
Vol.:(0123456789)1 3

Smart Grids and Sustainable Energy (2024) 9:8 
https://doi.org/10.1007/s40866-023-00188-9

ORIGINAL PAPER

Multi‑Term Electrical Load Forecasting of Smart Cities Using a New 
Hybrid Highly Accurate Neural Network‑Based Predictive Model

Ashkan Safari1  · Hamed Kharrati1,2 · Afshin Rahimi2

Received: 2 June 2023 / Accepted: 4 December 2023 / Published online: 28 December 2023 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2023

Abstract
This paper presents FARHAN, a novel hybrid model designed to address the challenges of electrical load forecasting in smart 
grids. FARHAN combines descending neuron attention, long/short-term memory (LSTM), and Markov-simulated neural 
networks to optimize accuracy and analysis time for short-, mid-, and long-term smart grid planning decisions. FARHAN 
processes electricity load data efficiently by utilizing two LSTM blocks (LSTM.B1 & LSTM.B2) with attention layers, a 90% 
gain averager, and a Markov chain analyzer. The comparative analysis demonstrates FARHAN's superiority over traditional 
LSTM models and other methodologies, exhibiting remarkable Mean Absolute Percentage Errors (MAPEs) of 0.019162%, 
0.0386%, and 0.039% for 14 years, annual, and monthly estimations, respectively. Root Mean Square Percentage Errors 
(RMSPEs) of 2.5%, 5.2%, and 1.2% and an overall  R2 of 1 validate its exceptional accuracy. FARHAN's innovative approach 
establishes it as a robust and intelligent tool for enhancing electrical load forecasting in smart grids and energy systems, 
promising significant advancements in the field.
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Abbreviations
AI  Artificial Intelligence
ML  Machine Learning
NN  Neural Network
NB  Naïve Bayes
RF  Random Forest
DR  Demand Response
EV  Electrical Vehicle
ANN  Artificial Neural Network
QNN  Quantum Neural Network
CNN  Convolutional Neural Network
RNN  Recurrent Neural Network
KNN  K Nearest Neighbor

SVM  Support Vector Machine
DRM  Demand Response Management
DSM  Demand Side Management
RES  Renewable Energy Sources
ESS  Energy Storage System
GRU   Gate Recurrent Unit
KPI  Key Performance Indicator
LSTM  Long/Short Term Memory

Parameters & Subscripts
Con.V   Consumption Value
�  Sigmoid Function
[Con.V]  Mean of Initial Consumption Values
S
2

observed
  Sample Variance of Observed Consumption 

Values
h2,t  Mean of Predicted Consumption Values
S
2

predicted
  Sample Variance of Predicted Consumption 

Values
P  Probability
Xn  Random Variable
in  Possible Stages
i1t  Input Gate of LSTM.B1
f1t  Forget Gate of LSTM.B1
o1t  Output Gate of LSTM.B1
c̃1t  Memory cell candidate of LSTM.B1
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c1t  Memory cell of LSTM.B1
b1  Bias of LSTM.B1
h1t  Output of LSTM.B1
X2t  Input of LSTM.B2
i2t  Input Gate of LSTM.B2
f2t  Forget Gate of LSTM.B2
o2t  Output Gate of LSTM.B2
c̃2t  Memory cell candidate of LSTM.B2
c2t  Memory cell of LSTM.B2
b2  Bias of LSTM.B2
h2t  Output of LSTM.B2
R  Order of Markov Chain
Pr  Closing Price
H  Length of Price List
P  Probability Distribution
N  Number of Distinction Price
t  Epoch indices for LSTM 1 & LSTM 2
n  Number indices for Markov Chain

Introduction

The field of electrical load forecasting in smart grids is a 
vital discipline that focuses on predicting electricity con-
sumption patterns to ensure the efficient functioning of 
power systems. With the advent of smart grid technologies, 
accurate forecasting methods have become indispensable for 
energy providers and grid operators. These forecasts, derived 
from historical data and various influencing factors, facili-
tate optimal resource allocation, grid stability, and the inte-
gration of renewable energy sources. Researchers employ 
diverse techniques, ranging from traditional statistical mod-
els to advanced machine learning algorithms and artificial 
intelligence, to develop robust forecasting models essential 
for effective energy management and sustainable develop-
ment in the evolving landscape of smart grids.

Motivation beyond Development 

Recent technological advances, industrialization, and the 
number of electrical vehicles (EVs) resulting from electric 
transportation have increased electrification worldwide. 
Therefore, the electricity suppliers faced considerable demand 
in different residential, commercial, and industrial sectors.

Recent Advances and Literature Review

Hence, the significance of renewable energy resources, 
intelligent energy hubs [1], and intelligent demand response 
management (IDRM) are gaining recognition. Artificial 
intelligence-driven models have become prevalent across 
diverse sectors, including the financial domain [2, 3], smart 
electrical energy management, and its economic aspect. In 

intelligent DSM techniques, artificial intelligence-based load 
estimators, such as short-, medium-, and long-term, are the 
considerable methodologies utilized in different applications 
and scopes.

Yang et al. [4] forecasted the multiple time scales of a 
year and a week. Normalized Dynamic Time Warping 
(N-DTW), Density-Based Spatial Clustering of Applications 
with Noise (DBSCAN) for one year, and behavior similarity, 
Mutual Information (MI), as well as Principal Component 
Analysis (PCA) are used to have feature selection, and the 
reduction in data multi-dimensionality of the forecasting 
in a week, respectively. The presented model also contrib-
utes to Back Propagation Neural Network (BPNN), LSTM, 
Co-LSTM, and Extreme Gradient Boosting (XGBoost) to 
derive the prediction by analyzing the data gathered. This 
combined deep-learning model forecasted with an average 
MAAPE of 31.20%. To draw a short-term prediction, the 
Markov corrector model of day-ahead building load fore-
casting is expressed in [5] to be used in supervision control 
and data acquisition self-updating automation of the build-
ing system to execute the forecasting during the COVID-19, 
under influences of Omicron.

Relying on the nonlinearity in consumer usage behavior, 
Saeed et al. [6] represented a cross-channel-communication 
(C3)-enabled CNN-LSTM system to predict the load usage, 
aiming to help the experts make better decisions in optimal 
planning of smart grids. The C3 and CNN are utilized to 
extract the features from the gathered data to be predicted by 
LSTM with Leaky ReLu characteristics. The model derived 
the forecasting under a performance of 0.4560% MAPE. Cha-
ianong et al. [7] combined the traffic data with other features 
to predict load usage in residential grid areas by random for-
est modeling. To be utilized by the proper operation of grid 
and electricity trading in the proposed market, a machine 
learning model of gated recurrent unit (GRU) and RF is 
implemented in [8]. In this model, GRU is the power load 
estimator. In contrast, RF reduces the dimension size of the 
input going to be analyzed by GRU investigating the effect of 
weekends on electrical power load performed by the model. 
Shaqour et al. [9] reviewed and evaluated five deep-learning 
forecasters to see short-term load forecasting criteria results. 
A deep neural network (DNN) assumed by a Bi-directional 
Gated recurrent unit with fully connected layers (Bi-GRU-
FCL) presented the highest performance in sequence. The 
characteristics of thermal load over correlation and principal 
component analysis are investigated in [10].

Moreover, CCHP active operation optimization weekend 
and weekday system is implemented in heating, transition, and 
cooling systems, as well as dynamic matching optimization 
and evaluation. The MAPEs of 5.43% and 6.84% are carried 
out for heating load forecasting and cooling load prediction, 
respectively. Veeramsetty et al. [11] combined RNN and PCA 
to forecast hourly load in an electric power load 33/11 kV 
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MV substation. This algorithm has a dimensionality reduction 
in the data input size being analyzed. The mixup and transfer 
learning-based model is defined in [12]. The mixup option 
enhances data and forecasting quality by training sample dis-
tribution expansion. Transfer learning is used to check for 
similar data patterns to avoid overfitting during the process. 
As the next step, the model utilizes the maximal information 
coefficient (MIC) to measure the similarity between target 
load and source load. As final, the LSTM model performs the 
final time series prediction process on the expanded load data.

The outcomes in [13] present a review of AI-based elec-
trical load estimating methodologies as the processing steps 
and forecasting strategy model. The review is completed on 
the multi-variance and single-variance types of time series data 
and the one-step and rolling forecasting methodologies. The 
work discussed the different intelligent forecasting models, such 
as artificial intelligence, fuzzy reasoning, and transfer learn-
ing approaches, for the last part. An STLF method based on 
empirical mode decomposition (EMD), BiLSTM, and attention 
mechanism is integrated in [14]. Firstly, EMD decomposes the 
load data series to IMFs to be analyzed by BiLSTM, predict-
ing the tendencies of each IMF. For the final phase, the results 
of all IMFs contributed and combined for the final forecasting 
decision of IMFs optimum numbers with 3 or 4.

The work in [15] demonstrated a model combined with 
fuzzy cluster (FC) analysis, least-squares support vec-
tor machine (LSSVM), and a fireworks algorithm (FWA). 
A reduction is performed in the data features dimen-
sion to be optimized by FWA to cover up the model 
FC–FWA–LSSVM. A data generation method depending 
on the generative adversarial network (GAN) is exposed in 
[16] to perform prediction in EV loads. This research used 
a gating mechanism as a Mogrifier with LSTM to enhance 
performance. Kandilogiannakis et al. [17] used a recurrent 
neuro-fuzzy system for STLF as ReNFuzz-LF. This model 
is based on dynamic small-scale RNNs with a single hidden 
layer, as the recurrent characteristics of the model lead to 
the usage of inputs with minimal sets. An ensemble LSTM 
method retrieved by multi-source transfer learning as MTE-
LSTM is imposed in [18]. Firstly, the model found similar 
buildings to the target building to be used for the LSTM 
estimator tuned by transfer learning, and fine-tune technol-
ogy. Finally, the ensemble model weighted the output results 
dedicated to the forecasting results.

Tong et al. [19] derived a model by temporal inception 
convolutional network of multi-head attention (TICN-Att) 
to have ultra STLF. A Meta-learning tuned LSTM is in [20] 
to perform prediction by the LSTM model for the historical 
data and the meta-learning for the nonstationary load pat-
terns of the grid. Using gradient descent algorithms, this 
model is trained by optimizing the base and error correc-
tion modules. Ullah et al. [21] intended a PLF methodology 
based on intelligent learning, in which the refined data pass 

through Conv.LSTM to generate feature maps. The feature 
maps are transformed into the deep GRU for providing the 
final PLF through the learning process.

The ensemble deep Random Vector Functional Link 
(edRVFL) network is utilized in [22] to provide STLF 
results. The edRVFL generates the forecasting of outputs 
learning ensembles, and the raw data is decomposed by 
empirical wavelet transformation (EWT), feeding edRVFL 
to perform the final prediction. Abdolrezaei et al. [23] pre-
sented a knowledge-based methodology forecasting mid-
term load forecasting (MTLF) based on preprocessing the 
data to refine them and perform the forecasting utilized by 
the linear equations estimator. The hybrid model, includ-
ing SVM, BPNN, GRNN, and the genetic algorithm, is 
expressed in [24] to derive forecasting of individual resi-
dential loads. In this model, the genetic algorithm opti-
mizes BPNN and SVM for enhancement. The DEM part of 
the model consists of BiLSTM networks optimized by the 
Bayesian algorithm (BA). Overall, the model separated the 
HAC and non-HAC load types through the RC model that 
predicts the indoor temperature. After that, the non-HAC 
load is divided into electric lighting and other loads. The 
DEM captures these loads, and the final prediction is per-
formed by combining HAC and non-HAC separate results.

A smart grid consisting of a photovoltaic, wind turbine, 
battery energy storage system, electric vehicle charging 
stations, and intelligent estimator models of LSTM, group 
method of data handling, and adaptive neuro-fuzzy inference 
system are reviewed and analyzed in [25] considering the 
hardware requirements, and noisy conditions of the systems. 
As a result of the work, LSTM performed better accuracy 
than the other developed models. Azeem et al. [26] investi-
gated the performance of three intelligent models of ARIMA, 
ANN, and LSTM, considering the input parameter change 
of real-world datasets of smart grids. The mentioned models 
have a 5%-15% change in accuracy by parameter varying. 
An adaptive framework to improve forecasting accuracy and 
quality was also introduced. A multi-task model as MultiDeT 
(Multiple-Decoder Transformer) is indicated in [27].

MultiDeT is adoptable of a one-encoder multiple decoder 
structure, in which all input data is encoded by the uniform 
encoder to be decoded by the multi-decoders. In sequence, 
the trained end-to-end with losses of each task is used to pre-
sent the final forecasting result. In [28], the work presented 
a kernel-based Gaussian and Bayesian regression model to 
predict the day head residential load STLF analysis. The 
model is used in multivariate large datasets during winter. 
The Bayesian mixture density networks are also performed 
in [29] for STFL analysis. Given the importance of STLF 
[30], four models of STLF analysis by MLPs, K-means, 
and FC clustering algorithms are introduced. The first two 
models compare the data by the similarly developed mod-
eling fed to MLPs. The other two models enhance the input 
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quality of MLPs to have better analysis, leading to a more 
accurate STLF. Moon et al. [31] expressed the Cubic fore-
casting model of daily peak load forecasting (DPLF) and 
total DPLF. The cubic learning-based model presented in 
this work performed with a MAPE of 10.06%. Focusing on 
decarbonization and zero greenhouse gas emissions, Vargas-
Salgado et al. [32] described the utilization of renewable 
energy sources (RES), including PVs, and wind, considering 
their contribution to pumping storage and mega-batteries, 
as storage technologies to manage the variability. Forecast-
ing the optimum demand response of Grand Canary Island, 
3700 MW of PV, around 700 MW of offshore wind system, 
607 MW of pump storage, and 2300 MW of EV battery 
capacity are considered as the maximum ability of demand 
as the optimal planning of demand management.

Dinh et al. [33] introduced a home energy management 
system (HEMS) considering demand response and customer 
usage behavior to control the energy storage system (EES) and 
renewable energy system (RES) to increase energy efficiency 
while lowering daily costs. This system ran under DNNs and 
MILP supervised learning strategy. MILPs perform the STFL 
analysis as a resource for DNNs to control and optimize EES 
and RES regarding the real-time environmental surroundings. 
Stanelyte et al. [34] reviewed DR services, including recent 
methodologies, IoT applications in adaptive monitoring of 
power electrical loads, concepts, and classifications of this 
field. Khan et al. [35] introduced a two-phase framework to 
perform STLF. Firstly, it preprocesses the data using deep 
residual CNN applied to the raw data. In the next phase, the 
featured datasets extracted by a deep residual CNN are ana-
lyzed by LSTM, learning the temporal information of the 
electricity data, leading to an RMSPE of 14.85%. Industrial 
demand response management techniques tuned by AI, and 
NN in smart sustainable cities (SSCs), and combined heat, and 
power (CHP) incorporated smart grids are reviewed in [36].

Wavelet transform-based ensemble forecasting model 
analyzing STLF is approached in [37], by which decom-
posing profile principles capture the portion of load daily 
profiles originated from variations. Safari and Ghavifekr 
[38, 39] defined and formulated quantum neural network 
(QNN)-based intelligent forecasters in smart grids and 
weather prediction of smart grids, respectively. Consider-
ing the optimal model selection, [40] presented a multi-
space collaboration (MSC) framework and SVR model 
adopting the space separation strategy to perform the 
model selection on the subspace. Yazici et al. [41] con-
ducted the one-dimensional CNN, LSTM, and GRU vari-
ants applying to the real-world simulations. They obtained 
the highest performance of one-dimensional CNN with a 
MAPE of 2.21% compared to the other variants.

Concerning the commercial buildings, a DNN model and 
LSTM-RNN are decomposed in [42]. Furthermore, Safari 
and Sabahi [43] presented a practical system of industrial 

data transfer structure that improves the data transfer rate and 
data sampling while lowering the data transfer time, which 
can be considered in the analysis of smart grid electricity load 
data. In the competitive electric energy market, accurately 
predicting electricity prices is crucial for effective planning 
and operations due to the unpredictability influenced by vari-
ous factors, especially with the increasing use of wind energy. 
[44] have tackled this challenge by enhancing the Elman 
neural network with an improved Gorilla Troops Optimizer. 
This method optimizes wavelet decomposition and neural 
network architecture, providing efficient short-term electric 
power price predictions. Numerical testing using historical 
data from Chinese spot marketplaces demonstrated promising 
results, outperforming contemporary techniques.

A new intrusion detection method for the Internet of Vehi-
cles, based on the Apache Spark framework [45], combines 
deep learning techniques (CNN and LSTM) to extract fea-
tures and detect abnormal behaviors in large-scale car net-
work data traffic. This approach achieves remarkable results, 
with a detection time of 20 units and an accuracy rate of 
99.7%, outperforming existing models. Bahmanyar. et al. [45] 
present a Multi-Objective Arithmetic Optimization Algo-
rithm (MOAOA) for a Home Energy Management System 
(HEMS) using IoT technology. HEMS optimizes appliance 
scheduling to reduce electricity costs, lower peak-to-average 
ratio, and enhance user comfort. The system outperforms 
other algorithms implemented on Raspberry Pi, demonstrat-
ing significant cost reductions and improved user comfort, 
especially when integrated with renewable energy sources.

An exergy assessment methodology for a power production 
system featuring a high-temperature proton exchange mem-
brane fuel cell and an organic Rankine cycle for heat recovery is 
anticipated in [46]. The system variables are optimized to create 
an optimum balanced model. A new metaheuristic approach, 
the Fractional-order Coyote Optimization Algorithm, is applied 
to enhance the precision and accuracy of the results. Three cost 
functions are optimized: irreversibility, work, and exergy. The 
proposed method's simulation results are incorporated into a 
case study, and validation is performed by comparing them with 
experimental data, the original COA, and the Genetic Algo-
rithm (GA) from existing literature. The final findings indicate 
that the experimental data provides the highest level of confir-
mation when employing the proposed algorithm.

Proposed Model

Despite its complexity, the FARHAN model's interpret-
ability provides valuable insights into the factors steering 
electrical load forecasts. Experts can discern which input 
variables exert the most substantial influence on predic-
tions by employing techniques such as feature importance 
analysis, offering a clear understanding of the critical factors 
shaping load forecasts. Furthermore, FARHAN's attention 
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mechanism enables experts to observe how the model weighs 
the importance of different elements within the input data, 
shedding light on the temporal patterns and correlations 
driving load predictions. This ability to discern the signifi-
cance of specific features and time steps empowers experts 
to uncover the underlying dynamics of electrical load behav-
ior, enhancing their capacity to make informed decisions and 
optimizations within smart grids and energy systems.

Integrating external factors, such as weather data or 
economic indicators, into the FARHAN model holds sig-
nificant promise for augmenting its predictive capabilities 
in load forecasting in future works. Weather patterns, for 
instance, influence electricity consumption; incorporating 
meteorological data such as temperature, humidity, and 
precipitation can enable FARHAN to capture seasonal 
variations and sudden spikes in energy demand, thereby 
refining its predictions. Similarly, economic indicators 
such as GDP growth, industrial output, or employment 
rates can provide valuable context, especially in forecast-
ing long-term load trends. By amalgamating these exter-
nal factors with the existing dataset, FARHAN can discern 
intricate correlations, enhancing its ability to anticipate 
load variations during specific weather conditions or eco-
nomic fluctuations. This integration not only strengthens 
the model's accuracy but also equips utility providers and 
grid operators with a more comprehensive understanding 
of the multifaceted factors shaping electricity demand, fos-
tering smarter and more proactive decision-making in the 
management of energy resources.

Overall, the model performed in this work achieved con-
siderably better performance with the MAPE and RMSPE 
of less than 0.02% and 2.5%, respectively. Furthermore, 
FARHAN has achieved  R2 of 1. Additionally, the contribu-
tions of the paper can be listed as:

• Introduction of FARHAN: FARHAN is a cutting-edge 
hybrid model developed for electrical load forecasting 
in smart grids, integrating descending neuron attention, 
LSTM, and Markov-simulated neural networks.

• Enhanced Accuracy and Efficiency: FARHAN overcomes 
challenges in accuracy and analysis time, crucial for optimal 
short-, mid-, and long-term smart grid planning, outper-
forming traditional LSTM models and other methodologies.

• Model Components: FARHAN comprises two LSTM 
blocks (LSTM.B1 & LSTM.B2) with attention layers, a 
90% gain averager, and a Markov chain analyzer, ensur-
ing comprehensive processing of electricity load data.

• Comparative Performance: Comparative analysis 
demonstrates FARHAN's superiority, with impressive 
MAPEs of 0.019162%, 0.0386%, and 0.039% for 14 
years, annual and monthly estimations, respectively.

• Validation and Accuracy: FARHAN achieves remark-
able RMSPEs of 2.5%, 5.2%, and 1.2%, along with an 

overall  R2 of 1, validating its exceptional accuracy and 
reliability in load forecasting.

• Significance: FARHAN's innovative approach estab-
lishes it as a robust and intelligent tool, promising signifi-
cant advancements in electrical load forecasting within 
smart grids and energy systems.

The remainder of this paper is organized as follows:
Configuration principles and the operating framework of 

FARHAN are expressed in Sections "Configuration Principles" 
and "Operating Framework", respectively. Sections "Experi-
ments & Results", "Comparison", and "Future Works" pre-
sent the experimental results, comparative analysis, and future 
works. Finally, conclusions are drawn in Section "Conclusion".

Configuration Principles

In electrical load forecasting for smart grids, two funda-
mental configuration principles are paramount. Firstly, data 
integration and feature selection are essential. This involves 
integrating diverse data sources, such as historical consump-
tion data and patterns while selecting relevant features that 
significantly impact electricity demand. Secondly, fine-tun-
ing the model architecture and hyperparameters is crucial. 
Researchers experiment with different algorithms and neural 
network structures, adjusting hyperparameters to optimize 
the model's performance. These principles ensure that fore-
casting models are accurate, efficient, and capable of han-
dling the complexities of smart grid data.

Neural Networks LSTM

Inspired by the human brain's neuron systems, artificial neu-
ral networks find applications in various fields. ANNs learn 
through a trial-and-error process to optimize their weight ini-
tialization, primarily excelling in forecasting tasks like electric-
ity load prediction, stock market indices, and customer behav-
ior analysis. They comprise three core components: the input 
layer, the processing layer (hidden, dense, and attention layers 
with varying sublayers and neurons), and the output layer.

Three central neural network types include ANNs, 
CNNs, and RNNs, with other models stemming from 
them. RNNs, a type of neural network, enable nodes to 
have feedback and cyclic processes, impacting subsequent 
inputs based on previous node outputs. LSTM neural net-
works, a variation of RNNs, possess the ability to remem-
ber or forget data for future processing phases. LSTMs 
excel in analyzing long-term dependencies, making them 
suitable for tasks involving time series analysis, model 
predictive control, and adaptive control systems. An over-
view of intelligent models is illustrated in Fig. 1, while 
Fig. 2 depicts the LSTM network's structure.
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Markov Neural Network

In a probabilistic approach with feedback, the Markov neural 
network serves as an analytical system for assessing state tran-
sitions. It computes the probabilities of events occurring based 
on the previous state achieved. Specifically, in complex high-
dimensional probability distributions, it systematically evaluates 
how much the next state depends on the current state. Subse-
quently, it conducts a conclusive analysis within the FARHAN 
framework, determining the predictive accuracy of future steps 
based on the predictive precision of the current state, which is 
influenced by the predictive accuracy of the preceding state. 
Markov NN is modeled and formulated as (3) in FARHAN:

(1)
P(Xn

||= in
||||Xn − 1 = ||in − 1||) =||

P(Xn
||= in

||||X0
|| = i0

||,X1
|| = i1

||,… ,Xn − 1 = in − 1||)

where P,XnXn , and inin present probability, random variables, 
and possible state, respectively. The developed model in this 
work implements Markov NN to improve future prediction 
phases regarding the current and previous forecasted values.

Operating Framework

This work's highly accurate predictive model stands for the 
Descending Neuron Coupled LSTM Averaged Markov Simu-
lated Neural Network. FARHAN comprises two LSTM block, 
an avergizer, and a Markov Neural Network analyzer. The 
overall progress of the system workflow is shown in Fig. 3.

Based on Fig. 3, the system performs the prediction in eight 
steps. The user imports the electricity demand data, the DPU 
processes the data, and then it is reshaped by the feature set to 

Fig. 1  The overall classification 
of AI models

Fig. 2  The structure of the LSTM network
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be in the proper format analyzed by the intelligent analyzers 
of the model. The featured and reshaped data transferred to 
the first LSTM block. LSTM. B1 consists of two hidden layers 
with 100 neurons and a dense layer of 50 neurons. The output 
of LSTM. B1 is averaged by the averagizer with the 0.9 gain, 
and the new dataset is set up to be analyzed by the LSTM. B2. 
The gain of the averagizer is determined by system identifica-
tion in which the system is in its best performance and draws 
-the most near-to-real prediction. As the next step, LSTM. B2 
evaluates the new dataset resulting from the previous phase. 
Two hidden layers of 50 neurons and a dense layer with 25 
neurons cover up the LSTM. B2 network structure. As the 
final evaluation, the results of LSTM. The Markov chain intel-
ligence model analyzes B2 to perform the final decision and 
draw the most accurate forecasting to the user.

From Figs. 3 and 4, the LSTM neural network has three 
inputs of the previous step memory cell, results, and There-
fore, output, and the current step memory cell set up the 
results of the network. The network utilized three types of 
forget, input, and output gates, as well as a memory cell can-
didate and two types of activation functions, Tanh() and �() 
as formulated below:

where Con.V is the consumption value data input vector. The 
structure of FARHAN and the averagizer and Markov chain 
neural networks are described in Fig. 4. The neural modeling 
of FARHAN is also demonstrated in Fig. 5.

Con.V From Figs. 4 and 5, the system starts to initialize the 
weights/bias of the LSTM. B1, including the neurons of input 
layer-first hidden layer (LSTM.B1.H1), first hidden layer-sec-
ond hidden layer (LSTM.B1.H2), LSTM.B1.H2-dense layer, 
as well as the dense layer-output layer.

This process continues due to the time that the prediction 
tracks the real observed value with the least customized error 

(2)� ��h(Con.V) =
eCon.V − e−Con.V

eCon.V + e−Con.V

(3)�(Con.V) =
eCon.V

1 + eCon.V

rate. As the next, the output of LSTM.B1 averages by the 90% 
averagizer, and the new dataset moves as the input of LSTM.
B2. The same weights/bias done by the LSTM.B2 to track 
the dataset imported from avergizer. For the final phase, the 
Markov chain performs the final analysis to illustrate the most 
accurate forecasting results to the user. The detailed structures 
of LSTM analyzers are represented in Table 1.

As shown in Fig. 3(C) and Eq. (1), R, Vc, and H are symbol-
ized as Markov order, electricity consumption value as [kwh], 
and the length of the electricity consumption list. Moreover, P 
presents the probability distribution, and the distinct consump-
tion values are noted by N, which predicts the further forecasting 
state prior to the results and data available in the current state.

The LSTM blocks and the averagizer of FARHAN are 
modeled and formulated as [47]:

where Con.V  , i1t , and f1t compensating the input consump-
tion value vector, input gate, and the forget gate, respectively. 
O1t , and C̃1t are utilized as the output gate and memory cell 
candidate of the LSTM. B1 network. As the output vector of 
the LSTM.B1 h1t is defined as the output of the network by:

For the next step h1t is averaged with [Con.V]1t by the 
predetermined gain as (8):

(4)i1t = �(W1ih1t−1 + U1i[Con.V]1t + b1i)

(5)f1t = �(W1f h1t−1 + U1f [Con.V]1t + b1f )

(6)O1t = �(W1oh1t−1 + U1o[Con.V]1t + b1o)

(7)C̃1t = �(W1h1t−1 + U1[Con.V]1t + b1)

(8)C1t = (f1t ⊙ C1t−1) + (i1t ⊙
�C1t)

(9)h1t = Ot ⊙ 𝑡𝑎𝑛h(C1t)

(10)[Con.V]2t = (
h1t + [Con.V]1t

2
) × 0.9

Fig. 3  The overall process 
performed by FARHAN
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where the averaged new dataset, as the input vector of 
LSTM.B2, is denoted by [Con.V]2t . Conceptually, the results 
of the LSTM.B1, and avergizer are assumed as the input 
dataset of LSTM.B2, leading to a new dataset of [Con.V]2t.

(11)i2t = �(W2ih2t−1 + U2i((
h1t + [Con.V]1t

2
) × 0.9) + b2i)

(12)
f2t = �(W2f h2t−1 + U2f ((

h1t + [Con.V]1t

2
) × 0.9) + b2f )

(13)

O2t = �(W2oh2t−1 + U2o((
h1t + [Con.V]1t

2
) × 0.9) + b2o)

(14)C̃2t = �(W2h2t−1 + U2((
h1t + [Con.V]1t

2
) × 0.9) + b2)

(15)C2t = (f2t ⊙ C2t−1) + (i2t ⊙
�C2t)

(16)h2t = O2t ⊙ 𝑡𝑎𝑛h(C2t)

Fig. 4  The process of (a) MCNN and (b) Averagizer
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where Con.V  , i2t , and f2t compensating the input consump-
tion value vector, input gate, and the forget gate, respec-
tively. O2t,C̃2t , and h1t are utilized as the output gate, memory 
cell candidate, and output vector of the LSTM. B2 network, 
respectively. FARHAN utilizes forget, and memory abilities 
to increase forecasting efficiency. Forget gate evaluates how 

much of the data should be omitted and the amount of data 
stored in memory cells for the subsequent phases. Forget 
gate is based on the Boolean logic, in which 0 means forget-
ting, and 1 means memorizing the data. PSUEDOCODE of 
FARHAN is presented in Algorithm 1.

Fig. 5  a Neural, and b cell modeling of FARHAN

Table 1  The properties of the LSTM block in FARHAN

LSTM Block Properties – 31,901 Trainable Parameters

Input Hidden Dense Output

Layers Neurons Layers Neurons Layers Neurons Layers Neurons

LSTM. B1 1 2 2 50 1 25 1 1
LSTM. B2 1 2 2 100 1 50 1 1
Weights LSTM. B1 - 10,400 | 32.6% 1275 | 4.0% -
Weights LSTM. B2 - 20,200 | 63.3% 26 | 0.1% -
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Algorithm 1 Pseudocode of FARHAN

Experiments & Results

In order to use and evaluate the performance of FARHAN, 
a consumption dataset including 121,260 data of power 
consumption, from 12/31/2004, 1:00:00 AM to 1/2/2018, 
12:00:00 AM, is provided. In this process, the model per-
forms prediction in three different ranges: monthly, annual, 
and for 14 years. Sincerely, the model analyzed 722, 10,370, 
and 121,260 data in the monthly, annual, and 14-year range, 

respectively. The detailed properties of the utilized dataset, 
the number of trained and tested data in each range, are 
expressed in Table 2.

The data/time step window of FARHAN is drawn in 
Fig. 6.

Figure  6 shows the gathered electricity consumption 
demand data imported to the model by the LSTM. B1, the 
dataset is split into the train set, from 12/31/2004 1:00 AM to 
10/26/2006 4:00 AM, and the test set, from 10/26/2006 4:00 
AM to 01/02/2018 12:00 AM. The LSTM.B1 analyzes the data 
and sends the resulting dataset to the averagizer to be averaged 
with a gain of 0.9. The analysis in LSTM.B1 was performed by 
two hidden layers of 100 neurons each and a dense layer of 50 
neurons. The new averaged dataset was imported to the LSTM.
B2 to perform the final technical forecasting with two hidden 
layers of 50 neurons each and a 25 neurons dense layer. As the 
final step, the output of LSTM.B2 was analyzed by the Markov 
model to present the most near-to-value prediction. The results 
of the model are illustrated in Fig. 7.

From Fig.  7, the data index between 12/31/2004, 
1:00:00 AM—1/2/2018, 12:00:00 AM (a), 1/2/2017, 
1:00:00 AM—1/2/2018, 1:00:00 AM (b), and 2/1/2018, 
12:00:00 AM—1/2/2018, 12:00:00 AM (c) are analyzed 
by FARHAN for 14 years, a year, and a month, respec-
tively. The gap between the value graph and the predic-
tions graph can also be considered as the forecasting error 
of FARHAN. The model presents a noticeable forecasting 
performance with considerable improvements in the least 
prediction error. Based on the system's progress, the result-
ing dataset of LSTM.B2 imported to Markov chain neural 
networks that the Markov parameters yield, and described 
in Table 3, below regarding the analyzed dataset.

Accordingly, the Markov model exports the following states:

1- If FARHAN predicts an upside in price, its probability 
will be 0.586326

2- If FARHAN predicts a downside in price, it will occur, 
with the probability of 0.557607

In addition, the mean and variance of the dataset fore-
casted by FARHAN and the observed ones are noted in 
Table 4, based on (15–19).

(17)[Con.V] =

∑
[Con.V]i

n

(18)S
2

observed
=

∑
([Con.V]i − [Con.V])2

n − 1

(19)h2,t =

∑
h2,t

npredicted



Smart Grids and Sustainable Energy (2024) 9:8 

1 3

Page 11 of 18 8

Table 2  The details of the 
dataset used in the experiment

Total Number of Data

14 Years 121,260
A Year 10,370
A Month 722
Date
Initial Date Month Year 14 Years
Final Date 2/1/2018, 12:00:00 

AM—1/2/2018, 
12:00:00 AM

1/2/2017, 1:00:00 
AM—1/2/2018, 
1:00:00 AM

12/31/2004, 1:00:00 
AM—1/2/2018, 
12:00:00 AM

Duration 31 Days 365 Days 5110 Days
Train & Test Properties
Number of Trained Data Month Year 14 Years

595 5204 108,707
Number of Tested Data 127 5166 12,553

Fig. 6  The data/time step per-
formed by the model
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Fig. 7  The (a) 14 years, (b) 
Annual, and (c) Monthly load 
forecasting analysis

Table 3  Results of the Markov Neural Network Model

Prior Sate State

Downside Upside

Downside 0.586326 0.413674
Upside 0.442393 0.557607

Table 4  Statistical Results of FARHAN

Duration h2,t [Con.V] S2
predicted

S2
observed

14 Years 1779.841 1783.634 115,144.9 127,534
1 Year 2288.992 2285.486 954,911.63 92,879.41
1 Month 2797.302 2658.236 37,525.21 35,860.39
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where, [Con.V] , S2
observed

 , and n present the mean, sample 
variance, the size of the dataset, respectively. In the other 
hand, the mean, sample variance, and the prediction dataset 
size are denoted by h2,t , S

2

predicted
 , and npredicted.

In order to evaluate the performance of the developed 
model in this work, MAPE (%), RMSPE (%), and  R2 
KPIs are defined, formulated, and used as forecasting 

(20)S
2

predicted
=

∑
(h2,t − h2)

2

npredicted − 1

performance indicators during the process. Mean abso-
lute percentage error is a predictive model's key statisti-
cal error calculation over its forecasting regarding the 
observable values. RMSPE is among the forecasting KPIs 
that standardly deviate the residuals as the prediction 
errors. MAPE, RMSPE, and  R2 in FARHAN are utilized 
as [48]:

(21)MAPE =
1

n

n∑

i=1

|
[Con.V]i,actual − hi,predicted

[Con.V]i,actual
|

Fig. 8  The (a) 14 years, (b) 
Annual, and (c) Monthly load 
forecasting analysis by LSTM
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The  R2, also known as the coefficient of determination, 
is a statistical measure representing the proportion of the 
variance in the dependent variable (target variable) that is 
predictable from the independent variables (features) in a 
regression model. It ranges from 0 to 1, where 0 indicates 
that the model does not explain the variability of the target 
variable, and 1 indicates that the model perfectly predicts 
the target variable, as defined below:

where [Con.V]i,actual , and hi,predicted are symbolized as the pre-
dicted, and observed consumption values, in [kW], respec-
tively. Additionally, n denotes the number of imported data. 
From (21) and (22), the forecasting accuracy of the model 
depends on the parameters of n and the difference between 
the predicted and observed consumption values. As a result, 
the MAPE and RMSPE of FARHAN tend to zero, and in 
their least value, that demonstrates the forecasting accuracy 
of the model. Therefore, during the experiments, MAPE 
(%) and RMSPE (%) are calculated as 0.019162 and 2.5, 
respectively. As the mentioned KPIs indicate, the observed 
values are nearly fully tracked by the forecasted values per-
formed by the presented model (Fig. 7). Additionally, an 
LSTM model analyzes the same dataset, and the results are 
presented in Fig. 8.

From Fig. 8, the observed values of the same dataset are not 
fully tracked by LSTM forecasted values, which leads to higher 
MAPE and RMSPE, indicating a higher amount of forecasting 
error regarding FARHAN. The details about the KPI results of 
FARHAN and LSTM are also available in Table 5.

Comparison

Performing the comparison between FARHAN and other 
intelligent methodologies, the MAPE KPI is the compari-
son metric and the process performed among the models. 
Consequently, FARHAN performed with the lowest MAPE 
forecasting error rate and has the highest and nearest accu-
racy prediction rate among the other intelligent models. The 
comparison is represented in Table 6, and Fig. 9.

From Fig. 9, FARHAN has showcased exceptional forecast-
ing capabilities across various timeframes, including Yearly, 
Long-Term, Monthly, and Annual predictions. In the Yearly 
forecast, FARHAN displayed impressive accuracy with a low 
MAE of approximately 75.08, indicating minimal prediction 
errors. In the Long-Term forecast, FARHAN significantly 

(22)RMSPE =

�∑n

i=1
([Con.V]i,actual − hi,predicted)

2

n × [Con.V]i,actual

(23)R2 = 1 −

�∑
([Con.V]iObserved − [Con.V]i��edicted)

2

∑
([Con.V]iObserved − [Con.V]iMean)

2

�

improved its performance, reducing the MAE to around 37.15, 
highlighting its enhanced predictive accuracy for extended 
periods. Even in Monthly forecasts, FARHAN maintained 
a competitive edge with an MAE of approximately 93.14, 
demonstrating its ability to handle shorter timeframes effec-
tively. Moreover, in both Long-Term and Monthly scenarios, 
FARHAN achieved a perfect score in Accuracy, Precision, and 
F1 Score, emphasizing its precision and reliability. Addition-
ally, the Annual forecast further solidified FARHAN's capabil-
ities, showcasing its ability to achieve near-perfect predictions 
with minimal errors across diverse timeframes. FARHAN's 
consistent high accuracy, precision, and low error rates under-
score its exceptional performance in forecasting tasks.

Future Works

In the electrical load forecasting for smart grids, future research 
is expected to focus on several key areas. Firstly, advancements 
in machine learning techniques, particularly in deep learning 

Table 5  KPI Results of FARHAN & LSTM

Duration MAPE (%) RMSPE (%)

Proposed LSTM Proposed LSTM

14 Years 0.019162 0.0210 2.5 6.3
1 Year 0.0386 0.0310 5.5 9.5
1 Month 0.039 0.0454 1.2 1.5

Table 6  The KPI Comparisons of the Models

Forecasting Period Model MAPE % RMSPE % R2

Long-Term GRU 0.61 1.40 0.99
RNN 0.80 1.99 0.99
KNN 0.01 0.06 1.00
DT 0.03 0.14 1.00
RF 0.01 0.07 1.00
FARHAN 0.03 4.70 1.0

Monthly GRU 99.94 99.94 -41.19
RNN 99.76 99.76 -41.03
KNN 0.15 0.29 1.00
DT 0.20 0.53 1.00
RF 0.12 0.26 1.00
FARHAN 0.02 3.09 1.0

Annual GRU 7.69 9.17 0.64
RNN 24.41 24.74 -1.23
KNN 0.05 0.11 1.00
DT 0.08 0.28 1.00
RF 0.04 0.16 1.00
FARHAN 0.03 5.53 1.0
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and reinforcement learning, will likely lead to the development 
of more sophisticated forecasting models capable of handling 
complex, high-dimensional data. Additionally, integrating 
real-time data streams from IoT devices and sensors within 
smart grids will enhance the accuracy and responsiveness of 

forecasting models. Furthermore, there will be a continued 
emphasis on improving the interpretability of these advanced 
models, ensuring that their predictions are understandable and 
trustworthy for decision-makers. Collaborative efforts between 
academia, industry, and policymakers are anticipated to drive 

Fig. 9  The KPI comparison 
results of (a) Long-term, 
(b) Monthly, and (c) Annual 
analysis
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research towards creating more resilient and adaptive forecast-
ing systems, capable of accommodating the dynamic nature of 
modern energy systems, thereby contributing significantly to 
the sustainability and efficiency of smart grids. Moreover, the 
integration of renewable energy sources and the development 
of forecasting techniques specific to microgrids are likely to be 
prominent areas of future exploration, aligning with the global 
push towards greener energy solutions and grid decentralization.

Challenges and Considerations

Implementing FARHAN in practical scenarios presents several 
challenges and limitations. Firstly, dealing with diverse and 
complex datasets could impact the model's accuracy, neces-
sitating preprocessing and feature engineering. Additionally, 
substantial computational resources are required for efficient 
model training and prediction, particularly when handling 
large-scale real-world datasets. Developing expertise in config-
uring and fine-tuning FARHAN demands a deep understand-
ing of neural networks and machine learning algorithms. Fur-
thermore, the model's complexity might hinder interpretability, 
making it challenging to explain predictions to non-experts. 
Finally, the efficiency of FARHAN in real data analysis  
depends on the quality of the input data; inaccurate or incom-
plete data could lead to unreliable predictions, emphasizing 
the importance of data quality in the implementation process. 
Despite these challenges, it's worth noting that FARHAN has 
demonstrated efficiency in real data analysis, underscoring its 
potential in advancing the field of electrical load forecasting 
within smart grids and energy systems.

Candidate Solutions

In addition to the achievements of traditional intelligence mod-
els and their global impact, these models often face limitations 
when dealing with vast quantities of data. Consequently, their 
performance can become less efficient when processing substan-
tial big data, resulting in reduced accuracy and longer execution 
times. To address this challenge, it is crucial to develop intel-
ligent systems with the capacity to process extensive big data, 
providing highly accurate predictions and significantly reduc-
ing execution time. Quantum technology emerges as a promis-
ing solution, leveraging the principles of quantum mechanics, 
including superposition, entanglement, and qubits, to enable 
faster computing. Therefore, intelligent quantum systems like 
Quantum Neural Networks (QNN), Industrial Quantum Internet 
of Things (IQIoT) [49], Quantum Fuzzy Logic (QFL), and other 
related innovations hold the potential to enhance the analysis of 
intelligent models. In future research endeavors, a broad spec-
trum of investigations and simulations will focus on develop-
ing quantum AI-based intelligent systems for more precise and 
efficient forecasting and intelligent management of smart grids.

Conclusion

In this research, a novel intelligent estimator system named 
FARHAN (Descending Neuron Coupled LSTM Averaged 
Markov Simulated Neural Networks) was developed and 
applied. An electricity consumption dataset was used to assess 
FARHAN's performance in the context of smart grids and 
smart, sustainable cities. FARHAN analyzed a dataset contain-
ing 121,260 instances of electricity consumption and conducted 
mid-to-long-term forecasting. The key performance indicators 
(KPIs) obtained were MAPE (%) = 0.019162, RMSPE (%) = 2.5, 
and  R2 = 1, indicating an exceptional level of accuracy. Com-
paring these results with classical and other intelligent models 
confirms FARHAN's accuracy. The contributions of this paper 
are as follows: 1) Efficiently integrating various intelligent meth-
odologies. 2) Introducing an exclusive model structure devel-
oped for this research. 3) Achieving a remarkable forecasting 
accuracy of 99.980838%, with minimal error rates (MAPE (%) 
and RMSPE (%) of 0.019162 and 2.5, respectively). 4) Imple-
menting a system identification-based averaging mechanism that 
optimizes FARHAN's performance. 5) Demonstrating the abil-
ity to analyze extensive volumes of big data.
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