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Abstract

On recent trends, the reactive power planning problem has received a considerable amount of attention for the allocation of
reactive power resources, both static and dynamic such as switchable capacitors and/or reactors, as well as Var compensators,
respectively. The reactive power has a significant impact on voltage profile, stability and transmission loss in power systems.
In recent years, voltage instability is recognized as a major threat to system operation due to a shortage of reactive power
in an interconnected transmission line. These voltage conditions could be analyzed and improved by proper coordination
of reactive sources/sink. In this article, the minimization of transmission loss and operating cost is performed by using the
sine cosine algorithm (SCA) and quasi-oppositional based sine cosine algorithm (QOSCA) technique for standard IEEE 14
and IEEE 30 and IEEE 57 bus test system of the connected power network. The proposed QOSCA reduces the transmission
losses by 6.38% in IEEE 14, 4.56% in IEEE 30 and 12.77% in IEEE 57 bus system. The results obtained by QOSCA and
SCA are compared with other popular techniques recently reported in recent state-of-literature. It is observed that QOSCA
yields better results in terms of reducing transmission loss, operating costs, and improving the voltage profile of each bus.

Keywords Reactive Power Planning - Active Power Loss - Sine Cosine Algorithm - Quasi-oppositional method
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allocation of additional reactive power sources that should
be installed in the network for a predefined horizon of plan-
ning at minimum cost while satisfying equality and inequal-
ity constraints. The optimal implementation of new reactive
sources can be deployed according to specific indices, satis-
fying the objectives of the problem. However, reactive power
sources are needed for increasing the capacity of transmis-
sion lines, correction of power factor, reduction of losses,
and voltage profile improvement. RPP is an essential issue,
especially in modern power systems. It can also be applied
without supporting reactive power in some transmission
networks.

Further, load bus voltages magnitudes may differ from
their permissible limits, which may cause not only unaccep-
table power quality but the increment in loss of real power.
In such cases, additions of the transmission line in an exist-
ing network is required which may not be economical. How-
ever, the RPP problem is combinatorial and is required to be
solved via mixed-integer nonlinear programming. The objec-
tive of the RPP problem is to determine ‘where,” ‘what,’
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‘when’ and ‘how much’ new devices are needed to an exist-
ing network to make its process reasonable for a pre-defined
horizon of planning at minimum total costs.

Authors have implemented simulated annealing tech-
niques in [1, 2] to determine locations to install capacitors
and optimal control settings of these reactive sources. A
convex chance-constrained model for long term investment
planning and operation is discussed in [3]. The solution
for reactive power planning is determined for the Iranian
power grid using a Genetic algorithm in [4]. The mathemati-
cal model for solving transmission expansion and reactive
power planning problems is discussed in [5]. An adaptive
differential evolution procedure is presented in [6] to solve
optimal reactive power dispatch problem, and authors have
adopted an adaptive penalty factor to alleviate the effects
of the dependent variable violation. A parallel hurricane
optimization algorithm is proposed in [7] for solving the
economic load dispatch problem. A novel application of
Tree-shed algorithm to solve optimal power flow problem
in a large-scale electric power system are described in [8].
Energy storage in grid-connected microgrid under uncertain
real-time prices are discussed in [9]. The chance-constrained
optimization algorithm is studied in [10] for the risk-assess-
ment approach for the solution of the RPP problem.

Transmission expansion and reactive power problems are
formulated as mixed-integer linear programming in [11].
The expected violation index for security-constrained RPP
problems is discussed in [12]. An RPP optimization model is
discussed in [13] by an enhanced simulated annealing (SA)
algorithm taking advantage of the modified Gray code. A
seeker optimization algorithm is proposed in [14] for the
solution of reactive power dispatch. A solution of reactive
power planning problem is determined by loss sensitivity
approach in [15], Teaching learning-based optimization
algorithm in [16], hybrid harris hawk particle swarm opti-
mizer in [17] and hybrid forms of particle swarm optimiza-
tion (PSO) algorithm, oppositional based grey wolf optimi-
zation (OGWO) algorithm in [18]. Management of reactive
power is proposed in [19] based on fuzzy. RPP problem,
along with the voltage stability margin, is evaluated by the
differential evolution technique in [20]. Sine Cosine optimi-
zation algorithm is introduced in [21]. The concept of oppo-
sitional based learning was introduced by Tizhoosh [22].

Transmission expansion planning model along with sec-
ond-order cone programming (SOCP), has been proposed
in [23] for high penetration of wind energy. Optimal recon-
figuring of the Algerian distribution electrical system with
FACTS devices has been proposed in [24] using a fractal
search algorithm. The ameliorated Harris hawk optimizer
has been proposed in [25] for the solution of Optimal
Reactive Power planning problems. A two-stage strategy
like dynamic multiyear transmission expansion planning
and transmission expansion planning problem has been
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developed in [26]. Article [27] proposes a planning strat-
egy based on soft computing techniques to determine the
system energy loss and economic benefit for the standard
test system. The proposed work in [28] considered vari-
ants of PSO to improve the reduction in the total cost of
energy loss and real power loss for standard New England
39 bus system. Weak bus detection methods are discussed
in [29] and constrained VAr planning using penalty suc-
cessive conic programming in [30]. A summary of opti-
mization strategies for reactive power planning problems
is summarized with its merits and demerits of the various
approaches as shown in Table 1.

The unique visage of the sine—cosine algorithm is the
ability not to get trapped in local minima, more comfort-
able to implement and gives the same result even after
many trails. The silent features of the proposed QOSCA
approach for RPP can be summarized as below:

a) Efficiently allocating reactive power sources during the
planning and consequently decreasing the operating
cost.

b) Improvement of voltage profile is also obtained on each
bus.

c) Sine Cosine optimization algorithm appears to be the
best method for minimizing the transmission loss at
minimum operating cost.

d) The proposed Quasi-oppositional based Sine Cosine
algorithm alleviates the drawbacks of the recently devel-
oped optimization algorithms.

e) Applications of standard IEEE 14, IEEE 30 and IEEE 57
bus test systems are carried. Therefore, the capability of
the Sine Cosine algorithm is achieved.

In this article, Quasi-oppositional based Sine—Cosine
algorithm has been proposed to solve the RPP problems
for minimization of the transmission power loss and sys-
tem operating cost while satisfying all the constraints.
The main advantage of the SCA technique is that it does
not get trapped in local minima. The proposed QOSCA
optimization technique is applied to standard IEEE 14,
IEEE 30 and IEEE 57 bus systems of a connected power
network. The obtained results are compared with different
techniques in the published articles, which states the capa-
bility and feasibility of the proposed SCA for the solution
of RPP problems.

The organization of the rest of the paper is done in
the following way. Section 2 includes a mathematical
problem formulation including applicable constraints
pertaining to the RPP problem. The description and
application of QOSSA and SSA techniques are estab-
lished in Sect. 3. Section 4 discusses simulation results
for both the test system followed by concluding remarks
in Sect. 5.
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Problem Formulation

The prime importance of RPP is to minimize the active
power losses and operating costs of the system. This
planning is done through a proper organization and
control of variables, which are transformer tap setting
arrangements, shunt capacitors and generation of reac-
tive power. Different advanced techniques have been
developed to reduce the line losses in order to achieve
an efficient and economic system while keeping bus
voltage within an acceptable limit. The operating cost is
minimized by cost due to reduced energy losses and the
proper installation of capacitors at weak buses. The fol-
lowing objective functions and constraints are considered
for the problem of RPP:

The active power loss in the line can be calculated as:

Minimize, F, = min (Py,..) = 2" g(VZ+ V2 =2VVicos (5,-5)) (1)

where, P, represents active power loss, g is the conduct-
ance of the k™ branch connected between i and j branch.
Ny is the number of transmission lines, V; and V; is the volt-
age magnitude at the ith and jth bus respectively. (6; — ;) is
the voltage angle difference between i and j* bus.

The operating cost of the system can be evaluated as:

The cost due to energy losses and the cost of the shunt
capacitors is minimized to have an economical operation.

Cost of installing capacitor = 10008,

Energy rate =0.06$/kWh,

capacitor cost/kVar=3$

Energyrate = 0.06 x 10000 x 8760 )

Total operating cost of system = P, . X Energy Cost

Loss
+ Cost of shunt capacitor

3

It is a conflicting objective to minimize both real power

loss and maintaining voltage within permissible limits

simultaneously. Hence, it is done by proper controlling

of different control variables represented by a vector U,

consisting of reactive power generator Qfg, shunt capacitor
value Q! and tap setting 7, as:

1 1 : 1
U= [Qg,... LSOO QT LT

where, npv is the total number of generator buses, nc is the
total number of shunt capacitors and nt is the total number
of tap changing transformers.

A dependent variable X associated with active power
loss consisting of slack bus power P,, the voltage of the
load bus Vli , reactive power of a generator Q; and transmis-
sion line loads can be represented as:

@ Springer

X=|P.V,...., V,””",Q;, e O “)

where, npq is the number of load buses, npv is the number
of PV buses.

Equality constraints:

These are load flow equations, active and reactive power
constraints for any i bus.

i i N, .
P, ~Py= 3 " ViV(Gycost; + Bysindy) (5)

i R a1/ .
0, ~ Q=Y " ViV;(Gysindy; — Bjcosy) (6)

where,N, is the number of buses. Pl and P; are the active
power generation and demand of the i bus whereas, Q;
and ij are the reactive power generation and demand at the
i bus. G,; and B; are the real and the imaginary admittance
values respectively.

Inequality constraints-Generator constraints:

0 <0 <Q i=123..N, -
Vi SVISVE i=1,23,.. N, ®)

where, N, is the number of generator buses, Q; ~and Q'

min 8max

are minimum and maximum reactive power generation,V;
m

in

and Vé are the upper and lower limits of all the particular

max

generator buses.
Limitation on reactive power injections:

0 <0 <0

min max

€))

where, O/ and Q' are the reactive power injection limit
by the shunt capacitors.

Transformer tap setting constraints:

k k k

Tmin < Tp < Tmax (10)

k=1,2,3,...,ntap.where, ntap is the number of taps
changing transformer branches.

Line flow limits:

i< i
S8, (11)
where, §7is the maximum load on the i line.
Limitation on bus voltage:
i i <y
Vl””” S Vl S Vlm(//\' (]2)
i=1,23......... nb
V] and V| are the minimum and maximum voltage

min max

limits, nb is the total number of load buses.
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Sine Cosine Optimization Algorithm

Sine cosine optimization algorithm is a population-based
optimization algorithm that is based on the mathematical
function of Sine & Cosine. This algorithm has been pro-
posed by Mirjalili [21] in 2016. In the present work, SCA
is used as the optimization algorithm for reactive power
planning. Initially, SCA creates multiple random solutions
and these solutions then fluctuate towards or outwards the
best solution on sine cosine functions given by the math-
ematical model of SCA.

The optimization process is divided into two-phase that
is, exploration and exploitation. In exploration, promising
regions of search space are obtained, as the optimization
algorithm combines with the random solutions in the set
of solutions precipitously with a high rate of random-
ness. In exploitation, there is a gradual change in random
solutions, and random variations are less as compared to
exploration. Mathematically, exploration and exploitation
of updating positions can be expressed as:

Xi

Loy = X 1 X sin(r) X [ryP = X!

13)

Xi

' =X+ rg X cos(r)) X ’rsz - X! (14)

The two equations can be used depending on the factor
ry as:

Xi —

+1 =

{ Xi + rosin(r; ) X |r, PP = X|,r; < 0.5 15)

X!+ rocos(ry) X [P = X!|,r3 205

where, X' ; is the position of the present solution in i dimen-
sion at i™ iteration. r,, r,, r,, r; are random numbers. P is the
position of the destination point in i™" dimension, Il is the
absolute value. In order to achieve a balance between the
exploration and exploitation phase, the dynamic fine-tune
of ry during the search process is carried out using Eq. (16).

ro=a—(ax iter) [itermax (16)

where, a is a constant, iter is the current iteration and iter-
max is the maximum number of iterations.

r, € [0,2x]
r, € [0,d]
ry €10,1]

r, determines the movement direction, either in the region
between the solution and the destination or outside it. r,
determines the depth of movement, towards or outwards the
destination.r, brings a random weight for the destination in
order to stochastically emphasize (r,>1) or de-emphasize
(r,<1) the effect of destination in defining the distance.r,
equally shift between sine and cosine components.

Opposition-based learning

Opposition based learning (OBL) was first instituted by
Tizhoosh [22], which can potentially accelerate the conver-
gence of optimization techniques and has proved immensely
beneficial for computational intelligence. Any evolutionary
or swarm optimization methods begin with the initial solu-
tion (initial population generation) which improves and
updates to reach some optimal solution finally. Termination
is based on setting up predefined criteria and computation
time is a critical component to evaluate the robustness and
effectiveness of a given algorithm depends on the distance
between the initial guess and optimal solution. Fitness
evaluation or the chances to arrive at the optimal solution
enhances by checking the opposite guesses. This forms the
basic framework of opposition-based learning.

So, the fitter one whether the guess or different guess, can
be applied to the initial solution and subsequently to each
solution in the current population to intensify convergence.
Opposition based learning primarily benefits by increasing
the probability of even visiting the unproductive regions.
Also, it has been established through research that the dif-
ferent solution has a higher possibility to inch towards global
optima as compared to a random solution [23]. Mathemati-
cally, OBL can be described as follows:

Quasi-oppositional SCA

In this section, the author proposes a hybrid optimization
technique of QOSCA by introducing an opposition-based
learning concept in the SCA technique. All swarm optimi-
zation techniques commence with some initial solution or
initialization, upgrading by fitness evaluation and terminat-
ing at an optimal solution.

In the proposed novel hybrid technique of QOSCA, SCA
is considered as the parent algorithm and Quasi-oppositional
optimization is embedded in SCA to accelerate the speed of
convergence. QOSCA engages opposite points for initializ-
ing the population and generation jumping and incorporates
fitter candidate solutions from the start of the optimization.
The mathematical model of a quasi-opposite point is dis-
cussed below:

(i). Opposite point

Let Xjf’ be any control variable € [Xma", Xmi"], then any
opposition variable can be obtained as

— i 0
O0X; = X[ + X0 = X; an

In this work, the maximum and minimum opposition vari-
ables are reactive power generation limits, transformer tap
settings and shunt compensation limits as described below:

@ Springer
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max __ max max max ‘max max max
X = | QS L Qs TP LTI QO L Qe |

Xj?“i“ = [ ’g;“ Qg‘}“ T{“i“ iji" QCE“i" QCJ‘.nin ]
Therefore, the opposition matrix and quasi-opposition
matrix are given by Eq. (18) and (19) respectively.
. 0 .
YR D GLED (I GLED GLESD ¢

OX = (18)

Xmax 4 xmin _ x0 - ymax 4 ymin _ x0
il il il ij ij ij

where, i=Number of population and j=Number of
variables.

Q0X,; ... QOX;;
Q0X = 19
QOX;

QOX,, ...

The convergence speed is accelerated by selecting a quasi-
opposite population matrix as the initial population. The gen-
eration of the next population is guided by jumping rate and this
is incorporated in SCA optimization to increase the effective-
ness and robustness of the algorithm. The computational steps
followed in the new technique of QOSCA are given as follows:

Algorithmic perspective for the proposed work using
Sine—Cosine optimization algorithm is given below:

Step 1. Define test system data.

Step 2. Define maximum iteration and agents.

Step 3. Set the upper and lower boundary limits of control
variables like reactive power generation, transformer
tap settings.

Step 4. Generate population matrix.

Step 5. Check the inequality constraint limits for the posi-
tion of population matrix, if they are satisfied, then go
to the next step; otherwise again generate population
matrix and until all the inequality constraints of Eq. (7)
to Eq. (12) are satisfied.

Table 3 Boundary of transformer tap setting and shunt capacitor

Variables Test system  Mini- Maximum
mum Value (p.u)
Value
(p-u)
Shunt capacitor [19] IEEE 14 0.0 0.15
IEEE 30 0.0 0.15
IEEE 57 0.0 0.30
Transformer tap setting [19] IEEE 14 0.9 1.0
IEEE 30 0.9 1.0
IEEE 57 0.9 1.0

Step 6. Initialize 1|, r, and r5. Then by using the Eq. (16),
determine moment direction for the current iteration.

Step 7. Update the position of search agents by exploration
and exploitation phase from Eq. (13) to Eq. (15).

Step 8. Update the test system data with a new population
string.

Step 9. Y-bus is formed.

Step 10. Newton Raphson program is executed and the
objective function is determined using Eq. (1) and
Eq. (3) while satisfying equality and inequality con-
straints of Eq. (5) and Eq. (12).

Step 11. Repeat Step-(6) to step-(10) for all the search
agents. Now compare the optimum result value with
all the search agent solutions. Store the minimum value
of the optimum result and the corresponding position
of search agents.

Step 12. Set the iteration number equal to 1.

Step 13. Repeat step 4 to step 11. Then increase the current
iteration by 1.

Step 14. Now repeat step 4 to step 11 until the maximum
number of iteration it has reached.

Step 15. If the current iteration is equal to the maximum
number of iteration, then terminate the iterative pro-
cess. Save as the best solution to optimization prob-

Table 2 Boundary of reactive
power generation at the

generator bus

lems.
IEEE 14 BUS SYSTEM
Generator Bus 3 6 8
Minimum Value (in p.u) [19] -0.40 0.0 -0.06 -0.06
Maximum Value (in p.u) [19] 0.50 0.40 0.24 0.24
IEEE 30 BUS SYSTEM
Generator Bus 5 8 11 13
Minimum Value (in p.u) [19] -0.20 -0.15 -0.15 -0.10 -0.15
Maximum Value (in p.u) [19] 0.60 0.625 0.50 0.40 0.45
IEEE 57 BUS SYSTEM
Generator Bus 2 3 6 8 9 12
Minimum Value (in p.u) -0.17 -0.10 -0.08 -1.40 -0.03 -0.50
Maximum Value (in p.u) 0.50 0.60 0.25 2.0 0.09 1.55

@ Springer
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Table 4 Optimal control parameters for minimum transmission loss and total operating cost when tested on different algorithms on the IEEE-14 bus system

OGWO [18] SCA QOSCA

GWO

[18]

Sens-DE [15] Sens-PSO [15] SPSO [18] APSO [18] EPSO [18]

Sens-GA [15]

Control Variable

Reactive power generation of generators (in p.u)

0.3124
0.2498
0.1869
0.0007

0.3078
0.2440
0.1872
0.305

0.3232
0.2550
0.1549
-0.0030

0.2919
0.2502
0.1542
0.0204

0.3077
0.2485

0.

0.3078
0.2501
0.2257
0.0990

0.3081
0.2486
0.24

0.3125
0.2516
0.24

0.2815
0.2589
0.24

0.3120
0.2507
0.2302
0.0897

Transformer tap setting (in p.u)

Q: @

Q: (3

24

Qg (6)

0.1012

0.1016

0.0888

0.1197

Qs (®)

0.9
0.9
0.9

0.9

0.9661
0.9500
0.9500

0.9688
0.9712
0.9004

0.9542
0.9518
0.9513

0.9542
0.9518
0.9513

0.95
0.95

0.9573
0.95
0.95

0.9531
0.95
0.95

0.95
0.95

Tap (8)

0.9

Tap (9)

0.9

0.95

0.9502

Tap (11)

Shunt Capacitors (in p.u)

QCI

0.0571
0.0520
0.0394
0.1315
6.9097

0.0468
0.0423
0.0409
0.1315
6.9109

0.0612
0.0563
0.0441
0.1320
6.9361

0.0498
0.0704
0.0332
0.1320
6.9369

0.0472
0.0530

0.0

0.0485
0.0523
0.0121
0.1321
6.9481

0.0478
0.0515

0.0

0.0478
0.0580

0.0

0.0344
0.0539
0.0082

NR

0.0473
0.0526
0.0147

NR

QCZ

QC3

0.1321
6.9477

0.1321
6.9477

NR

Active power loss (p.u)

6.9470 6.9439 6.9472

Operating cost x10° ($)

=
s
[ =
K=l
©
5
C
(]
© 0.2} e o E
(o] F S e———
2 mpeesas R Qg (2)
° 0.1 ===y 13y .
2 ---'Qg (6)
s Qg (8)
x O

0 160 260 360 460 500

No. of Iteration

Fig. 1 Variation of Reactive power generation profile

Result and discussion

In order to demonstrate the applicability and validity of
the proposed Quasi-oppositional based Sine Cosine opti-
mization and Sine Cosine optimization algorithm tech-
nique for the solution of reactive power planning, stand-
ard IEEE 14, IEEE 30 and IEEE 57 bus test system has
been considered for the testing purpose. Boundary limits
of control variables of these test systems are shown in
Tables 2 and 3. In order to validate the proposed optimi-
zation algorithm, it has been made to run for 500 itera-
tions and 40 number of search agents in each of the given
test systems.

In IEEE 14 bus test system, there are four generator buses
with interconnected 20 transmission lines. Three branches are
equipped with tap changing transformer and one shunt capaci-
tor. Initially, active power loss without reactive power plan-
ning is 13.99 MW and its operating cost is 7.3531 x 10°$. The
search space of this test system has 10 dimension that includes
four reactive power generators, three transformer tap settings
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Fig.2 Variation of Shunt capacitors for Q. (1), Q. (2) and Q. (3)
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Fig.3 Variation of Transformer Tap settings for T (6-9), T (6-10)
and T (28-27)

and shunt capacitors are placed at weak buses, where a large
amount of reactive power is present. Table 4 represents the
control parameters obtained by the proposed SCA. The results
of proposed SCA are also compared with other optimization
algorithm like Sens-GA [15], Sens-DE [15], Sens-PSO [15],
SPSO [18], APSO [18], EPSO [18], GWO [19] and OGWO
[19]. The variation of reactive power generation profile is
shown in Fig. 1. The variation of shunt capacitors for Qc (1),
Qc (2) and Qc (3) is shown in Fig. 2. With the application
of the proposed approach, total active power loss is reduced
to 0.1315 p.u and system operating cost is also reduced to
6.9234 x 10%$. Figure 3 depicts the reactive power genera-
tion variation at the generator buses during every iteration.
Figures 4 and 5 displays the transformer tap setting condition
and reactive power variation of shunt capacitors respectively.
The minimization of the active power loss curve is shown in
Fig. 6 and the convergence characteristics curve of the sys-
tem operating cost is shown in Fig. 7. The convergence curve
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Fig.4 Convergence curve of active power loss using SCA and
QOSCA technique

@ Springer

6

6.97 10 .
------- SCA

6.96 —— QOSCA 1
& 6.95| ]
|
8 6.94f! ]
2 N
£ 6.93} ]
6 N
o
o)

0 100 200 300 400 500
No. of Iteration

Fig.5 Convergence curve of operating cost using SCA and QOSCA
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candidly reveals the superiority of the proposed algorithm and
the influence of QOSCA to avoid premature convergence and
yield solutions with accuracy.

Similarly, In IEEE 30 bus test system, there are five
generator buses with interconnected 41 transmission lines.
Three branches are equipped with tap changing transformer
and two shunt capacitors. Initially, active power loss without
reactive power planning is 7.11 MW and its operating cost
is 3.737016 x 107$. The search space of this test system has
13 dimension that includes five reactive power generators,
three transformer tap settings and four shunt capacitors are
placed at weak buses where a large amount of reactive power
is present.

Table 5 represents the control parameters obtained by
the proposed SCA. The results of proposed SCA are also
compared with other optimization algorithm like Sens-GA
[15], Sens-DE [15], Sens-PSO [15], SPSO [18], APSO
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Fig.6 Variation of Reactive power generation profile
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Table 5 Optimal control parameters for minimum transmission loss
and total operating cost when tested on the IEEE-57 bus system

Variable SCA QOSCA
Reactive generation of generators (in p.u)

Qs (2) 0.1575 0.4942
Qg 3) 0.4028 0.3094
Qg (6) 0.0137 0.1013
Qs (®) -0.4394 0.8443
Qs 9 0.0201 0.0599
Qg (12) -0.0109 0.0759
Transformer tap positions (in p.u)

T (19) 09114 0.9342
T (20) 0.9123 0.9080
T (31) 0.9958 0.9973
T (35) 0.9152 0.9218
T (36) 0.9000 0.9196
T (37) 0.9979 0.9788
T (41) 0.9000 0.9000
T (46) 0.9000 0.9225
T (54) 0.9016 0.9065
T (58) 0.9021 0.9016
T (59) 0.9348 0.9293
T (65) 0.9044 0.9001
T (66) 0.9000 0.9000
T (71) 0.9000 0.9025
T (73) 0.9980 0.9957
T (76) 0.9721 0.9924
T (80) 0.9028 0.9012
Shunt capacitors (in p.u)

Qci 0.2971 0.2970
Qe 0.2772 0.1573
Qc3 0.1393 0.2691
Qcs 0.1119 0.1800
Active power loss (p.u) 0.2509 0.2482

Operating cost ($) 1.3188 X107 1.3044 x107
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Fig. 8 Variation of Shunt capacitors for Q, (1), Q. (2) and Q. (3)

[18], EPSO [18], GWO [19] and OGWO [19]. With the
application of the proposed approach, total active power
loss is reduced to 0.0679 p.u and system operating cost is
also reduced to 6.9097 x 10°$. Figures 6 and 7 depicts the
reactive power generation variation at the generator buses
during every iteration. Figures 8 and 9 displays the reac-
tive power variation of shunt capacitors and transformer
tap setting conditions respectively. The minimization of
the active power loss curve is shown in Fig. 10 and the
convergence characteristics curve of the system operat-
ing cost is shown in Fig. 11. From obtained tables and
figures, it can be observed that the proposed QOSCA
and SCA techniques are able to reduce real power loss
to a large extent; hence, the capability of the transmis-
sion lines improves. It can also be observed that QOSCA
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Fig.9 Variation of Transformer Tap settings for T (6-9), T (6-10)
and T (28-27)
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Fig. 10 Convergence curve of active power loss using SCA and
QOSCA technique

optimization gives the better results as compared to the
other optimization techniques.

The standard IEEE 57 bus test system consists of
seven generating units at buses 1, 2, 3, 6, 8, 9 and 12
interconnected with 80 transmission lines and seventeen
branches are equipped with tap changing transformer. In
addition, there are shunt capacitors at buses 18, 25 and
53. Bus 1 is selected as slack bus. The total active power
demand is 1251.70 MW and reactive power demand is
335.70 MVAr at 100 MVA. Initially, active power loss
without reactive power planning is 27.99 MW and its
operating cost is 1.471 x107$. The search space of this
test system has 13 dimension that includes six reactive
power generators, seventeen transformers tap settings and
three shunt capacitors are placed at weak buses where
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Fig. 11 Convergence curve of operating cost using SCA and QOSCA
technique
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a large amount of reactive power support is required.
Table 5 shown best control parameter setting obtained
by proposed SCA and QOSCA. With the application of
the proposed approach, total active power loss is reduced
to 0.2482 p.u and system operating cost is also reduced
to 1.3044 x107$. Figure 12 depicts the reactive power
generation variation at the generator buses during every
iteration. Figures 13 and 14 displays the reactive power
variation of shunt capacitors and transformer tap setting
conditions respectively.

The convergence curve of active power loss using SCA
and QOSCA technique is shown in Fig. 15. The convergence
curve of operating cost using SCA and QOSCA technique
is shown in Fig. 16.
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Conclusion

Reactive power planning has been a crucial problem for
power system operators. The prime importance of RPP is
to minimize the active power losses and operating costs of
the system. This planning is done through proper co-ordina-
tion of control variables, which are transformer tap setting
arrangements, shunt capacitors and generation of reactive
power by generators. Different state-of-the-art methods have
been developed to reduce line losses in order to achieve an
efficient and economical system. In this work, SSA and
QOSSA techniques have been successfully implemented
on standard IEEE 14 and IEEE 30 bus system of the con-
nected power network. The proposed QOSCA reduces the
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Fig. 15 Convergence curve of active power loss using SCA and
QOSCA technique
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Fig. 16 Convergence curve of operating cost using SCA and QOSCA
technique

transmission losses by 6.38% in IEEE 14, 4.56% in IEEE
30 and 12.77% in IEEE 57 bus system. The outcomes are
compared with other techniques used in the literature. It is
observed that the QOSCA algorithm provides much better
results than the other techniques used in recent state-of-lit-
erature. It can be concluded that the Sine cosine algorithm
may be considered as an effective optimization technique for
solving RPP problems and can be considered as a promising
candidate for future researches.
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