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Abstract
Socio-technical and economic attributes consideration are very important during a renewable energy technology selection for a
community. When decision-makers considered these attributes under a dynamic nature, they arrive at a robust decision. Hence,
this study proposes an integrated model for renewable energy technologies evaluation under a dynamic condition. We developed
the model using dynamic intuitionistic fuzzy Einstein geometric averaging operator, intuitionistic fuzzy entropy, and the
intuitionistic fuzzy technique for order of preference by similarity to ideal solution method (TOPSIS). This model’s applicability
was tested using five renewable energy technologies - solar (PT1), wind (PT2), hydroelectricity (PT3), geothermal (PT4) and
biomass (PT5) and five attributes (risk factor, payback reliability, social benefit, change in demand and cost). Based on five
energy experts, from academia and industry, opinions, the proposed model identified biomass energy technology as the most
suitable energy technology. Three existing multi-criteria models were used to verify the proposed model; the proposed model
performance was consistent with the existing models’ results. From most suitable the least suitable, the model ranked these
technologies PT5 > PT2 > PT3 > PT1 > PT4.
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Introduction

In recent times, researchers and practitioners have proffered
several solutions to the distribution network management, for
example, they have made a call for the need to integrate re-
newable energy systems into distributed networks. This call
has the potential to change how conventional distributed net-
works are being managed, especially in terms of low voltage
management [1]. Conventionally, transformers are used to
step-up the amount of energy to be transmitted over a long
distance. Thus, energy experts have encouraged the use of
sub-stations for improved energy distribution in a community.
Such sub-stations are used to manage the loads on a

distributed network, visa-vice the installation of step-down
transformers in these stations [2].

Apart from technical issues that have caused changes
in energy system management, this system structure and
operation is affected by ideological and finance factors
[3]. For example, the innovation in renewable energy
technologies has changed the orientation of how energy
generated, transmitted and distributed across the world.
And this has increased the interest in distributed systems.
It is now a common experience to see a facility is run on a
national grid and a stand-alone renewable energy source.
In most cases, they require this to enhance the safety,
reliability and efficiency of a facility. Thus, a detailed
evaluation of the characteristics of facilities that are con-
nected to a national grid and renewable energy sources
must be carried to select a suitable renewable energy tech-
nology. While the short-run benefits of this evaluation
will be improved facility efficiency - technical benefit,
the long-term benefits will be both economic and environ-
mental, and social to a facility owner(s) and host commu-
nity [4, 5]. Thus, energy experts now approach renewable
energy analysis from a multi-criteria perspective [6, 7].
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Several authors have contributed to the selection of emerg-
ing renewable energy technology and system, among them,
we can mention. Ahmad and Tahar [8] suggested that analytic
hierarchy process (AHP), a multi-criteria tool, should be used
to select a renewable energy source during an analysis of an
electricity generation system. Amer and Daim [9] used AHP
to select and prioritise renewable energy technologies.
Gnaneswar Gude et al. [10] analysed the parameters that affect
the selection of emerging energy technology and system.
They placed emphasis on technical support, remoteness, plant
capacity, feed-water salinity, grid and infrastructure availabil-
ity, and renewable resources. Al-Jabr and Ben-Mansour [11]
presented a robust cost-based approach that can be used to
select a renewable energy system. Zhang and Tao [7] used
AHP and data envelopment analysis (DEA) method to gener-
ate a model that can be used to evaluate and select renewable
energy technology under a multi-criteria scenario.

Still, on the application of AHP, Stojanovi [12] used AHP
to select a renewable energy system when considering eco-
nomic, technical, social and environmental factors of a sys-
tem. Yazdani-Chamzini et al. [13] presented an integrated
model, that combined AHP and COPRAS (complex propor-
tional assessment) method, for renewable energy project se-
lection. In the model, AHP was used to determine criteria
importance, while COPRAS was used to rank renewable en-
ergy projects. Cristóbal [14] used a combined AHP-VIKOR
(AHP -VIseKriterijumska Optimizacija I Kompromisno
Resenje) model to select a renewable energy system with re-
spect to a renewable energy plan of a community.
Anagnostopoulos et al. [15] carried out a sustainability anal-
ysis of renewable energy policies. They explored the use of
multi-criteria decision-making (MCDM) and fuzzy logic to
rank different energy policies.

Based on the mentioned studies above, the MCDM
methods have proven to be an effective problem-solving tool
for power and energy issues and selection. However, limited
consideration has been given to the issue of uncertainty during
renewable energy technologies analysis. Also, the methods
become ineffective when the renewable energy technologies
and systems need to be evaluated and selected under a dynam-
ic process and conditions, that is, the condition at which the
energy demand is constantly changing because of environ-
mental conditions. Hence, this paper aims to develop a new
model for the selection and evaluation of energy issues and
selection by addressing the dynamic process and conditions
because of the changing environmental conditions.

In this paper, an integrated model of dynamic intuitionistic
fuzzy Einstein geometric averaging (DIFWGϵ) operator,
intuitionistic fuzzy entropy (IFE) and the Intuitionistic Fuzzy
Technique for Order of Preference by Similarity to Ideal
Solution (IFTOPSIS) method is proposed. For the selection
and evaluation of a suitable reliability-based emerging renew-
able energy technology and system to address the different

environmental conditions. Some contributions of the pro-
posed method include:

i. It addresses and account for uncertainty in the decision-
making process, which is a major drawback in currently
existing models used for the selection and evaluation of
emerging energy technology and system.

ii. It uses a DIFWGϵ operator to aggregate expert’s opinions
about the emerging energy technologies and systems and
the used of IFTOPSIS for evaluating and ranking the al-
ternatives, which to the best knowledge is novel in the
selection of emerging energy technology and system and

iii. It uses an intuitionistic fuzzy entropy to compute the
dynamic attributes weight.

Preliminaries

This section presents the definitions of IFS (Section 2.1),
DIFWGϵ operator (Sections 2.2 and 2.3), and FTOPSIS
(Section 2.4).

Intuitionistic Fuzzy Set

Given that A in X = {x} is a non-empty fuzzy set, and it has a
closed unit interval I = [0, 1]. Equation (1) can be used to
express this set as an IFS.

A ¼ x;μA xð Þ; vA xð Þih x∈Xjf g ð1Þ

This set membership function is mapped as where the map-
ping μA : X→ [0, 1]; it non-membership function is mapped
as and vA : X→ [0, 1], such that 0 ≤ μA(x) + vA(x) ≤ 1,∀ x ∈ X
for each element x ∈ X in A.

The nonempty set ={x}, which is an IFS, is expressed as
Eq. (2).

A ¼ x;μA xð Þ; 1−h vA xð Þi x∈Xjf g ð2Þ

The intuitionistic fuzzy hesitation (or the non-determinacy
or uncertainty) degree of whether x belong to A or not is given
as Eq. (3). This degree will arise when there is a relative lack
of knowledge, personal error or uncertainty of any form, par-
ticularly when; 1 − μA(x) − vA(x) = 0. For every element x ∈ X
in A, the IFS A belongs to the fuzzy set, where 0 ≤ πA ≤ 1,
hence, the intuitionistic fuzzy number(s) (IFN(s)) is given as
α = (μA, vA, πA) or as α = (μA, vA).

πA xð Þ ¼ 1−μA xð Þ−vA xð Þ ð3Þ

Technol Econ Smart Grids Sustain Energy (2019) 4: 1616 Page 2 of 7



Definition 2 [16] If the IFN is given as α = (μA, vA, πA) or
as α = (μA, vA), then their operational laws are given as (4) to
(7), when λ > 0;

A:B ¼ x;μA xð Þ:h μB xð Þ; vA xð Þ þ vB xð Þ−vA xð Þ:vB xð Þi x∈Xjf g ð4Þ
Aþ B ¼ x;μA xð Þþh μB xð Þ−μA xð Þ:μB xð Þ; vA xð Þ:vB xð Þi x∈Xjf g ð5Þ

λA ¼
n

x; 1− 1−μA xð Þð Þλ;
D

vA xð Þ
�
λ
E
x∈Xj

� o
; λ > 0: ð6Þ

Aλ ¼
n

x; μA xð Þð Þλ; 1−
D

1−vA xð Þ
�
λ
E
x∈Xj

� o
; λ > 0 ð7Þ

Intuitionistic Fuzzy Aggregation Operators

Aggregation operators are used generally for summarizing
information gathered from a variety of sources and in turn
for making decisions. These operators are very useful for
multi-criteria decision-making (MCDM) problems in en-
gineering. Ordered weighted averaging (OWA) operator,
which was developed by Yager [17] is among the early
operators for MCDM problems. Different improvements

have been made on OWA operator; two new versions of
OWA are weighted OWA (WOWA) operator and its inter-
polation function [18], and the ordered weighted geomet-
ric averaging (OWGA) operator [19]. Other efforts that
have been made on operator usage are reported in the
works of Park et al. [20], Xu and Yager [21], Zhou and
Chen [22], Aikhuele and Odofin [23], Gümüş and Bali
[24], and Yin et al. [25].

Among these works, Gümüş and Bali’s [24] is selected
for the current problem. Based on its ability to address
dynamic issues. Details of the DIFWGϵ operator [24] pro-
posed for the selection and evaluation of a suitable
reliability-based emerging energy technology and system
to be connected to the LV network for maximum efficiency
is given in the definition below.

Definition 3 [24] Given that α tið Þ ¼ μα tið Þ; vα tið Þ
� �

is a set of
IFN for P different periods. And these periods have different
weight vectors, δ = ((δ(t1), δ(t2), δ(t3),…, δ(tp))

T, such that
∑n

i¼1δ tið Þ ¼ 1 and DIFWGϵ: Ωn→Ω, if

DIFWGϵδ tð Þ δ
�
t1

� �
; δ t2ð Þ; δ t3ð Þ;…; δ tp

� �� �
¼ ⨂p

i¼1ϵ: δij tið Þ� �δ tið Þ

¼ δij t1ð Þ� �δ t1ð Þ⨂ϵ δij t2ð Þ� �δ t2ð Þ⨂ϵ…::⨂ϵ δij tp
� �� �δ tpð Þ

¼
2∏p

i μij tið Þ
� �δ tið Þ

∏p
i 2−μij tið Þ
� �δ tið Þ

þ∏p
i μij tið Þ
� �δ tið Þ ;

∏p
i 1þ vij tið Þ� �δ tið Þ−∏p

i 1−vij tið Þ� �δ tið Þ

∏p
i 1þ vij tið Þ� �δ tið Þ þ∏p

i 1−vij tið Þ� �δ tið Þ

0
B@

1
CA ð8Þ

Intuitionistic Fuzzy Entropy

Given fuzzy set A, which is intuitionistic, in a universe of
discourse X = {x1, x2, x3,…, xn} be represented with an

entropy measure μA xið Þ ¼ μA xið Þ þ 1−vA xið Þð Þ=2: Equation
(8) can be used to expression the intuitionistic fuzzy entropy
of this set [26].

E Að Þ ¼ 1

n
∑n

i¼1 Sin
π* 1þ μA xið Þ−vA xið Þ½ �

4
þ Sin

π* 1−μA xið Þ þ vA xið Þ½ �
4

−1
� �

*
1ffiffiffi
2

p
−1

� �
ð9Þ

Based on this expression, the unknown weights of different
attributes can be determined using Eq. (10).

W j ¼ 1−H j

n−∑n
j¼0H j

ð10Þ

whereWj ∈ [0, 1], ∑n
j¼1W j ¼ 1, H j ¼ 1

m E Aj
� �

and 0 ≤Hj ≤ 1
for (j = 1, 2, 3,…, n).

Intuitionistic Fuzzy Technique for Order of Preference
by Similarity to Ideal Solution (IF-TOPSIS)

IF-TOPSIS is one of the most widely usedMCDM techniques
[27]. It measures distances in the Euclidean norm, which im-
plicitly assume all contemplated attributes are independent.
This paper adopted IF-TOPSIS model, which was originally
proposed by Hung and Chen [28], to as a framework in
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presenting the proposed integrated model. Given a multi-
criteria problem with a set of alternatives (PT = PT1, PT2,
PT3…. . PTn), and a set of attributes (AT = AT1, AT2, AT3…. .
ATn) are required to select the most suitable alternative for the
problem, the proposed model can be used to solve this prob-
lem if the weight of the attributes is unknown and the evalu-
ation needs to be carried out in a dynamic process due to
changes in the attributes. To solve this problem with the
DIFWGϵ operator, IFE and the IFTOPSIS method, which
formed the integrated model, the following steps are required:

Step 1. Constitute a group of experts with relevant experi-
ence and expertise in emerging energy technology.
To ensure accuracy in the evaluation, choose experts
from the academic and from the industry.

Step 2. Construct an intuitionistic fuzzy decision
matrix (ASmxn(xij) using preferences information
from the experts (Eq. 11). And covert the
information (ASmxn(xij)), which are linguistic vari-
ables, to the intuitionistic fuzzy number (IFN), see
Table 1.

ASmxn xij
� � ¼

μ11; v11;π11ð Þ μ12; v12;π12ð Þ … μ1n; v1n; π1nð Þ
μ21; v21; π21ð Þ μ22; v22; π22ð Þ ⋯ μ2n; v2n; π2nð Þ

⋮
⋮

⋮
⋮
⋱
⋱

⋮
⋮

μm1; vm1; πm1ð Þ μm2; vm2;πm2ð Þ ⋯ μmn; vmn; πmnð Þ

2
6664

3
7775

ð11Þ

Step 3. Use the DIFWGϵ operator, which is Eq. (8), to
construct the collective decision matrix (Rpk(xij)).

Step 4. Use Eqs. 9 and 10 to compute the weights vectors of
the evaluating attributes.

Step 5. Use the weights vectors in Step 4 to construct a
weighted normalization from the collective decision
matrix (Rpk(xij)).

Step 6. Use Eqs. (12) and (13) to calculate the alternatives
positive ideal (PI) and negative ideal (NI) solutions,
respectively.

PTþ ¼ AT j; maxμij AT j
� � j jϵZ� �

; minμij AT j
� �j jϵG� �� �

;

minvij AT j
� � j jϵZ� �

; maxvij AT j
� �j jϵG� �� �

* +
ji∈m

( )

ð12Þ

PT− ¼ AT j; minμij AT j
� � j jϵZ� �

; maxμij AT j
� �j jϵG� �� �

;

maxvij AT j
� � j jϵZ� �

; minvij AT j
� �j jϵG� �� �

* +
ji∈m

( )

ð13Þ

where Z and G denote the collection of benefit and cost attri-
butes, respectively.

Step 7. Use the intuitionistic Euclidean distance method to
calculate the alternatives distances based on their PI
and NI solutions.

dIFS PTþð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
μij AT j

� �
−μ PTþð Þ AT j

� �� �2
þ vij AT j

� �
−v PTþð Þ AT j

� �� �2
	 
s

ð14Þ

dIFS PT−ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

j¼1
μij AT j

� �
−μ PT−ð Þ AT j

� �� �2
þ vij AT j

� �
−v PT−ð Þ AT j

� �� �2	 
s

ð15Þ

Step 8. Calculate the alternatives’ closeness coefficient (CC).

CCi ¼ dIFS PT−ð Þ
dIFS PT−ð Þ þ dIFS PTþð Þ ð16Þ

Step 9. Rank the alternatives using a higher-the-better
concept.

Table 1 Scare of
linguistic variables Linguistic variables IFN

Really low (R) (0.65, 0.10)

Low (L) (0.70, 0.20)

High (H) (0.80, 0.10)

Very High (V) (0.85, 0.15)

Really Very High (RH) (0.95, 0.20)

Table 2 Intuitionistic fuzzy decision matrix

J1 J2 J3 J4 J5 J1 J2 J3 J4 J5 J1 J2 J3 J4 J5 J1 J2 J3 J4 J5 J1 J2 J3 J4 J5
AT1 AT2 AT3 AT4 AT5

PT1 R L L H L V L RH H L RH H R V H R H H V H RH H V L RH

PT2 R H H V H RH H R VH H H V V L V H V V L V L V RH L RH

PT3 H V V L V H H L RH V R V H V H V L H R R R H H V H

PT4 V H RH R RH V L H R RH RH H V R V R L L H L V L H R RH

PT5 RH H H V V RH H VH L RH L V RH L R RH H R V H RH H R V H
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Numerical Illustration

This article uses a community in Lagos, Nigeria as its case
study. It is because of the call for the authority to invest in
renewable (emerging) energy technology to replace and im-
prove the present epileptic electricity over the past years.
Based on discussion with the community’s local authorities,
they desire to invest some of their resources in a renewable
energy technology in the coming year. From our feasibility
study, solar (PT1), wind (PT2), hydroelectricity (PT3), geother-
mal (PT4) and biomass (PT5) energy technologies are the
available renewable energy technologies for this community.
Waves energy technology, which is a renewable energy tech-
nology, was not considered because it is sparse in Nigeria. In
selecting the best renewable energy technology for the coun-
cils in the district, the following five reliability-based attri-
butes are considered: risk factor ((AT1), payback period
(AT2), social benefit (AT3), change in demand (AT4), and
cost (AT5). Several of the studies on renewable energy tech-
nology in Nigeria have considered these attributes, but not
under a dynamic condition as presented in this article ([29];
Ighravwe & Oke, [30]; [31, 32]).

Due to the changing demand of the community’s elec-
tricity consumption, these technologies selection and eval-
uation carried out with a dynamic process. To achieve
this, five experts (J1, J2, J3, J4 and J5) from academic
and industry were asked to evaluate the renewable energy
technologies for the last 10 years - 2009 to 2018. These
periods were divided into two intervals and the weighting
vector for the periods were aggregated and given as
δ(t) = {0.167, 0.333, 0.500, 0.630, 0.652}. These values,
aggregated were obtained using the membership rating

scale originally presented in Aikhuele and Turan [27,
33]. Based on the algorithm presented in Section 3 and
the linguistic variables in Table 1, the experts were able to
rate the renewable energy technologies. Table 2 shows the
information obtained from the experts.

The linguistic variables in Table 2 were converted to
IFN and aggregated to construct the collective decision
matrix (Rpk(xij)) using the DIFWGϵ operator. Table 3
shows the result of the constructed collective decision
matrix (aggregation). Furthermore, Eqs. 9 and 10 were
used to calculate the vector’s weights of the reliability-
based attributes.

In order to generate the positive ideal solution for the cur-
rent problem, Eq. (14) was used to generate the alternatives’
weighted normalized values. The weighted normalized values
in Table 4 were also used to generate the negative ideal solu-
tions using Eq. (15). And Eq. (16) was used to determine the
renewable energy technologies’ closeness coefficients
(Table 5).

Discussion of Results

Using a higher-the-better concept, Table 5 shows that these
technologies can be ranked as follows: PT5 > PT2 > PT3 >
PT4 > PT1. To validate this ranking order, the MCDM ap-
proaches in Liu et al. [34], Zhang et al. [35], and Gümüş and
Bali [24] were used to solve the same problem. Table 6 shows
these approaches results for the renewable energy technology
problem. The results in this table show that the most suitable
technology is PT5 and PT4 is the least suitable renewable
energy technology. These results are consistent with the

Table 3 The attributes’ decision
matrix and vector weights AT1 AT2 AT3 AT4 AT5

PT1 (0.4294, 0.3526) (0.5515, 0.3601) (0.5490, 0.2652) (0.5721, 0.2492) (0.6381, 0.3716)

PT2 (0.5721, 0.2492) (0.5490, 0.2652) (0.5754, 0.3450) (0.5754, 0.3450) (0.6595, 0.4081)

PT3 (0.5754, 0.3450) (0.6319, 0.3528) (0.5863, 0.2651) (0.5438, 0.3143) (0.5721, 0.2492)

PT4 (0.6367, 0.3298) (0.5438, 0.3143) (0.5536, 0.2867) (0.4294, 0.3526) (0.5438, 0.3143)

PT5 (0.6451, 0.2928) (0.6381, 0.3716) (0.6595, 0.4081) (0.5490, 0.2652) (0.5490, 0.2652)

Weight 0.044759 0.037436 0.043581 0.034803 0.043631

Table 4 The weighted
normalization matrix AT1 AT2 AT3 AT4 AT5

PT1 (0.0192, 0.0158) (0.0206, 0.0135) (0.0239, 0.0116) (0.0199, 0.0087) (0.0278, 0.0162)

PT2 (0.0256, 0.0112) (0.0206, 0.0099) (0.0251, 0.0150) (0.0200, 0.0120) (0.0288, 0.0178)

PT3 (0.0258, 0.0154) (0.0237, 0.0132) (0.0255, 0.0116) (0.0189, 0.0109) (0.0250, 0.0109)

PT4 (0.0285, 0.0148) (0.0204, 0.0118) (0.0241, 0.0125) (0.0149, 0.0123) (0.0237, 0.0137)

PT5 (0.0289, 0.0131) (0.0239, 0.0139) (0.0287, 0.0178) (0.0191, 0.0092) (0.0240, 0.0116)
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proposed model’s results. Also, we observed that the fourth
most suitable technology (PT1)with respect to Gümüş and
Bali [24] and Zhang et al. [35] results in Table 6 are the same
as that of our model.

The study not only revealed the suitability of the proposed
model for ranking renewable energy technologies but reveals
its suitability for selecting a reliability-based energy technol-
ogy under a dynamic environment.

Conclusions

This study uses DIFWGϵ operator, IFE and IFTOPSIS meth-
od to proposed a novel MCDMmodel proposed for the selec-
tion and evaluation of a suitable reliability-based renewable
energy technology and system to address the dynamic envi-
ronmental conditions in Lagos central district. The main ad-
vantage and contribution of the proposed model to the selec-
tion and evaluation study for the renewable energy technology
and system include the ability of the model to address and
account for uncertainty in the decision-making process, which
is a major drawback in existing models used that are suitable
for renewable energy technology selection. Other contribu-
tions of this work are the use of a DIFWGϵ operator to aggre-
gate expert’s opinions about the renewable energy technolo-
gies and systems and the used of IFTOPSIS to evaluate and
rank these technologies, which to the best knowledge is novel
in the selection of emerging renewable energy technology and
system. In addition to the above-mentioned benefits, the pro-
posed model accounts for and addresses the dynamic issues in
the evaluation and selection of renewable energy technology

and system and finally, the used of intuitionistic fuzzy entropy
for computing the weights vectors of the dynamic attributes.

A case study of renewable energy technologies evalua-
tion was used to test the performance of the proposed mod-
el. The result from the evaluation is presented in Table 5
and it shows that biomass energy technology (PT5) is the
most suitable energy source for the Lagos central district,
based on the reliability attributes and the proposed inte-
grated model, which evaluate the renewable energy tech-
nologies under a dynamic process. The proposed model
results were compared with selected models in MCDM
literature, we observed that our model selected the same
most suitable technology as the existing models. In the
future, the model will be applied in other domains.

A further study can extend the scope of the proposed
model using criteria that deal with the environmental im-
pact of renewable energy technology. Also, further study
can consider the design requirements for the identified
criteria when evaluating renewable energy technology.
This problem might require the use of other MCDM tools,
such as an axiomatic method.
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