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Abstract
This paper proposes a reliable and computationally efficient framework for solving multiobjective mixed-integer Optimal
Power Flow problems. The main idea is to apply the interior point theory and the goal-attainment method to recast a generic
OPF problem with both real and integer decision variables by an equivalent scalar optimization problem with equality
constraints. Then, thanks to the adoption of the Lyapunov theory, an asymptotically stable dynamic system is designed such
that its equilibrium points coincide with the stationary points of the Lagrangian function of the equivalent problem. Thanks
to this approach, the OPF solutions can be promptly and reliably obtained by solving a set of ordinary differential equations,
rather than using an iterative Newton-based scheme, which can fail to converge due to several numerical issues. Detailed
numerical results are presented and discussed in order to prove the effectiveness of the proposed framework in solving real
world problems.

Keywords Smart grid optimization · Power system computing · Power system analysis

Introduction

Optimal Power Flow (OPF) has been a widely used analysis
tool by power system engineers, since its appearance in
1962 [1]. It aims at identifying a set of decision variables,
which minimize one or multiple objective functions, such
as the production costs, the greenhouse gas emissions, the
power losses and the voltage deviations, satisfying both
equality and inequality constraints. The equality constraints
include the active and reactive power balances at each network
bus, which are described by the power flow equations,
while the inequality constraints describe both physical
control limits, which cannot be violated (e.g. upper and
lower bounds of real and reactive power generation), and
operating limits, which are imposed to enhance security and
do not represent physical bounds, but they can be relaxed
temporarily, if necessary, to obtain feasible solutions [2].
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OPF analyses can be formalised by a mixed integer non
linear programming (MINLP) problem, which is a scalar,
non-linear, non convex constrained optimization problem
with both real and integer decision variables [3]. The scalar
formulation relies on a single objective function, which is
particularly useful in solving many planning and operation
problems, as far as active power dispatch, load shedding,
and market settlement are concerned.

As discussed in the literature [4], the application of conven-
tional Newton-based iterative algorithms in solving scalar
OPF problems could be hindered by several limitation fac-
tors, such as the limited capability in solving large-scale
problems, the ineffectiveness in identifying global optimum
solutions, and the difficulties in dealing with ill-conditioned
problems.

To reliably solve these problems, several solution schemes
could be employed. In particular, some of the authors of this
paper proposed a challenging idea, which is based on the
formulation of a scalar OPF problem as a set of ordinary
differential equations, whose equilibrium points coincide
with the problem solution. Starting from the Lyapunov
Theory, in the authors’ previous work, it was shown that this
artificial dynamic model is asymptotically stable and it is
quite insensitive to many factors which can cause numerical
instability in conventional algorithms [5]. This framework
has been widely adopted in the task of solving several
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OPF problems [6], and has been generalized in the task of
solving scalar constrained optimization problems problems
in different application domains [7].

A comparison between different power flow solution
methods has been conducted in [8] and a multistage arrange-
ment is introduced as an improvement to the continuous
Newton’s method. The authors of [9] proposed various
robust solvers in current injection formulation. In particu-
lar, since this form is more prone to be ill-conditioned than
the power mismatch form, they propose a technique to solve
ill-conditioned power flow equations in current injection
form. Also, they propose a robust and efficient Power Flow
solution technique inspired by the Romberg’s Integration
Scheme in [10].

All these algorithms allow reliably solving OPF analyses
characterized by scalar objective functions, improving the
convergence to feasible solutions and avoiding the numer-
ical instabilities of conventional iterative-based solution
schemes.

On the other hand, evaluating power system perfor-
mances through a single dominant index could limit the
effectiveness of the OPF solution, especially in solving
complex decision making problems with multiple and con-
flicting objectives. In these contexts, more advanced multi-
objective formulations of the OPF problem (MOOPF),
which are based on vector-valued objective functions, can
be deployed in order to compute the non-inferior optimal
solutions, which constitute the Pareto front of the multi-
objective optimization problem [11].

In the scientific literature, the solution of MOOPF is
mostly found through the weighting method, which consists
in the scalarization of the vector of objective functions,
through their weighted combination [12]. However, such
method requires a precise knowledge about the necessary
trade-offs between the objective functions, which is not
always available. Furthermore, it suffers the convexity
problem, which may not allow the analyst to explore the
whole solution space [13].

Other solution methods try to compute non-inferior
optimal solutions by employing iterative solution schemes,
which may fail to converge in the presence of singularities
in the Jacobian matrices, and may become unstable when
the initial guess solution is far from the region of attraction
of the optimal solution.

To solve these problems, many papers propose the
deployment of metaheuristic algorithms, such as Genetic
Algorithms [14], Evolutionary Programming, Particle
Swarm Optimization [15]. A review of the wide literature on
the role of these methods for solving multi-objective opti-
mization is presented in [16]. As outlined in these papers,
metaheuristic algorithms allow the analyst to effectively
handle non-linear constraints, improving the solution space
exploration, and reducing the probability of converging in

local minima. Despite these benefits, metaheuristic tech-
niques lack mathematical rigor and they might be equally
challenging when considering computational burden.

Hence, the research for alternative solution schemes
for the prompt and reliable solution of MOOPF problems
represents a relevant issue to address.

To face this issue, this paper intends to enhance the
theoretical framework conceptualized in [6] by proposing
an improved dynamic-based formulation aimed at solving
constrained multi-objective optimization problems with
mixed real and integer decision variables. In particular,
to deal with the multi-objective nature of the problem,
a mathematical formulation based on the goal-attainment
method is proposed. This formulation is based on the
solution of multiple optimization problems, each one
characterized by its own scalar objective function and
constraints. The obtained solutions of these single-objective
problems, called the utopia points, are employed to define
proper inequality constraints describing the competitiveness
of the objective functions [17].

As far as the discrete variables are concerned, they are
modelled by introducing a proper set of equality constraints,
which force them to assume a finite set of allowable values.

Detailed numerical results, obtained by applying the
proposed paradigm on different power system benchmarks
will be presented and discussed in order to prove
its effectiveness in managing complex and real world
problems.

The paper is organized as follows: Section “Elements
of OPF Analysis” introduces the theoretical background,
Section “Proposed OPF Framework” describes the proposed
methodology to solve MOOPF problems through artificial
dynamic systems. Section “Case Studies” presents the ana-
lyzed case studies and, finally, Section “Conclusions” draws
the main conclusions.

Elements of OPF Analysis

OPF formulation can be classified according to different
features: the design variables, the objective functions, the
constraints and the mathematical formulation.

The most simplified OPF is formulated as a linear
programming (LP) problem. It involves the simplification of
the generic OPF problem by linearizing the model through
specific assumptions about the system.

DC-OPF is an instance of such linear formulation, which
assumes negligible values of power line’s resistance over
reactance. It can be employed in place of classical optimal
power flow equations, when we are interested only in the
active power. In this case, the accuracy of the model is
reduced, however the results can be acceptable for applica-
tions requiring low accuracy but fast computation [18].
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Quadratic programming, which is based on a quadratic
cost function and linear constraints can improve the
accuracy while retaining the low computational burden,
however it is still based on the linearization of power
flow constraints. Linear formulation can include discrete
variables, for example to control transformer tap ratio
or capacitors’ banks. However, the most complex and
representative way to model a power system is by a MINLP
problem. Some examples of MINLP are described in [19]
and security constrained unit commitment is one of the
most important applications of such formulation. As [3]
writes, there are few papers which give clear and complete
MINLP formulations for the OPF, especially on how they
are solved. This paper aims at filling this gap, introducing a
method based on artificial dynamical systems to solve such
problems.

OPF problems can also be classified according to their
objective functions, variables and constraints. The most
common objective function is the total cost, however OPF
can be used also to minimize transmission losses, load
shedding, environmental impact etc... In this paper multiple
objectives are considered simultaneously, as it is done for
MOOPF.

The main design variables are voltage magnitude and
phase angles, active and reactive power generation, however
further variables can be added depending on the application.

Mathematical Formalization

The classical OPF method can be formulated as follows [20]:

min
P,Q,V,δ

f (P,Q,V,δ)

s.t. PF(P,Q,V,δ) = 0

Pj,min ≤ Pj ≤ Pj,max j = 1, 2, ..., n

Qj,min ≤ Qj ≤ Qj,max j = 1, 2, ..., n

Vj,min ≤ Vj ≤ Vj,max j = 1, 2, ..., n

δj,min ≤ δj ≤ δj,max j = 1, 2, ..., n (1)

where f (P,Q,V,δ) is the objective function, which is a
vector in case of multiobjective optimization. The variables
P,Q,V,δ are the active power, the reactive power, the
voltage magnitude and angle for each bus of the network.
The equality constraints PF(P,Q,V,δ) = 0 are the power
flow equations, which in the polar form can be written as:

Pj =
N∑

k=1

|Vj ||Vk||Yjk|cos(δj − δk − θjk) ∀j =1, ..., n (2)

Qj =
N∑

k=1

|Vj ||Vk||Yjk|sin(δj −δk −θjk) ∀j =1, ..., n (3)

The inequality constraints include minimum and maximum
limits on design variables or transient stability constraints.

Emerging Needs in OPF Analyses

OPF analyses can play a fundamental role in decarbonized
power systems, where the increasing network complexity,
and the massive pervasion of distributed and dispersed
generators drastically increase the number of decision
variables, leading the components to operate close to their
limits, and making the power system more vulnerable to
external disturbances. All these issues hinder the solution
of complex OPF analyses, especially in the presence of
multiple-contingencies, which could affect the convergence
and the stability of conventional schemes [3]. To this aim, it
is incumbent upon the power system community to develop
novel solution methods aimed at addressing the following
critical issues:

• Computational speed: practical OPF algorithms require
high speed for real time applications. With the increase
of renewable power generation, the scheduling time is
being reduced from hours to minutes and the response
time must be lower;

• Reliability: a feasible solution has to be achieved even
for ill-conditioned problems, contingency studies and
other applications;

• Robustness: OPF solutions must have low sensitivity
to initial points and it must be stable to changes in
operating constraints;

• Flexibility: there must be the possibility to easily
incorporate the solution algorithms in existing software
tools, such as energy management systems;

• Discrete modeling: discrete variables may be needed
in addition to continuous ones;

• Incorporation ofmultiple objectives: the method should
allow both single and multi objective optimizations;

• Introduction of inter-temporal constraints:OPFmay
include time dependent constraints, a typical case is
the presence of energy storage. OPF should be able to
handle multiperiod optimization;

• Probabilistic modelling: with the increasing uncer-
tainty, OPF methods should allow a probabilistic or
uncertain counterpart.

Most of these issues can be effectively addressed by deploy-
ing the solution method proposed in this paper.

Proposed OPF Framework

Multiobjective OPF involves the simultaneous optimization
of a vector of scalar functions fi(x), where x is the vector
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of state variables and u the vector of control variables. The
general multiobjective programming problem, requiring the
optimization of n objectives may be formulated as follows:

min
x,u

fi(x,u) ∀ i = 1, 2, ..., n

s.t. gj (x,u) = 0 j = 1, 2, ..., m

hk(x,u) ≤ 0 k = 1, 2, ..., p

xmin ≤ x ≤ xmax

umin ≤ u ≤ umax (4)

where gj represents an equality constraint, hk an inequality
constraint and xmin, umin, xmax , umax the minimum and
maximum values of the state and control variables. In multi-
objective optimization, system performance is described
through a vector of objective functions. The optimal
solution, in this case, is not the global optimum for each of
the objective functions, rather a Pareto optimal point: i.e.
no improvement in one of the objective functions can be
achieved without the degradation of at least one of the other
objective functions [21]. This sub-optimal point is called
non-inferior point and it represents a trade-off between the
objective functions.

The simplest algorithm to approximate a Pareto front
is called weighting strategy or scalarization method [22].
It consists in merging a vector of objective functions into
a scalar one, by positively weighting each function and
summing them. Other methods proposed in the literature are
the ε constrained method and the multilevel programming.
[23]. Anyway, each of these methods requires a priori
knowledge of the kind of problem being analyzed and they
can be sensitive to the shape of Pareto front [24].

To overcome this limitation, this paper employs the goal
attainment method, which allows finding the Pareto front by
solving the following parametrized problem:

min
x,u,z

z

s.t. g(x, u) = 0

h(x, u) ≤ 0

f (x, u) − wz ≤ γ (5)

where z is an unrestricted scalar variable, w a vector of
known weights, γ a vector of the desired levels to be
achieved for each of the objective functions.

The quantity wiz is related to the degree of over or
underattainment of the goal fi . The weight wi depends on
the preferences of the analyst over the performance indices.

In particular, suppose that γ is an unattainable vector of
objective functions. By choosing a small wi , the level of
underattainment of the function fi , which is fi − wiz ≤ γi ,
will be low, and the function fi will be closer to the desired
value, opposed to other functions characterized by higher
weights.

Some optimization problems might involve integer vari-
ables, for example in the case of mixed integer programming
problems (MIP). In order to constraint a variable to be inte-
ger, a non linear equality constraint, which is equivalent, can
be introduced.

For example, if a design variable x is defined in a set of
integers Z = {1, 2, 5}, the corresponding equality constraint
can be written as:

(x − 1)(x − 2)(x − 5) = 0 (6)

SolutionMethodology

The multi-objective mathematical programming problem
formulated in Eq. 5 can be recast as a system of non linear
equations. The equationE1 is obtained by observing that the
minimization of the objective function in Eq. 5, is equivalent
to finding the vectors of design variables which nullify the
following error function:

E1 = z − q (7)

where q is an additional unknown variable representing the
minimum of z.

As far as the inequality constraints are concerned, they
can be converted into equality constraints by the introduc-
tion of non-negative slack variables, s and t , according to
the Interior Point theory [25, 26].

Therefore satisfying the inequalities and equalities means
finding the zeroes of the following functions:

E2 = h(x, u) − s (8)

E3 = g(x, u) (9)

E4 = f (x, u) − wz − γ − t (10)

Similar equations can be introduced to take into account
the minimum and maximum constraints on the variables.

By defining ξ as the vector of design and slack variables
and E(ξ) as the set of equations previously introduced, the
model can be written in a compact form:

E(ξ) = 0 (11)

In order to compute the values of ξ which simultaneously
nullify each component of the vector E(ξ), it is possible to
minimize the sum of the squared residuals.

W(ξ) = 1

2
ET (ξ)E(ξ) (12)

The minimum of this function is reached when:

dW(ξ)

dξ
= dE(ξ)

dξ
E(ξ) = 0 (13)

An alternative approach to solve the multiobjective math-
ematical programming problem is based on the Lagrangian
theory, which allows recasting the problem Eq. 5 to a scalar
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unconstrained optimization problem, whose objective func-
tion L (namely the Lagrangian function) can be expressed
as:

L = W(ξ) + λT g(ξ) (14)

The set of variables λ contains the lagrangian multipliers
introduced to take into account the constraints in the
optimization function.

The minimum of the Lagrangian function is reached
when:
{

dL(ξ ,λ)
dξ

= 0
dL(ξ ,λ)

dλ
= 0

(15)

which is the system of non-linear equations describing the
so called Karush-Kuhn-Tucker conditions for optimality.

Design of the Artificial Dynamic System

The following step is based on the design of a stable arti-
ficial dynamic system, whose equilibrium points represent
the stationary points of W(ξ).

The vector ξ can be assumed as a vector of state variables
which evolve according to a parameter t , an artificial time.
The solution corresponds to the final equilibrium point
reached by this dynamical system.

Under this assumption, the scalar positive-semidefinite
function W(ξ) can be regarded as a Lyapunov function of
the artificial dynamic system. Consequently, if the deriva-
tive of W(ξ) is negative-definite or negative semidefinite
along the trajectory of ξ(t), then the Lyapunov theorem
would assure the existence of an asymptotically stable equi-
librium point of the dynamical system which minimizes the
error function.

In order to prove it, let us consider the time derivative of
W(ξ):

W(ξ(t))

dt
= ET (ξ(t))

E(ξ(t))

dt
(16)

Since:

dE(ξ(t))

dt
= dE(ξ(t))

dξ

dξ(t)

dt
(17)

we obtain:

d(W(ξ(t)))

dt
= ET (ξ(t))

dE(ξ(t))

dξ

dξ(t)

dt
(18)

If ξ is changed according to the gradient of W(ξ(t)):

dξ
dξ(t)

dt
= −k

d(W(ξ(t)))

dt
(19)

we obtain:

d(W(ξ(t)))

dt
= −k(ET (ξ(t))

dE(ξ(t))

dξ

(
dE(ξ(t))

dξ

)T

(E(ξ(t)) (20)

This is a quadratic form which is certainly negative-
semidefinite.

The equilibrium point must satisfy the following condi-
tion:

dW(ξ)

dξ
= dE(ξ)

dξ
E(ξ) = 0 (21)

This condition is the same as Eq. 15, thus this is also a
solution of the optimization problem.

The same computational scheme can be adopted for
finding the stationary points of L.

Case Studies

In this section, the proposed methodology has been applied
in the task of solving the multi-objective voltage regulation
problem for three test networks, which are based on the 14
bus, 30 bus, and 118 bus IEEE power systems, respectively.
For all these case studies the minimisation of two conflicting
objectives has been considered, namely the mean squared
bus voltage magnitude deviations, which is computed as:

f1 = 1

N

N∑

k=1

(Vk − Vo)
2 (22)

where Vk and Vo are the bus voltage magnitude at the kth

bus and the nominal voltage magnitude, respectively, and
the active power losses, which can be computed as:

f2 =
N∑

k=1

Pk (23)

where Pk is the active power injected at the kth bus.
Moreover, in order to describe the discrete tap-changes
at the generation buses Ng , the corresponding voltage
magnitudes are described by discrete variables ranging from
0.95 to 1.05 p.u., with a 0.01 step.

Hence, the overall problem can be formalized as follows:

min
x,u,z

z

s.t. Pj −
N∑

k=1

VjVkYjkcos(δj −δk−θjk)=0 ∀j ∈ N

Qj −
N∑

k=1

VjVkYjk|sin(δj −δk−θjk)=0 ∀j ∈ N

(Vi −0.95)(Vi − 0.96)..(Vi −1.05)=0 ∀i ∈ Ng

Qi,min ≤ Qi ≤ Qi,max ∀i ∈ Ng

Vj,min ≤ Vj ≤ Vj,max ∀j ∈ N
δj,min ≤ δj ≤ δj,max ∀j ∈ N
f1 − w1z ≤ γ1

f2 − w2z ≤ γ2 (24)
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Where x is the vector of the state variables, namely the
reactive power generated at each generator bus Qi , and
the voltage phasor Vj∠δj of each bus; u is the vector of
the decision variables, namely the voltage magnitude at the
generation buses, Yjk∠θjk is the (j, k)th element of the
admittance matrix.

The calculations are performed in Matlab 2020a, on an
Intel Core i7 CPU.

IEEE 14 Bus Test Network

The utopia points computed for this network are f ∗
1 =

0.1316 and f ∗
2 = 1.39 · 10−4. Once the multi-objective

formulation is completed, the optimization problem can be
converted to an artificial dynamical system, as described
by Eq. 21. Figures 1 and 2 show the equilibrium point
reached by the state variables, voltage magnitude and angles
respectively, which correspond to the optimal solution. The
values of the objective functions are f1,opt = 0.5754 and
f2,opt = 0.0087.

Figures 3 and 4 show the time-evolution of the objective
functions, voltage regulation and losses, respectively. These
values are portrayed together with the utopia points. As
expected, multi-objective formulation leads to sub-optimal
solutions. Both the objective functions are not correspond-
ing to the utopia point. The aim of multi-objective optimiza-
tion is, indeed, to find the optimal trade off between multiple
objectives.

However, by managing the weights, different solutions
can be attained, which may reduce the gap towards the
utopia point for one function and increase it for the other
function.

Fig. 1 Dynamic evolution of the state variables describing the voltage
magnitude in p.u. . The curves represent the voltage magnitude time-
evolution for each bus of the 14 bus test network

Fig. 2 Dynamic evolution of the state variables describing the voltage
angles in radians. The curves represents the voltage angle time-
evolution for each bus of the 14 bus test network

IEEE 30 Bus Test Network

The same procedure has been performed for the IEEE 30
bus test network.

For this network the utopia points f1,opt = 0.0094 p.u.
and f2,opt =0.4093 p.u., and, as in the previous case study,
the solution computed by solving the multi-objective problem
identifies a proper trade-off between these two extreme
values. The state variables associated to this non-inferior
solution are shown in Figs. 5, 6 which show the voltage
magnitude and phase angle for each bus, respectively.

Fig. 3 Voltage regulation f1, optimized through single objective
optimization (red dashed line) and the proposed multi-objective
optimization (blue continuous line) of 14 bus test network
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Fig. 4 Losses f2, optimized through single objective optimization
(red dashed line) and the proposed multi-objective optimization (blue
continuous line) of 14 bus test network

Furthermore, Figs. 7 and 8 show the value of the objec-
tive functions for this system. As for the previous case, the
objective functions are sub-optimal when compared to the
single objective solution.

IEEE 118 Bus Test Network

Finally, in order to prove the effectiveness of the proposed
solution scheme in the task of solving the analyzed OPF
problem for a larger power system, the IEEE 118 bus test
network has been considered. The obtained results are sum-
marised in Fig. 9, where the time-evolution of the state
variables is depicted. By analyzing this figure it is worth
noting that also for this case study the dynamic system

Fig. 5 Dynamic evolution of the state variables describing the voltage
magnitudes in p.u.. The curves represents the voltage angle time-
evolution for each bus of the 30 bus test network

Fig. 6 Dynamic evolution of the state variables describing the voltage
angles in radians. The curves represents the voltage angle time-
evolution for each bus of the 30 bus test network

quickly converges to a stable equilibrium point, which rep-
resents the OPF solution. The effectiveness of this solution
can be assessed by analysing Fig. 10, which reports the
time-evolution of the error function, namely the gradient
of the Lagrangian function of the problem formalised in
Eq. 24, and in Fig. 11, where the time-evolution of the
residual errors of the power flow equations is depicted. The
corresponding time-evolution of the objective functions is
depicted in Fig. 12, which confirms the effectiveness of the
proposed method in the task of identifying a proper trade-off
between the two problem objectives.

Furthermore, Fig. 12 shows the value of the objective
functions for this system. As for the previous case, the

Fig. 7 Voltage regulation f1, optimized through single objective
optimization (red dashed line) and the proposed multi-objective
optimization (blue continuous line) of 30 bus test network
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Fig. 8 Losses f2, optimized through single objective optimization
(red dashed line) and the proposed multi-objective optimization (blue
continuous line) of 30 bus test network

objective functions are sub-optimal when compared to the
single objective solution.

Finally, in order to compare the convergence perfor-
mance characterising the proposed technique, the time-
evolution of the error function is benchmarked with those
obtained by solving the problem formalised in Eq. 24 by
a conventional iterative scheme based on the interior-point
method. The obtained results are reported in Fig. 13, which
confirms the effectiveness of the proposed method in the
task of promptly and reliably converge to a feasible OPF
solution.

Fig. 9 Dynamic evolution of the state variables describing the voltage
magnitudes and angles. The curves represent the time-evolution of the
voltage angle and magnitude for each bus of the 118 bus test network

Fig. 10 Time-evolution of the Error function for the 118 bus test
network

Fig. 11 �P and �Q for each bus of 118 bus test network

Fig. 12 Voltage regulation f1 and losses f2, optimized through single
objective optimization (red dashed line) and the proposed multi-
objective optimization (blue continuous line) of 118 bus test network
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Fig. 13 Comparison between the proposed dynamic optimization
method (red line) and a conventional optimization method (green line)

Conclusions

In this paper, a dynamic framework is proposed as
an alternative method to solve multi-objective mixed
integer non linear optimal power flow problems. Through
Lyapunov theory, it has been shown that the artificial
dynamic system converges to a local solution even in
presence of large non-linearities, and it is capable of
handling ill-conditioned cases, where other methods fail.

Furthermore, by casting integrity constraints as non-
linear constraints, and combining the artificial dynamic sys-
tem theory to Lagrangian multipliers and goal-attainment
method, multi-objective formulation has been introduced.

The numerical simulations on several test networks
showed the results obtained through this method, which
can be extended to networks of any dimensions just by
increasing the number of state variables of the dynamic
system and introducing further differential equations related
to the additional constraints.

Further research might involve the application of the
proposed method to other power system’s applications,
such as the management of virtual power plants, the unit
commitment, demand side management or energy hubs.
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