electr Power Syst Res 154:13–22

5. El-Bidairi KS, Nguyen HD,Mahmoud TS, Jayasinghe S, Guerrero
JM (2020) Optimal sizing of battery energy storage systems for
dynamic frequency control in an islanded microgrid: A case study
of flinders island, australia. Energy 195:117059

6. Saxena P, Singh N, Pandey AK (2020) Enhancing the dynamic per-
formance of microgrid using derivative controlled solar and energy
storage based virtual inertia system. J Energy Storage 31:101613

7. Fini MH, Golshan MEH (2019) Frequency control using loads and
generators capacity in power systems with a high penetration of
renewables. Electr Power Syst Res 166:43–51

8. Dadkhah A, Bozalakov D, De Kooning JD, Vandevelde L (2021)
On the optimal planning of a hydrogen refuelling station participat-
ing in the electricity and balancing markets. Int J Hydrogen Energy
46(2):1488–1500

9. Fathi A, Shafiee Q, Bevrani H (2018) Robust frequency control of
microgrids using an extended virtual synchronous generator. IEEE
Trans Power Syst 33(6):6289–6297

10. Rakhshani E, Rodriguez P (2016) Inertia emulation in ac/dc
interconnected power systems using derivative technique consid-
ering frequency measurement effects. IEEE Trans Power Syst
32(5):3338–3351

11. Rakhshani E, Remon D, Mir Cantarellas A, Rodriguez P (2016)
Analysis of derivative control based virtual inertia in multi-area

123

www.crom.et.aau.dk.
www.crom.et.aau.dk.


   33 Page 20 of 20 Smart Grids and Sustainable Energy             (2024) 9:33 

high-voltage direct current interconnected power systems. IET
Gener Transm Dis 10(6):1458–1469

12. Rakhshani E, Remon D, Cantarellas AM, Garcia JM, Rodriguez P
(2016) Virtual synchronous power strategy for multiple hvdc inter-
connections of multi-area agc power systems. IEEE Trans Power
Syst 32(3):1665–1677

13. KerdpholT,RahmanFS,WatanabeM,MitaniY,TurschnerD,Beck
H-P (2019) Enhanced virtual inertia control based on derivative
technique to emulate simultaneous inertia and damping properties
for microgrid frequency regulation. IEEE Access 7:14422–14433

14. Ali H, Magdy G, Xu D (2021) A new optimal robust controller for
frequency stability of interconnected hybrid microgrids consider-
ing non-inertia sources and uncertainties. Int J Electr Power Energy
Syst 128:106651

15. Latif A, Das DC, Ranjan S, Barik AK (2019) Comparative
performance evaluation of wca-optimised non-integer controller
employed with wpg-dspg-phev based isolated two-area intercon-
nected microgrid system. IET Renew Power Gener 13(5):725–736

16. Ray PK, Mohanty A (2019) A robust firefly-swarm hybrid opti-
mization for frequency control inwind/pv/fc basedmicrogrid.Appl
Soft Comput 85:105823

17. Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications
as fuels for internal combustion engines. Prog Energy Combust Sci
33(3):233–271

18. Celebi Y, Aydın H (2018) Investigation of the effects of butanol
addition on safflower biodiesel usage as fuel in a generator diesel
engine. Fuel 222:385–393

19. Barik AK, Das DC (2018) Expeditious frequency control of solar
photovoltaic/biogas/biodiesel generator based isolated renewable
microgrid using grasshopper optimisation algorithm. IET Renew
Power Gener 12(14):1659–1667

20. Shankar G, Mukherjee V (2016) Load frequency control of an
autonomous hybrid power system by quasi-oppositional harmony
search algorithm. Int J Electr Power Energy Syst 78:715–734

21. Bagheri A, Jabbari A, Mobayen S (2021) An intelligent abc-based
terminal sliding mode controller for load-frequency control of
islanded micro-grids. Sustain Cities Soc 64:102544

22. Tan Z, Li X, He L, Li Y, Huang J (2020) Primary frequency control
with bess considering adaptive soc recovery. Int J Electr Power
Energy Syst 117:105588

23. Zhao H, Wu Q, Hu S, Xu H, Rasmussen CN (2015) Review of
energy storage system for wind power integration support. Appl
Energy 137:545–553

24. AkramU,NadarajahM,ShahR,MilanoF (2020)A reviewon rapid
responsive energy storage technologies for frequency regulation in
modern power systems. Renew Sustain Energy Rev 120:109626

25. Dhanasekaran B, Siddhan S, Kaliannan J (2020) Ant colony
optimization technique tuned controller for frequency regulation
of single area nuclear power generating system. Microprocess
Microsyst 73:102953

26. Said SM, Aly M, Hartmann B, Mohamed EA (2021) Coordinated
fuzzy logic-based virtual inertia controller and frequency relay
scheme for reliable operation of low-inertia power system. IET
Renew Power Gener 15(6):1286–1300

27. Salama HS, Bakeer A, Magdy G, Vokony I (2021) Virtual inertia
emulation through virtual synchronous generator based supercon-
ductingmagnetic energy storage inmodern power system. J Energy
Storage 44:103466

28. Khadanga RK, Das D, Kumar A, Panda S (2023) Sine augmented
scaled arithmetic optimization algorithm for frequency regulation
of a virtual inertia control based microgrid. ISA Trans 138:534–
545. https://doi.org/10.1016/j.isatra.2023.02.025

29. Rajamand S (2021) Load frequency control and dynamic response
improvement using energy storage and modeling of uncertainty in
renewable distributed generators. J Energy Storage 37:102467

30. Bahmani R, Karimi H, Jadid S (2020) Stochastic electricity mar-
ket model in networked microgrids considering demand response
programs and renewable energy sources. Int J Electr Power Energy
Syst 117:105606

31. Kommula BN, Kota VR (2022) Design of mfa-pso based fractional
order pid controller for effective torque controlled bldc motor. Sus-
tain Energy Technol Assess 49:101644

32. Taher SA, Fini MH, Aliabadi SF (2014) Fractional order pid con-
troller design for lfc in electric power systems using imperialist
competitive algorithm. Ain Shams Eng J 5(1):121–135

33. YadavS,MehtaRK(2021)Modelling ofmagnetostrictive vibration
and acoustics in converter transformer. IETElectr PowerAppl 1–16

34. Rao RV, Savsani VJ, Vakharia D (2011) Teaching-learning-based
optimization: a novel method for constrained mechanical design
optimization problems. Comput Aided Des 43(3):303–315

35. Aguilar MEB, Coury DV, Reginatto R, Monaro RM (2020) Multi-
objective pso applied to pi control of dfig wind turbine under
electrical fault conditions. Electr Power Syst Res 180:106081

36. Mirjalili S,Mirjalili SM, Lewis A (2014) Greywolf optimizer. Adv
Eng Softw 69:46–61

37. GaniMM, IslamMS,UllahMA (2019)Optimal pid tuning for con-
trolling the temperature of electric furnace by genetic algorithm.
SN Appl Sci 1(8):880

38. Kumar V, Kumar D (2021) A systematic review on firefly algo-
rithm: past, present, and future. Arch Comput Methods Eng
28:3269–3291

39. Marofi Z, Bandari R, Heravi-Karimooi M, Rejeh N, Montazeri
A (2020) Cultural adoption, and validation of the persian version
of the coronary artery disease education questionnaire (cade-q): a
second-order confirmatory factor analysis. BMC Cardiovasc Dis-
ord 20:1–9

40. McGraw KO, Wong SP (1996) Forming inferences about some
intraclass correlation coefficients. Psychol Methods 1(1):30

41. Chen H, Lin Z, Tan C (2019) Classification of different animal
fibers by near infrared spectroscopy and chemometric models.
Microchem J 144:489–494

42. Sahu RK, Panda S, Biswal A, Sekhar GC (2016) Design and analy-
sis of tilt integral derivative controller with filter for load frequency
control of multi-area interconnected power systems. ISA Trans
61:251–264

43. PadhanS, SahuRK,PandaS (2014)Application offirefly algorithm
for load frequency control of multi-area interconnected power sys-
tem. Electr Pow Compo Syst 42(13):1419–1430

44. Rostami Z, Ravadanegh SN, Kalantari NT, Guerrero JM, Vasquez
JC (2020) Dynamic modeling of multiple microgrid clusters using
regional demand response programs. Energies 13(16):4050

45. Nikmehr N, Ravadanegh SN (2015) Heuristic probabilistic power
flow algorithm for microgrids operation and planning. IET Gener
Transm Dis 9(11):985–995

46. Nikmehr N, Najafi-Ravadanegh S (2015) Optimal operation of dis-
tributed generations in micro-grids under uncertainties in load and
renewable power generation using heuristic algorithm. IET Renew
Power Gener 9(8):982–990

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1016/j.isatra.2023.02.025

	Frequency Regulation Strategy in Islanded Microgrid With High Renewable Penetration Supported by Virtual Inertia
	Abstract
	Introduction
	Related Works
	Contribution of the Work

	System Modelling
	Wind Power Generation System
	Bio-Diesel Generation System
	Solar PV System
	Battery Energy Storage System
	Superconducting Magnetic Energy Storage system
	Strategy of Virtual Inertia Control Using SMES

	Uncertainties
	An Introduction to the Controller Mechanism
	Formulation of the Objective Function

	Optimisation Algorithms - A Summary
	Teaching Learning Based Optimisation
	Particle Swarm Optimisation
	Grey Wolf Optimiser
	Genetic Algorithm
	Firefly Algorithm

	Optimisation of Controller - A Comparative Study
	Comparison of the TLBO Based Controller with Conventional Controllers
	Contribution of Virtual Inertia Component

	Simulation and Analysis
	Load Based Scenarios
	Renewable Based Scenarios
	Worst-case Scenarios
	Sensitivity Analysis
	Impact of inertia
	Response with Non-linearity in the System

	Conclusion
	Acknowledgements
	References


