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Abstract
Wind power scenario forecast is a primary step for probabilistic modelling of power systems’ operation and planning problems 
in stochastic programming framework considering uncertainties. Several models have been proposed in the literature to generate 
wind power scenarios using statistical and machine learning approaches. Most of these models are univariate and do not consider 
dependency between the Wind Farms (WFs), resulting in generated scenarios lacking spatiotemporal correlation. Furthermore, most 
scenario generation approaches assume a parametric distribution (i.e., Normal or Weibull distribution) for wind power uncertainty, 
which is unrealistic. This paper proposes a novel distribution-free hybrid approach that combines multivariate Vector Autoregressive 
Moving Average (VARMA) and Copula models to generate wind power scenarios. The VARMA model is used to forecast wind 
power considering spatiotemporal correlation, and then a regular vine (R-Vine) copula is applied on WFs’ residuals to retain spatial 
correlation. The proposed approach is independent of the distribution type because the R-Vine copula can decompose residuals 
into a copula function and a marginal distribution. The proposed model is illustrated through a realistic case study based on nine 
Australian WFs. The results obtained are compared with benchmark models that show the efficacy of the proposed model for the 
generation of wind power scenarios. Minimum energy score, nearly accurate Kendall's correlation, and cross correlation plots 
show that the proposed method can produce high-quality wind power scenarios without sacrificing spatiotemporal correlation or 
making distribution assumptions. Generated scenarios using the proposed approach can help WFs and system operators improve 
decisions in the stochastic programming framework.

Keywords Copula theory · Probabilistic forecasting · Scenario generation · Uncertainty · VARMA model · Wind power 
forecasting

Introduction

Renewable energy sources, specifically wind and solar, are pro-
gressively being integrated into global power systems to prevent 
the greenhouse gas emissions produced by fossil fuel-based 
generators while meeting growing demand for power at the low-
est possible cost. According to the Global Wind Council, the 
total global wind power installed capacity is up to 837 GW by 
2022, allowing the globe to save nearly 1.2 billion tons of  CO2 
yearly [1]. Such massive wind power has the potential to supply 

global energy demand sustainably while also achieving net-zero 
objectives by 2050 [1].

Large-scale integration of wind energy in power systems 
poses considerable challenges for the system operators and 
wind power producers due to its unpredictable and highly vari-
able nature. Modelling wind power uncertainty into numer-
ous decision-making problems, such as generation scheduling, 
market clearing, power trading, reserve management, etc. is 
a formidable challenge [2]. Decision-making problems under 
wind uncertainty are generally modelled through stochastic 
programming, robust and chance-constrained programming 
approaches. The stochastic programming approach is accorded 
utmost importance because of its accurate representation of 
wind uncertainty through scenarios. Scenarios are possible 
sets of random wind power inputs with definite probability [2, 
3]. The generation of quality scenarios is essential to model 
wind power uncertainty in decision-making problems through 
a stochastic programming approach.
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Several methods have been proposed in the literature to gen-
erate wind power scenarios. These are fundamentally catego-
rized as path-based methods, movement matching, and internal 
sampling. In path-based methods, scenarios are generated by 
combining forecasted wind power and random error matrices. 
Machine learning and statistical time-series models are com-
monly used to predict wind power [2, 3]. Movement-matching 
methods generate a discrete distribution of statistically depend-
ent random variables by comparing sample distribution with 
original distributions. Internal sampling is a continuous sam-
pling of the actual distribution of random variables. Due to the 
use of advanced forecasting methods for scenario generation, 
path-based methods can accurately represent the stochastic 
nature of wind power. This paper focuses on expanding the 
use of path-based concept for wind power generation scenarios 
considering spatiotemporal correlation between multiple WFs.

An in-depth analysis of wind power scenario generation 
techniques for efficient use of renewable energy systems is pro-
vided [2, 3]. Short-term wind power scenarios are generated 
for a single WF using multivariate Gaussian distribution-based 
error covariance matrix [4]. Further, wind speed scenarios are 
generated for WFs using a univariate Autoregressive Moving 
Average (ARMA) model and stationary variance–covariance 
matrix [5, 6]. ARMA model is further translated into the state-
space model to generate wind power scenarios and analyze 
dependencies for multiple WFs [7]. An inverse transform sam-
pling approach was proposed to generate wind power scenarios 
considering statistical uncertainty and variability [8]. Empirical 
cumulative distribution functions characterized by uncertainty 
and variability are modelled by sampling from multivariate 
normal distributions of forecast errors. The above-discussed 
scenario generation methods assume parametric distributions 
for errors and separately modelled temporal and spatial correla-
tions. As a result, significant correlation loss in the generated 
scenarios occurs due to these assumptions.

A generalized dynamic factor model preserves correlations 
between generated load and wind power scenarios [9]. How-
ever, capturing the temporal correlations through the first or 
second-order statistics is difficult. Electric load, photovoltaic 
(PV) and wind production scenarios can be generated using 
Artificial Neural Network (ANN) based methodology [10]. 
Data-driven approaches can also generate wind and solar power 
scenarios using Generative Adversarial Networks (GANs) [11, 
12]. In this approach, two deep neural networks are fused as 
a generator and discriminator. It assumes no parametric dis-
tribution of errors but requires another forecasting method to 
generate the tedious forecasting errors. GANs are modified by 
imposing Lipschitz constraints on discriminator networks for 
wind power generation [12]. The GANs based scenario gen-
eration approach is further improved by using a conditional 
improved Wasserstein generative adversarial network (WGAN) 
[13]. The support vector classifier (SVC) predicts data labels 
in this approach. The wind power scenarios are generated by 

integrated non-separable spatiotemporal covariance func-
tion and fluctuation-based clustering [14]. The historical data 
is grouped into clusters with different fluctuations using the 
K-means clustering algorithm to estimate the covariance matrix 
precisely. The machine learning models performance is better 
than time series models but require a large amount of historical 
data for learning and have over and underfitting issues. Covari-
ance matrix-based approaches have limitations due to skew-
ness, excess kurtosis and asymmetrical dependencies present 
in the wind power data. Also, the size of covariance matrix 
increases with the data dimensions or number of WFs.

Copulas are commonly used to model dependencies among 
high-dimensional random variables [15–31]. This approach has 
gained significant attention recently for WFs’ dependency and 
uncertainty modelling. Copulas combine an arbitrary number of 
univariate distributions into a joint probability density function 
(PDF), from which useful information can be extracted. The 
advantageous feature is that it does not impose any restrictions 
on the data's marginal distribution [16–21]. This property of 
copula allows it to model asymmetrical dependencies between 
any numbers of WFs while considering spatiotemporal cor-
relation. A Drawable Vine (D-Vine) copula generates time-
coupled wind power infeed scenarios for aggregation of WFs 
[21]. D-Vine copula was combined with residuals of the support 
vector regression (SVR) model to represent spatial dependence 
in the probabilistic forecasts of wind power [22]. A mixture 
vine copula method that combined the K-means, C-vine, and 
D-vine copulas is used to analyze the dependence of the multi-
wind power output for wind/hydrogen production scheduling. 
[23]. Regular-Vine (R-Vine) copulas are flexible and have bet-
ter choices of decomposing dependence structures than D-vine 
copulas and canonical vine (C-vine) copulas. The R-Vine copula 
produces better fitting and prediction performance than C-Vine 
and D-Vine copulas [24–27]. R-Vine copula models, kernel 
density estimation, time series and hybrid models are used to 
capture spatiotemporal correlations of multiple WFs for the gen-
eration of wind power, wind speed, and market price scenarios. 
Kernel density estimation, ARIMA, generalized autoregressive 
conditional heteroskedasticity (GARCH) and ARIMA-GARCH-
t models can estimate the marginal distributions for scenario 
generation [24–28]. A two-stage spatiotemporal sampling 
approach employs R-Vine copula as a spatial sampling method 
to generate wind power scenarios for multiple WFs. [29]. R-Vine 
copula is further combined with a variance reduction method to 
generate time-coupled wind power scenarios. [30]. R-Vine cop-
ula is also used in conjunction with the random forest method to 
identify load patterns in smart grids. [31].

In the above-mentioned methods, R-Vine copula-based 
scenario generation methods used a univariate or multivari-
ate distribution to model temporal correlations and copula 
for spatial correlation. However, the simultaneous modeling 
of temporal and spatial correlations through the multivariate 
forecasting models and further recovery of spatial correlation 
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from the residuals using the R-Vine copula model can generate 
quality wind power scenarios retaining spatiotemporal correla-
tions. Table 1 highlights the summary of the literature review 
on scenario generation and provides comparison between the 
existing work and the proposed work. The models that use the 
vine copula approach for scenario generation are highlighted 
in grey in this table. The table clearly shows that the advanced 
multivariate time series model, i.e., VARMA, is not a hybrid 
with the R-Vine copula for generating wind power scenarios 
that consider spatial and temporal correlation simultaneously. 
The combination of VARMA and R-Vine copula can provide 
two-stage modeling for spatial correlation, which improves 
the quality of generated scenarios. The wind power scenario 
generation method can be further improved by incorporating 
the R-Vine copula and the multivariate time series forecasting 
model, which capture the asymmetrical tail dependency that 
occurs in wind generation without making any assumptions 
about distribution types.

This paper proposes a hybrid, distribution-free VARMA-
Copula approach for generating wind power scenarios for mul-
tiple WFs with spatiotemporal correlations in the very short-
term horizon. For spatiotemporal correlations, the multivariate 

VARMA model is used to generate marginal distributions of 
WFs residuals. The R-vine copula then uses the residuals to 
capture the asymmetrical dependencies between WFs. Model-
ling marginal distributions through a multivariate model can 
simultaneously consider the spatial and temporal propagation 
and forecast errors. The use of the R-vine copula makes the 
proposed model distribution-free and better compared to other 
benchmark models. The proposed algorithm is implemented on 
publicly available data of nine Australian WFs. The obtained 
results are compared with benchmark models such as VAR, 
VARMA, ANN [10] and GANs [11]. The proposed model 
retains the spatiotemporal correlation in the generated sce-
narios, as demonstrated by the minimum energy score, cross-
correlation plots, and Kendall's correlation plots.

The rest of the paper is organized as follows. Section II 
describes the mathematical formulation of VARMA and R-Vine 
copula to model spatiotemporal correlations. The proposed sce-
nario generation algorithm is discussed in Section II. Section III 
describes energy score and cross-correlation functions to evalu-
ate the quality of generated scenarios using proposed and bench-
mark models. Results are discussed in the case study section IV. 
Finally, the proposed work has been concluded in section V.

Table 1  Summary of literature review on scenario generation

✓ Considered ✗ Not considered ✓✓ simultaneously considered.

Ref Authors Model Scenarios Model type Distribution Temporal 
Correlation

Spatial 
Correla-
tion

[27] G. Giovani et. al GARCH + R-Vine Wind speed Univariate Independent ✓ ✓
[5] J. Morales et.al ARMA + stationary 

covariance matrix
Wind speed Hybrid Gaussian ✓ ✓

[7] G. Diaz et. al ARMA + State-space Wind speed Hybrid Gaussian ✓ ✓
[4] P. Pinson et.al Covariance matrix Wind power Multivariate Gaussian ✓ ✗
[6] K.C. Sharma et. al ARMA Wind power Univariate Gaussian ✓ ✗
[25] Z. Wang et. al ARIMA + R-Vine copula Wind power Univariate Independent ✓ ✓
[28] Q. Tu et. al ARIMA-GARCH-

t + R-Vine Copula
Wind Power Univariate Independent ✓ ✓

[8] X. Y. Ma et. al Inverse transform 
sampling

Wind Power Multivariate Empirical + t-loca-
tion scale + Normal

✓ ✓

[12] C. Jiang et. al Modified GANs Wind Power Multivariate Gaussian ✓✓ ✓✓
[13] Y. Zhang et. al WGAN Wind Power Multivariate Independent ✓✓ ✓✓
[14] J. Tan et. al Covariance matrix Wind Power Multivariate Independent ✓ ✓
[22] M. A. Prieto et. al SVR + D-Vine Copula Wind Power Multivariate Independent ✓ ✓
[29] Y. Li et. Al R-Vine + Sampling Wind Power Multivariate Independent ✓ ✓
[30] A. B. Krishna et.al R-Vine + Variance 

reduction
Wind Power Multivariate Independent ✓ ✓

[9] D. Lee et. al Generalized dynamic 
factor + VAR

Load & Wind Power Multivariate Gaussian ✓✓ ✓✓

[10] S. Vagropoulos et. al ANN Load + PV + Wind 
power

Multivariate Gaussian ✓✓ ✓✓

[11] Y. Chen et. al GANs Wind + PV Power Multivariate Gaussian ✓✓ ✓✓
[31] M. Fang et. al R-Vine + Random Forest Load Multivariate Independent ✓ ✓
Proposed work VARMA + R-Vine 

Copula
Wind power Multivariate Independent ✓✓ ✓✓
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Spatiotemporal Correlation Modeling 
in Scenario Generation 

VARMA Model

The power output of N-WFs is considered as stochastic 
process and modelled through the multivariate n-dimen-
sional VARMA(p, q) model. Compared to the VAR model, 
the VARMA model can forecast wind power output using 
temporal propagation of historical observations and forecast 
errors [32–34]. The number of historical observations and 
errors used in the VARMA process depends on the estimated 
order of VA terms p and MA terms q . The spatial correlation 
between WFs is modelled using the VARMA model param-
eter matrix. The N-dimensional VARMA(p, q) is mathemati-
cally expressed as follows:

where, ŷn
t
 is forecasted conditional mean power output of nth 

WF at time t . �l and Θm are N × N AR and MA parameter 
matrices for l and m lags, respectively. The size of these 
matrices depends on the number of WFs and the order of 
the fitted VARMA model. at denotes N-dimensional white-
noise vector at a time t  with zero mean and N × N  non-
singular contemporaneous covariance matrix cov(a) . The 
Extended Cross-Correlation Matrix and Maximum likeli-
hood approach are used to estimate order and parameters 
of the VARMA model, respectively [34, 35]. The estimated 
model parameters are locally optimal. The estimated order of 
the VARMA model is further verified by different informa-
tion criterions such as Akaike's Information Criteria (AIC), 
Bayesian Information Criteria (BIC) and Hannan–Quinn 
information criterion (HQC). The minimum value of these 
criteria is desired for the selected order of the VARMA 
model [34, 35].

Under the following statistical assumptions, the VARMA 
model can be used directly to generate wind power scenarios for 
multiple WFs while accounting for spatiotemporal correlations.

• Historical wind power data input is assumed to be sta-
tionary and linear. Thus, input data is preprocessed to 
make it stationary using either differentiation and/or 
logarithm transformation.

• Furthermore, input wind power data is assumed to fol-
low parametric distributions such as Gaussian or Weibull 
distributions with symmetrical tails.

• The fitting of the VARMA model to time series data 
involves epistemic uncertainty regarding model order 
and parameter estimations.

• The VARMA model parameters are assumed to be time-
independent. The consideration of time-varying model 

(1)ŷn
t
=

p∑

l=1

𝜙lyt−1 + at +

q∑

m=1

Θmat−m

parameters necessitates adaptive models for parameter 
estimation, which is beyond the scope of the current paper.

Due to the aforementioned statistical assumptions, 
VARMA model-based scenario generation algorithms will 
fail to retain the spatial correlation between the WFs. The 
reasons for this are as follows:

1. VARMA models primarily focus on capturing the tem-
poral dynamics within a time series and do not inherently 
account for the spatial interdependencies between different 
WFs. Spatial correlations in wind power data arise from 
factors such as wind patterns, geographical proximity, and 
shared weather conditions. By not explicitly incorporat-
ing these spatial dynamics, VARMA models alone cannot 
adequately capture or retain the spatial correlations.

2. VARMA models often make assumptions about the 
statistical properties of the data, such as stationarity, 
linearity, and parametric distributions with symmetri-
cal tails. However, wind power data often exhibits non-
Gaussian characteristics and non-stationary behavior, 
which are not accurately captured by these assumptions. 
The oversimplification of the underlying statistical 
properties can lead to the failure of VARMA models to 
capture the true spatial correlations.

3. VARMA models require decisions regarding the model 
order selection and parameter estimation, both of which 
introduce uncertainty. The choice of model order and 
estimation of parameters have a significant impact on the 
model's ability to capture spatial correlations accurately. 
Incorrect model order selection or inaccurate parameter 
estimation can result in the omission or misrepresentation 
of spatial dependencies, leading to a failure in retaining 
spatial correlations.

Based on the reasons discussed above, the VARMA 
model-based scenario generation algorithms alone are una-
ble to adequately retain spatial correlations in wind power 
data. To address this limitation, the integration of copula 
models, such as the regular vine (R-Vine) copula, with the 
VARMA model is proposed in this paper. VARMA and 
copula models are hybridized through residuals. Residuals 
of the VARMA model are inputs for the copula Model. The 
copula model captures the residual correlations between 
WFs, thus improving the representation of spatial correla-
tions in the generated wind power scenarios. The following 
equation can be used to calculate residuals:

Mathematically, residuals un
t
 are the difference between fitted 

or forecasted values ŷn
t
 and observed values yn

t
 of the nth WF’s 

power outputs. Uncorrelated residuals signify the best fitting of 

(2)un
t
= yn

t
− ŷn

t
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the VARMA model. But if residuals are correlated, means that 
VARMA model has not fully captured spatiotemporal correla-
tion. The dependency between the residuals of WFs is modelled 
using the R-Vine copula model in this paper. Copula models 
the dependency in terms of marginal and copula probability 
density functions separately which is free from an assumption 
of a specific distribution.

R‑vine Copula Model

The primary function of a copula in mathematics is to capture 
and quantify the dependency or correlation between variables. 
It provides a way to study and analyze the relationship between 
random variables separately from their individual distributions. 
For example, random variables in the power system such as 
wind speed, wind power, load, and solar generation are fol-
lowing the different probability distributions like Gaussian, 
Weibull, Gamma, Beta etc. Therefore, modeling of correlation 
between such variables is difficult by the conventional correla-
tion measures. By using copulas, it becomes possible to model 
and simulate multivariate data while preserving the marginal 
distributions (not having correlation) and capturing the cor-
relation structure. Copula has widely used for the following 
purpose in the literature:

1. Copulas allow for the modeling of various types of 
dependence structures between random variables, such as 
positive or negative correlation, tail dependence, and rank 
correlation.

2. Copulas can be used to construct multivariate distribu-
tions by combining specified marginal distributions with 
a copula function that represents the dependence structure.

3. Copulas provide a framework for estimating and test-
ing the dependence structure between variables based 
on observed data. They enable the estimation of copula 
parameters and the assessment of goodness-of-fit.

Mathematically, copula is a flexible approach to model 
multivariate distributions for different univariate time 
series. As per Sklar’s theorem, the multivariate cumulative 
distribution function (CDF) can be expressed as a function 
of marginal distributions of each variable and copula that 
defines the dependency between the variables [18, 27]. Let 
u1, u2.......un are estimated residuals of N-WFs at time t and 
F1,F2.......Fn are corresponding marginal CDFs. According 
to Sklar’s theorem, the joint distribution can be mathemati-
cally represented as follows:

where, C is n-dimensional copula and a joint CDF of 
n-dimensional residuals with uniform marginals. Similarly, 

(3)F
(
u1, u2, ......., un

)
= C

{
F1

(
u1
)
,F2

(
u2
)
, .....,Fn

(
un
)}

the joint probability density function (PDF) for residuals of 
n WFs can be expressed as follows:

where, c is the copula PDF and fn represents the marginal 
PDF of n residuals. The parametric normal distribution is 
used in this paper to estimate marginals’ PDF of residu-
als. Several classes of copula functions are available in the 
existing literature. These are broadly classified as Ellipti-
cal and Archimedean copula [25–28]. Gaussian copulas 
and t-copulas are standard multivariate Elliptical copulas 
used to model data has symmetrical tail dependence. While 
Clayton, Gumbel, and Joe copula are bivariate Archime-
dean copulas that can capture asymmetrical tail dependence 
i.e. common for wind power and wind speed distributions. 
Elliptical copulas can model high dimensional distributions 
with symmetric tail dependence while Archimedean copulas 
are limited bidimensional distributions with asymmetric tail 
dependence.

The efficient modelling of high dimensional distribution 
requires a copula model which can extract all variety of 
tail dependence without restricting to two dimensions. So, 
vine copula also named pair copula construction (PCC) 
emerged as a powerful tool to model the high dependence 
structure in form of bivariate copulas. This extensibility 
enhances the performance of the vine copula in exhibiting 
the arbitrary dimensional structure better than the ellip-
tical copula. Vine copula is more efficient in capturing 
the wind power data structure which possesses different 
characteristics of tail dependence. PCCs provide a way to 
explore the excellence of bivariate copula by extending it 
to variable dimensions.

The multivariate N-dimensional copula is shown in Eq. (3) 
and (4) are decomposed into N(N − 1)∕2 bivariate or pair 
copula as a Vine copula. The graphical representation of 
decomposed copula is called the R-Vine copula. In the R-Vine 
copula, the relationship between pair copula is depicted by a 
set of N-1 trees. Each tree Ti consists of Ni number of nodes 
and Ei edges. The first or initial tree has several nodes equal 
to the number of WFs. Each tree should satisfy the essential 
properties as described in [24, 27].

1. Initial tree T1 with the node N1 = {1, 2, ........n} and edge 
E1.

2. For i = 2, ......, n − 1 tree Ti has the node Ni = Ei−1.
3. Proximity condition: If two nodes are joined by an edge 

in a tree Ti , their corresponding edges in the tree Ti−1 must 
share a common node.

Further, an edge Ei is denoted by e = {j(e), k(e)|D(e)},∀n, j ≠ k 
where j(e) and k(e) are conditional nodes and D(e) is a 
conditioning set associated with an edge e . The elements 

(4)f
(
u
1

, u
2

, ......., un
)
= c

{
F
1

(
u
1

)
,F

2

(
u
2

)
, .....,Fn

(
un
)}

.f
1

(
u
1

)
, f
2

(
u
2

)
, ...., fn

(
un
)
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of these sets are all nodes. The conditioning set D(e) of 
the initial tree is empty [27]. The density function of the 
bivariate copula associated with each edge is represented 
by cj(e),k(e)|D(e).

The joint density function of an n-dimensional residual 
vector as shown in Eq. (4), can be expressed as a product 
of the marginal density functions and bivariate copula 
density functions shown in Eq. (5)-(7):

where, uD(e) =
{
ui|i ∈ D(e)

}
 c(x|�,B, �) is the R-vine copula 

density function, � is the R-vine structure, B is the set of 
bivariate copulas associated with the R-vine, and � is the 
parameter vector for the bivariate copulas. The sequential 
approach is used in this paper to select the R-vine structure 

(5)f
(
u1, u2, .., un

)
= c{u|�,B, �}.f1

(
u1
)
, f2

(
u2
)
, .., fn

(
un
)

(6)f
(
u1, u2, ......., un

)
= c{u|�,B, �} ×

[
n∏

k=1

fk
(
uk
)
]

(7)

c{u|�,B, �} =

n∏

i=1

∏

e∈Ei

cj(e),k(e)|D(e)

(
Fj(e),D(e)

(
uj(e)|uD(e)

)
,

Fk(e),D(e)

(
uk(e)|uD(e)

)

)

[24, 27]. In this approach, the trees are selected in such 
a way that the chosen pairs model the strongest pairwise 
dependencies present. The algorithm for the sequential 
approach is described in the Algorithm 2. The parameters 
of each bivariate copula are estimated by Maximum Likeli-
hood Estimation [27].

Proposed Scenario Generation Algorithm

R-Vine Copula and VARMA models are used in this paper 
to generate wind power scenarios considering spatiotemporal 
correlations. The proposed scenario approach is summarized 
in Algorithm 1. The first VARMA model is fitted on col-
lected historical wind power data of N WFs using Eq. (1) 
then standard residuals are formed using Eq. (2). The residu-
als are separated for 24-steps ahead. Before being fed into the 
VARMA model, WF's historic data is normalized based on 
installed capacity. To check stationary in the historical power 
output data of WFs, the Augmented Dickey-Fuller test is used 
[35]. If data is found to be non-stationary, then differencing 
and log transformation are applied to make data stationary. 
VARMA model is fitted on stationary data time series and 
model parameters and residuals are estimated.

Input: Historical power outputs of N-WFs

Output: Wind power scenarios for N-WFs 

1. Data Stationary test and transformation 

if (Data = = Stationary)

Go to the next step

else
Data transformation

end if 
2. VARMA model fitting: Estimate order and parameters

for t = 1:5:120

3. Forecast 24-step ahead wind power output of N-WFs considering spatiotemporal correlation using Eq. (1). 

4. Estimate residuals of N-WFs using Eq. (2) for randomly generated white noises. 

end for   
Initialize time counter t =1

while (t ≤24)

5. Prepare copula data by decomposing residuals into uniform marginals [0,1] N.

6. Select R-copula with minimum AIC and estimate copula parameters using the sequential method presented in 

Algorithm 2.

7. Estimate joint copula pdf for N-WFs using Eq. (6) 

8. Generate wind power scenarios using forecasted WFs outputs and sampling from joint PDF. 

update time counter t =t+1

end while
9. Evaluate the quality of generated scenarios using energy score and cross-correlation plots. 

Algorithm 1  VARMA-Copula based algorithm for generation of wind power scenarios
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Due to the normalized data, the residuals will range from 
-1 to + 1. As a result, the unit hypercube constraint [0, 1]N is 
violated. Therefore, in step 5, residuals must be converted 
into copula data. After the joint PDF has been constructed, 
the copula data is transformed back into the original data 
using Probability Integral Transformation in Step 8. Once 
the desired number of scenarios are generated, their qual-
ity check has been done using the energy score and spati-
otemporal correlation are depicted by the cross-correlation 
plot, describes in section III. An energy score with the mini-
mum value is the required result to prove the superiority 
of the model. Algorithm 2 presents the sequential method 
for R-Vine copula selection and parameter estimation. This 
algorithm's input is the residuals of the WFs under consider-
ation, and its output is the joint PDF. The sequential method 
captures most of the dependence in lower-level trees while 
leaving no or minimal dependence in higher-level trees.

Pearson and Kendall are two main correlation measures 
that have been used in the existing literature to demonstrate 
the correlation between two variables, namely electricity 
prices, renewable generation, and loads [36, 37]. Kendall's 
tau is a non-parametric measure, meaning it does not assume 
any specific distribution for the variables. On the other hand, 
Pearson is a linear correlation measure, and it relies on three 
key assumptions: (1) linearity; (2) normality of variables; and 

(3) homoscedasticity. However, for the case of wind speed and 
power time series, meeting these assumptions is challenging due 
to the following characteristics of wind energy: (1) a nonlinear 
relationship between wind power and wind speed in the wind 
turbine power curves; (2) wind power follows an approximately 
Weibull distribution instead of a normal distribution; and (3) 
wind power time series are typically characterized by hetero-
scedasticity rather than homoscedasticity. Consequently, using 
Pearson's linear correlation to measure the correlation between 
two nonlinear wind power time series may result in errors. In 
contrast, Kendall correlation does not rely on the above precon-
ditions, making it suitable for use in the proposed research to 
analyze the correlation between multiple WFs.

First, the empirical Kendall's tau is computed for every 
possible variable pair combination. The total number of 
combinations for each time step is the square of the num-
ber of WFs. Following that, the sum of absolute empirical 

Kendall's taus is maximized to form the initial tree. To 
minimize AIC, a bivariate copula is chosen from a pre-
defined set of copula families for each edge E1 of the ini-
tial tree. For other than initial tree edge Ei is denoted by 
Ei = {j(e), k(e)|D(e)} , where j(e) and k(e) are conditional 
nodes and D(e) is the conditional set associated with edge e.

The R-vine is a flexible copula that constructs a tree-
like dependence structure using a sequential modelling 

Algorithm 2  Sequential method for R-Vine copula selection and estimation [27]
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approach. This sequential modelling enables a more flex-
ible representation of dependency patterns. Each level of 
the vine structure can have a different bivariate copula 
family, allowing for the modelling of a wide range of 
dependencies. Different bivariate copula families can be 
used to model the dependencies at each level of the R-vine 
copula. The bivariate copula family includes the Gaussian, 
Student's t, Gumbel, Clayton, Frank, Joe, Tawn, independ-
ent copulas, and their hybrid. Copulas with rotations of 90, 
180, and 270 degrees are modified versions of the base or 
survival copula that capture asymmetrical tail and negative 
dependence. More information on vine copulas, including 
their CDF equations and parameter ranges, can be found in 
[27, 38]. Finally, parameters for selected bivariate copulas 
are estimated for each tree edge. Because the presented 

paper focuses on multistep scenario forecasting, copula 
parameters are calculated for each time step separately 
rather than for the entire time period. The procedure is 
repeated for the remaining tree set.

Evaluation of Scenarios

The quality of scenarios is of utmost importance as they 
impact the decision-making in stochastic programming. 
Various scenario quality assessment methods such as relia-
bility diagrams, sharpness, skill score and energy score are 
discussed [39]. Most of these quality assessment methods 
are limited to univariate probabilistic marginal distribu-
tion and overlooking the temporal independence structure. 
Overcoming the drawback, the various multivariate veri-
fication tools can be used. In this paper, an energy skill 
score is used to evaluate the quality of generated scenarios.

Energy Score:

The energy score is a proper scoring rule for verification 
of multivariate scenario forecasting. It is used in the evalu-
ation of time-coupled power infeed scenarios [39]. It is a 
negatively oriented score, i.e. lower the better. Providing 
the real observations of wind power data y and a matrix 
of corresponding generated scenarios ys , the Energy score 
can be calculated as:

Table 2  WFs id and installed capacity [40]

WFs AEMO ID Installed capacity Latitude Longitude

WF1 MTMILLAR 70 -30.85 136.58
WF2 STARHLWF 34.5 -35.57 138.16
WF3 LKBONNY2 159 -37.56 140.27
WF4 LKBONNY1 80.5 -37.76 140.40
WF5 WPWF 90.75 -35.11 137.72
WF6 HALLWF1 94.5 -33.37 138.73
WF7 HALLWF2 71.4 -33.52 138.87
WF8 CLEMGPWF 57 -33.50 138.10
WF9 BLUFF1 52.5 -33.35 138.80

Fig. 1  Location of WFs [40]
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where, m is the number of observations and ‖.‖ is the Euclid-
ean norm.

Cross‑Correlation Function

The cross-correlation function is a way to find the degree 
of dependency between two-time series in different times 
and spaces. It shows how one-time series behave when 
other shifts relative to time and space. Let sample scenario 
time series for ith and jth WFs are Xi and, Xj respectively. 
Both time series consists of m number of observations. 

(8)ES
(
Ys, y

)
=

1

m

m∑

i=1

‖‖ys,i − y‖‖ −
1

2m2

m∑

i=1

m∑

j=1

‖‖‖ys,i − ys,j
‖‖‖

The cross-correlation �i,j between Xi and Xj is defined as 
the ratio of covariance to root-mean variance [34, 35]. The 
cross-correlation is mathematically expressed as follows:

where, �̂�i,j is sample covariance, �2

i
 is the variance of time 

series Xi and �2

j
 is the variance of time series Xj . The cross-

covariance of time series Xi and Xj with some lag l is given 
by using Eq. (10).

(9)𝜌i,j =
�̂�i,j

√
𝜎2

i
𝜎2

j

(10)�̂�i,j =
1

m

m−l∑

t=1

[(
Xt
i
− Xi

)(
Xt+l
j

− Xj

)]

Table 3  Estimated AR and 
MA Coefficients for three 
representative WFs

WFs AR Coefficients MA Coefficients

WF2 WF5 WF8 WF2 WF5 WF8

WF2 0.9854 0.00087 0.000417 0.0895 -0.0130 0.0144
WF5 -0.0018 0.99261 0.002621 -0.0080 0.1768 0.0056
WF8 -0.0035 0.00082 0.941704 0.0096 -0.0030 -0.0790

Fig. 2  Residuals, sample autocorrelation and QQ plot of three WFs for first time horizon
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where, Xi
 and Xi

 are mean of Xi and Xj time series, respec-
tively. In this paper cross-correlation function approach is 
used to validate the spatiotemporal correlation between dif-
ferent wind power time series.

Case Study

Dataset

Proposed model efficacy is validated through application on 
real time nearby WF datasets. It is implemented on a pub-
licly available wind power data sets which is obtained from 
Australian WFs [33, 40]. Nine WFs from the four regions are 
selected to generate wind power scenarios. Table 2 shows the 
Australian Energy Market Operator Identity (AEMO ID) given 
to different WFs with installed capacity, latitude, and longi-
tude. The historical wind power data of each WF is normal-
ized according to its installed capacity for input in the scenario 
generation models. Figure 1 shows the location of nine WFs. 
The resolution of data is 5 min and 24-step ahead scenarios 
are generated. Among available data, 34561 data points at a 
resolution of 5-min are used for the training purpose.

Section of Benchmark Models

Among various time series univariate ARIMA, multivari-
ate VAR, and VARMA models are considered benchmark 
models. ARIMA is a popular time series univariate model 
used in a variety of applications including wind power 
forecasting [41, 42]. VAR is used to emphasize the supe-
riority of multivariate time series model over the univari-
ate model. VAR is a subset of the VARMA model that 
does not include the moving average component [32, 33]. 
VARMA is used as a benchmark to demonstrate the sig-
nificance of the proposed hybrid VARMA Copula model 
over the standard VARMA model. Machine learning 
models may be advantageous over time series models, in 
capturing the nonlinear dynamics of wind power genera-
tion. However, the performance of these models relies 
on careful input feature selection and hyper parameters 
tuning. In this paper, the ANN [10] and GAN [11, 12] 
models are chosen as benchmark models. ANN is suitable 
for prediction with labeled input datasets, while GAN 
excels at generating realistic data samples, such as wind 
power scenarios. The GAN model consists of a generator 
and a discriminator, and during training, both networks 
improve their performance through an adversarial pro-
cess. GAN can produce distinct wind power scenarios 
that capture the intrinsic features of historical wind power 
data, such as ramps and spikes. Both ANN and GAN 
models can generate wind power scenarios considering 

spatiotemporal correlations [10–12]. The detailed com-
parison of all scenario generation models is beyond the 
scope of the presented paper.

Simulation Platforms and Packages

All simulations have been performed on the R-studio plat-
form version 4.1.2. The Multivariate Time Series (MTS) 
version 1.2.1 and Vine Copula version 2.4.5 packages are 
used for modelling VARMA and R-Vine copula, respectively 
[35, 43]. Other than these main packages, readxl, writexl, 
vars, forecasts, copula and RSNNS packages are used for 
simulation of basic functions and benchmark models. The 
reference manuals for these packages can be found in the 
Comprehensive R Archive Network (CRAN) repository 
[44]. All of the code and results described in this paper are 
publicly available at https:// zenodo. org/ depos it/ 80178 60 and 
https:// zenodo. org/ depos it/ 80179 80.

VARMA Results

This section describes the results obtained using the 
VARMA model. In the VARMA model, parameters are esti-
mated through maximum likelihood approach. For reducing 
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computational efforts, here (1, 1) order of VARMA is used. 
Total of 171 parameters are estimated for VARMA (1, 1) 
model. These include 81 AR, 81 MA and 09 standard vari-
ance parameters. For simplicity, three representative WFs 
(WF2, WF5 and WF8) are selected from each zone and 
results for these three WFs are discussed in detail. Table 3 
shows the estimated AR and MA coefficients for three rep-
resentative WFs. After parameter computation, obtained 
residual covariance matrix is used to generate a normally 
distributed white noise for each WF separately.

Figure  2 depicted the diagnosis of VARMA model 
residuals for three denoted WFs. Because of the normali-
zation of the input data, the residuals range from -1 to 1. 
The obtained residuals appear to be a noise signal with 
many random spikes. This implies that the obtained results 
should be scrutinized further to assess the quality of the 
VARMA model. For the residuals of the VARMA, a sam-
ple autocorrelation function (ACF) and a quantile–quantile 
(QQ) plot are drawn. ACF plots demonstrate the presence 
of correlation in the sample data with different time lags. 

Table 4  Bivariate copula 
selection for R-Vine structure of 
first time horizon

Tree Edge Ei Type of copula Copula param-
eters

𝜏 Total number of 
bivariate copulas

�
1

�
2

1 5,8 BB8 6.00 0.87 0.64 8
1,5 Rotated BB8 90 degrees -6.00 -0.89 -0.66
3,1 Frank 7.17 - 0.57
2,3 BB8 5.59 0.7 0.50
6,4 Frank -9.01 - -0.64
6,2 Frank 8.49 - 0.62
9,6 Frank 10.23 - 0.67
9,7 Survival BB8 6.00 0.75 0.56

2 1,8|5 Rotated Tawn type 1 90 degrees -1.11 0.30 -0.05 7
3,5|1 Frank -3.46 - -0.35
2,1|3 Survival BB8 1.19 0.99 0.09
6,3|2 Survival BB8 1.85 0.94 0.26
2,4|6 Rotated BB8 270 degrees -6.00 -0.39 -0.28
9,2|6 BB8 1.47 0.99 0.20
7,6|9 Student’s t 0.29 7.14 0.19

3 3,8|1,5 Rotated BB8 270 degrees -6.00 -0.30 -0.20 6
2,5|3,1 Frank -4.65 - -0.43
6,1|2,3 Survival BB8 1.80 0.96 0.27
4,3|6,2 Rotated BB8 270 degrees -6.00 -0.40 -0.28
9,4|2,6 Rotated BB8 90 degrees -6.00 -0.43 -0.31
7,2|9,6 BB8 1.92 0.91 0.25

4 2,8|3,1,5 Frank -3.08 - -0.31 5
6,5|2,3,1 Frank -2.47 - -0.26
4,1|6,2,3 Rotated BB8 90 degrees -2.68 -0.79 -0.30
9,3|4,6,2 Gaussian 0.14 - 0.09
7,4|9,2,6 Independence - - -

5 6,8|2,3,1,5 Rotated BB8 90 degrees -1.90 -0.80 -0.18 4
4,5|6,2,3,1 Student’s t 0.19 9.49 0.12
9,1|4,6,2,3 BB8 2.57 0.77 0.27
7,3|9,4,6,2 BB8 1.53 0.91 0.16

6 4,8|6,2,3,1,5 Frank 1.68 - 0.18 3
9,5|4,6,2,3,1 Survival Clayton 0.04 - 0.02
7,1|9,4,6,2,3 Independence - - -

7 9,8|4,6,2,3,1,5 Independence - - - 2
7,5|9,4,6,2,3,1 Rotated Tawn type 2 270 degrees -17.54 0 0

8 7,8|9,4,6,2,3,1,5 Independence - - - 1
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Ideally, residuals should be uncorrelated. The ACF plots 
of WF2, WF5, and WF8 show that sample autocorrelation 
exceeds the limits for multiple lags. For WF2, sample cor-
relation at lags 5 to 8, 13, and 16 exceeds the threshold 
limit. This high sample autocorrelation value indicates 
that the correlation has been left in the residuals due to 
model fitting errors that must be extracted using copula 
models.

The QQ plot is drawn between standard normal quantiles 
and sample residual quantiles. The QQ plot will be straight if 
the residual follows a normal or uniform distribution. How-
ever, the sample quantiles for WF residuals are not properly 
aligned with standard normal quantiles. This demonstrates 
that the residuals do not follow the marginal distribution 
and have tail asymmetry. As shown in the figure, the tail 
asymmetry is greater for WF5 and WF8 than for WF2. 

Fig. 4  Performance of R-vine 
and Gaussian copulas

0 20 40 60 80 100 120 140
Time (minutes)

-4500

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

A
IC

AIC

-500

-400

-300

-200

-100

0

100

R-Vine Gaussian

Fig. 5  Generated scenarios for 
WF2, WF5 and WF8 using 
proposed, VARMA, VAR and 
ARIMA approaches. In the 
dual-axis sub-plots, the right 
y-axis depicts the generated 
wind power and mean scenar-
ios, measured in per unit. "Per 
unit" refers to the ratio of the 
power output of WFs to their 
installed capacities in MW

WF2

Pr
op

os
ed

WF5 WF8

VA
R
M
A

VA
R

AR
IM

A



Smart Grids and Sustainable Energy (2023) 8:17 

1 3

Page 13 of 18 17

Copula models must be used to model such asymmetrical 
dependency.

Copula Results

The estimated residuals from VARMA model are separated 
for each time step to model dependency using R-vine cop-
ula. Nine-dimensional R-vine copula is required to model 
dependency between considered WFs for each time step. 
Further, PCC decomposed a 9-dimensional copula into 
36 bivariate copulas using the sequential approach as dis-
cussed in Algorithm 2. Eight trees graphically represent the 
dependency between bivariate copulas. The obtained tree 
structure for first-time step is shown in Fig. 3. The nodes 
{1 to 9} of the initial tree represents the nine considered 
WFs. These nodes are connected through the eight edges 
{5,8},{1,5},{3,1}, {2,3}, {6,4}, {6,2}, {9,6} and {9,7}. The 
copula type, number, estimated parameters, and Kendall’s 
taus 𝜏 for each edge of the tree are shown in Table 4. For the 
second tree the nodes {5,8} and {1,5} are joined by the edge 
{1, 8|5} because node {5} is common between node {1} and 
{8}, and satisfy the proximity condition. Similarly, the tree's 
other edges can be defined.

In the Fig. 3, the nodes of the first tree T1 are the WFs and 
these are joined according to their dependency structure. It 
is observed in the tree T1 that WF5 and WF8 are closer to 
each other than WF3. That is also observed from the Fig. 1, 
the geographical distance between WF5 and WF8 is smaller 
than their distance from WF3.

The range of 𝜏 from -0.64 to 0.67 for tree T1 shows the 
strong dependency between the WFs. After constructing 
the vine tree, different copulas are selected for each edge. 
The selection process is typically done using a sequen-
tial method mentioned in the Algorithm 2. This algorithm 
evaluates various candidate copulas for each edge and 
selects the one that best captures the dependence structure 
observed in the residual data. The sequential method uses 
statistical criteria, such as AIC to compare the goodness-
of-fit of different copulas. The AIC criteria measure how 
well a copula fits the observed data and assess the quality 

of the dependence structure captured by the copula. The 
sequential method iteratively evaluates different copulas 
for each edge, assessing their fit to the data and selecting 
the one that minimizes the selected criterion. This pro-
cess is repeated for each edge in the vine tree until copu-
las have been selected for all edges. The type of copula 
selected for each edge in any tree also depends on the 
type of tail dependency presented in the residuals of WFs. 
For the first time step, the selected copulas are Gauss-
ian, Frank, t, BB8, Rotated BB8 (90 and 270 degrees), 
Rotated tawn (type 1 and 2), and independent as shown 
in Table 4. Among these copulas, Frank and Gaussian are 
one parameter copulas.

From the Table 4, it is observed that number of bivariate 
copulas and value of 𝜏 are decreasing from tree T1 to T8 . 
Thus, mostly independent copulas are selected for higher-
level trees and most dependences are modeled through the 
lower-level trees. The high proportion of independence 
copulas can significantly reduce the computational burden 
of modeling the R-vine copula. Additionally, the depend-
ence model is an offline model. Once the model is estab-
lished, enough scenarios can be extracted from it without 
excessive computation. It is not necessary to update the 
dependence model daily. In practice, it can be updated 
every few weeks.

The selection of R-vine copula instead of Gaussian 
copula to model for modeling spatial correlation between 
WFs is further validated by AIC information criteria in 
this paper. Figure 4 shows the calculated AIC over the 
given sample set for these two copula models for 120-
steps. This figure shows that R-vine copula outperforms 
the gaussian copula in terms of minimum AIC. So, R-vine 
copula offers higher accuracy and more flexibility to 
model asymmetrical dependences between WFs as com-
pared to Gaussian copula.

Scenario Results

The generated per-unit wind power scenarios using proposed 
approach and set of benchmarks models for denoted WFs are 

Table 5  Energy Score 
Evaluation

WFs ARIMA VAR VARMA ANN GAN Proposed

WF1 3.10 0.31 0.32 0.57 0.91 0.30
WF2 0.20 0.42 0.26 1.48 1.26 0.17
WF3 0.75 0.70 0.69 0.78 1.44 0.59
WF4 0.21 0.19 0.27 0.54 1.40 0.18
WF5 1.69 1.15 1.13 0.51 0.80 0.85
WF6 1.34 1.31 1.24 0.72 0.52 0.98
WF7 0.92 0.30 0.29 1.19 1.14 0.28
WF8 1.40 1.38 0.81 0.68 0.47 0.54
WF9 0.78 0.70 0.64 1.09 0.50 0.52



 Smart Grids and Sustainable Energy (2023) 8:17

1 3

17 Page 14 of 18

Fig. 6  Kendall's correlation for generated scenrios and actual output of considered WFs. Scenarios are generated using proposed approach, 
VARMA, VAR, GAN and ANN methods
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shown in Fig. 5. A total of 1000 scenarios are generated for 
each WF and 50 scenarios are plotted to better visualize multi-
ple parameters through YY plot. In Fig. 5 left Y-axis shows the 
actual value and, the right Y-axis show the scenarios & mean 
scenario. The significant bias between the actual values and gen-
erated scenarios using a set of benchmark models are witnessed 
in the scenario results depicted through YY plot. From Fig. 5, 
it is observed that scenarios generated using proposed distribu-
tion free approach capture the wind uncertainty with minimum 
bias. Although the assumed error distribution is same for all the 

approaches, a significant difference is observed in generated sce-
narios. Because VAR Model underperform and linearizes with 
time and the ARIMA model shows abrupt waves and irregular 
fluctuations and spikes in generated scenarios.

Scenario Results Evalauation through Energy Score, 
Kendall’s correlation and Cross‑Correaltion Plots

The proposed model can generate quality scenarios, which 
are then evaluated using energy scores, CCF plot and 
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heat plot. The energy score for proposed and benchmark 
approaches are provided in Table 5. The table highlights 
the minimum energy score obtained for the proposed and 
benchmark approaches in bold letter. In terms of minimum 
energy score, the proposed method outperforms 55.56% 
of WFs. However, GAN and ANN outperform for 33.33% 
and 11% of WFs, respectively. In the context of time series 
approaches, VAR offers the lowest energy score for 89% of 
WFs when compared to the ARIMA model. This is due to 
the VAR model's multivariate nature. When compared to 
VAR and VARMA, the proposed VARMA-Copula model 
provides the lowest energy scores for all WFs. Because 
the proposed method can model both correlation and tail 
dependency.

The Kendall's correlation plots and cross-correlation 
function are used to check spatiotemporal correlation in 
the generated scenarios. The Kendall's correlation plot for 
the considered WFs is shown in Fig. 6. Kendall's corre-
lation ranges from -1 to 1, where -1 indicates a perfect 
negative correlation, 1 indicates a perfect positive correla-
tion, and 0 indicates no correlation. This correlation figure 
is plotted using the actual data and generated scenarios 
through proposed and benchmark approaches to show the 
spatial correlation between the WFs. From Fig. 6, it is 
visualized that rank correlation obtained for scenarios gen-
erated using the proposed approach is almost like the cor-
relation obtained using real or actual data. However, it is 
significant for other benchmark approaches. The minimum 
deviation in heat map validates that the proposed approach 
can retain spatial correlations in the generated scenarios.

To complement the Kendall's correlation coefficient, 
a significance test using the “r test” is also performed on 
sample scenario generated using the proposed approach 
and benchmark approaches and the actual scenario. This 
test determines if the observed correlation coefficient is 
significantly different from zero, allowing you to assess the 
statistical significance of the association. The null hypothesis 
assumes no correlation (tau = 0), and the alternative hypoth-
esis suggests a non-zero correlation. The result of “r test” is 
highlighted by the red color in the Fig. 6. It shows the strong 
correlation between the WFs. For example, WF1 has the 
strong correlation with WF2, WF3, WF5 and WF8 (Fig. 6).

The Kendall's rank correlation coefficient matrix can be 
used to create correlation figure, which only display the spa-
tial correlations between the two data series over the given 
time period. On the other hand, CCF captures the spatial 
correlation between fixed and shifted (lagged) series as a 
function of time. The CCF for represented WFs are shown 
in Fig. 7. This figure shows that the cross-correlation plot 
for the mean scenario using the proposed VARMA-Copula 
approach follows a nearly identical pattern and moves in the 
same direction as the cross-correlation plot for the actual 

data. However, the CCF plot of the actual data differs sig-
nificantly from the CCF plot of the WFs combinations for 
the VARMA, VAR, ANN, and GAN models. The proposed 
approach provides a two-stage modelling solution for spa-
tial correlation between WFs. At first, spatial correlation is 
modelled using mutual parameters of the VARMA model. 
Later, spatial correlation is recovered from the residuals of 
the VARMA model using the R-Vine copula.

Conclusion

To address the uncertainties in various decision-making 
problems of power system and electricity market, a high-
quality generated scenarios plays a significant role. A 
hybrid VARMA-Copula based distribution-free approach 
has been proposed in this paper to generate wind power 
scenarios considering spatiotemporal correlation. The 
proposed model can generate scenarios for multiple 
WFs considering spatiotemporal correlation without the 
assumption of the marginal distribution. The proposed 
model has been implemented on the nine WFs located in 
Australia. The superiority of the proposed scenario gen-
eration approach has been proved by comparison with a 
set of benchmark models. The obtained results show that 
the proposed approach can generate quality scenarios with 
minimum energy scores without loss of spatiotemporal 
correlation, which can easily be depicted in the Kendall's 
correlation and CCF plots. It emphasizes that uncertainty 
modelling is improved by incorporating spatial–temporal 
correlation between nearby WFs. The R-Vine is a flexible 
copula model that uses a variety of bivariate copulas to 
represent asymmetrical dependency. This extends the pro-
posed method for generating quality wind power scenarios 
with minimum energy scores. The proposed method can 
be enhanced by applying adaptive and non-linear forecast-
ing models with time-varying parameters to generate wind 
power scenarios. The proposed work could be extended to 
generate load, solar generation, and price scenarios for dif-
ferent power systems and electricity markets applications.

Data Availability The input data used in this manuscript is available at 
reference [40]. All of the code and results described in this paper are 
publicly available at https://zenodo.org/deposit/8017860 and https:// 
zenodo. org/ depos it/ 80179 80.
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