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Abstract This paper describes a new method for high
impedance fault (HIF) detection based on s-transform (ST)
and pattern recognition technique. Conventional distance,
over current and ground fault relays are difficult to apply for
High Impedance Fault (HIF) detection in distribution line
because of sensitivity, diversity, selectivity issues in case of
low value of fault current. Recently, s-transform has been
successfully applied for different power system protection
problem. It is a very useful tool to analyze transient fault sig-
nal to provide both time and frequency information unlike
Fourier transform and the same has been considered for
high impedance fault detection in this work. The features
extracted using s-transform to train and test the two differ-
ent intelligent classifier like artificial neural network (ANN)
and support vector machine (SVM) separately, to discrimi-
nate the HIF with other transient phenomenon (Load switch-
ing, capacitor Switching) and also normal fault condition. A
comparative study of these two classifiers has been reported
based on their detection accuracy. It has been found that the
proposed techniques are highly effective for high impedance
fault detection under a wide range of operating condi-
tions and noisy environment in a high voltage distribution
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network. The proposed scheme is fully simulated and ana-
lyzed by MATLAB/SIMULINK environment.

Keywords Artificial neural network · High impedance
fault · S –transform · SVM

Introduction

High Impedance Faults (HIFs) generally appear on the pri-
mary distribution system when a bare energized overhead
conductor comes in contact with high impedance surfaces
[1]. HIF current contain some complex characteristics such
as asymmetry, nonlinearity and low frequency. Due to that,
it is quite challenging for any traditional over-current relays
to detect the HIF because unlike other types of faults HIFs
give rise to a very small amount of fault current, i.e. in
between 10-100 (A) depending on the type of surfaces ( i.e.
dry or wet sand, asphalt, sod, grass, trees etc.). The fail-
ure of HIF detection may lead to fire hazard and arcing
[1]. So it is necessary to identify the HIF and to isolate the
corresponding feeder.

The main objective of many detection schemes is to iden-
tify the special features in the patterns of voltage and current
associated with HIF. Identification techniques generally
contain two vital steps: feature extraction and classifica-
tion [2]. For many years, some protection engineers and
researchers had introduced numerous feature extraction and
classification techniques such as digital signal processing
[3], fractal analysis [4], wavelet transform (WT) [5–10],
crest factor [11], coefficient of variation [11], mathemati-
cal morphology [12], Kalman filtering [13], decision tree
[14] etc. and various classifiers have been used such as
Bays, nearest neighbor rule (NNR), artificial neural net-
work (ANN) [15], ANFIS (adaptive neuro-fuzzy inference
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system) [16] etc. One of the main drawbacks of fourier
transform (FT) based technique is that it does not have any
time information associated with the fault instant. To over-
come this limitation of FT another detection scheme based
on wavelet transform (WT) was proposed. Unlike FT, the
WT possesses information both in the time domain and in
frequency domain and it deals with non-stationary signals
such as those experiencing HIF arcing fault. The efficiency
of WT decreases in noisy environments where as Stackwell
transform(ST) [17] is very much sensitive to noise (i.e. it has
the ability to identify any type of disturbance correctly in the
presence of noise) due to which ST is more effective than
WT for detecting HIF in the system. S-Transform has vari-
ous applications in the field of Geophysics, Genomic Signal
Processing, Biomedical Engineering, and Power System
Protection.

In this paper, a contingent method is proposed that uses
ST for feature extraction. The ST is an extended version of
WT which is used to extract the time and frequency com-
ponents of the voltage and current. The fixed resolution of
the short time fourier transform (STFT) and the absence of
phase information in the WT lead to the development of
the S-transform, which not only retains the absolute phase
information but also has good time frequency resolution for
all frequencies. Again, this paper analyzes the usefulness
of applying an artificial neural network (ANN) and sup-
port vector machine (SVM) for HIF classification based on
the ST feature vector. The ANN classifiers perform better
than other conventional method as it based on the gradi-
ent decent method which minimises the total squared error
of the output. On the other hand SVM classifier is very
much applied in various fields of engineering as it tries
to find an optimal hyperplane that maximizes the margin
between data samples in two classes in a higher dimen-
sional feature space derived from the original data space
through a kernel function. As, both the classifier have dif-
ferent advantages with each other and successfully applied
by different researchers for various applications like power
quality events classification, transmission line fault classi-
fication, speech recognition and islanding classification in
microgrid etc. the same has been considered as a classifier
for this work.

After capturing the discrete value of voltage and current
waveforms for a definite sample of the power system, these
data sets aree analyzed by ST and different distinguish fea-
tures are extracted from STA matrix. Then the extracted
features were fed as an input to the classifier to determine
whether the HIF occur or not.

The major contributions of this study towards HIF detec-
tion problem are: (1) application of ST for feature extraction
instead of using other popular signal processing technique
like WT and ST. (2) use of SVM and ANN for classification
and detection of HIF condition. (3) analysing the application

of the above techniques under practical operating condi-
tions. (4) presentation of extensive comparative results with
recently published and well proved techniques.

The rest part of the paper structure is organized as fol-
lows: The complete power system model and description
are introduced in “System Under Study”. The brief explana-
tion of the ST is presented in “Stackwell Transform (ST)”.
A brief description of the proposed classifier is illustrated
in “Classification of Events”. Results have been illustrated
and analyzed in “Results and Discussion” by the proposed
methodology which justifies the efficiency of the meth-
ods for real time application. Lastly, the conclusion and
future work has been enumerated in “Conclusion” and 7
respectively.

System Under Study

The initial step of every observation is to develop a proper
model. In this paper not only HIF model, but also various
transient conditions are simulated such as capacitor switch,
load switch, normal ground fault models etc. All these mod-
els are generated with the help of the power system block
set and are sampled at a rate of 5 KHz frequency, which is
equal to 100 samples/cycle. The power system fundamental
frequency is taken as 50 Hz.

(a) Power system model description with Single Line
Diagram:

In the proposed study both radial and mesh distri-
bution system are taken into consideration as shown
in the Fig. 1a and b respectively. In radial distribution
system a generator of 50 MVA is connected to supply
138KV of voltage to the utility sector through a trans-
mission line of 100 km long and a 138/25 KV star/delta
transformer. A HIF fault is created on one of its dis-
tribution feeders at 15km from its source side. A three
branched radial distribution network has been used
with both linear and non-linear loads of 4MVA and
1MVA respectively. Two other branches with 2MVA
and 4.262MVA non-linear loads are integrated in the
system with 0.8 pf.

Similarly, in mesh distribution system three gener-
ators, each with rating of 50 MVA are used to supply
138 KV of voltage to the utility sector through a 25KV
transmission line. At each end three star-delta trans-
formers are used with the rating of 5MVA to step-down
the voltage from 138KV to 25KV. All other system
conditions such as capacitor switching, load switching
and normal fault condition has been implemented in
the system. In total 4000 cases are used to test for clas-
sification purpose. By changing the parameters, 250
cases are taken for each type of faults such as L-G,
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Fig. 1 System Models a Radial
System Model (System 1), b
Mesh System Model (System 2)

L-L-G, L-L-L-G faults. So a total of 1750 each for
HIF and normal fault conditions are simulated. Each
with 250 cases of capacitor switching and load switch-
ing have been considered and simulated by changing
parameters within a certain range.

(b) HIF Model Simulation:
There are various types of HIF models as proposed

by many researchers [18]. Out of which two types of

HIF models are being used in the paper as shown in
Fig. 2a and b respectively. Figure 2a shows a simplified
HIF model having two unequal resistances that make
unsymmetrical fault current [19].

Figure 2b shows a simplified two diode HIF model with
two anti-parallel diodes (Dp, Dn), two unequal value resis-
tors (Rp, Rn) which allows asymmetric fault current and

Fig. 2 HIF Model a Type I, b
Type II
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Fig. 3 Simulated HIF V-I Characteristic curve with HIF model Type I and Type II in (a) and (b) respectively

two DC voltage (Vp, Vn) which perform as the inception
voltage of air in soil or between trees and distribution line
[20]. If Vph>Vp then current (I) flows towards the ground
and when Vph<Vn then flow of current get reversed. For
Vn<Vph<Vp no fault current flows. Here, both the mod-
els are based on Emanuel arc model. In this paper, both the
models are used at different places on the transmission line
to simulate the fault current.

Figure 3a and b depict the V-I characteristic curve which
shows a non-linear cyclic pattern due to HIF model Type I
and Type II respectively. Due to the occurrence of HIF at
0.1sec there is a distortion in current and voltage waveform
as shown in Fig. 4a. Figure 4b shows the total current and
voltage at the sub-station for HIF for single line to ground
fault at B-ph.

Stackwell Transform (ST)

The S-transform [20–23] is an extended version of wavelet
transform which is based on shifting and scalable localizing
Gaussian window. The continuous wavelet transform can be
represented as:

cwtφg (τ, d) =
∫ ∞

−∞
g (t).φ (t − τ, d) dt (1)

Where the input signal g(t) is represented as a function of
time (t).

The width (d) and the time of spectral localization (τ )
controls the resolution of the wavelet CWT (τ ,d), which is
a scaled copy of the fundamental mother wavelet.

Fig. 4 a Simulated HIF Voltage and current Waveform, b Sub-station current and voltage with HIF at B-g
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Mathematically ST is represented as a CWT along with
a précised mother wavelet multiplied with phase factor(
e−j2πf t

)
.

S (τ, f ) = e−j2πf tCWT (τ, d) (2)

Where the mother wavelet for the particular case can be
represented as

φ (t, f ) = |f |√
2π

.e
−t2f 2

2 .e−j2πf t (3)

σ (f ) = 1
|f | , is the width of the Gaussian window. The time

scale representation is produced by WT while ST is used to
produce both time and frequency representation.

The ST may be represented as

S (τ, f ) =
∞∫

−∞
g (t) × |f |√

2π
e−(

(t−τ)2f 2/2
)
× ej2πf tdt (4)

In discrete form ST may be written as

S (i, n) =
N−1∑
m=0

g (n + m) e
(−2k2π2m2/a+b

√|f |)2ej(2πmi)/N

(5)

Where i=1,2,. . . N-1 and n=0,1. . . N-1 represents as time
in sample and frequency step respectively. The output of ST
is a N * M matrix represented as STA matrix

Classification of Events

In this section the intelligent classifiers used for the HIF
detection are discussed.

Neural Network (NN)

The Back Propagation Neural (BPN) Network is used as a
classifier between HIF and non-HIF events because of its
fast response, lesser complexity and flexibility of use. BPN
is a multilayer fast forward network with extended gradient-
descent based delta-learning rule usually known as back
propagation or error rule. Back propagation provides a com-
putationally efficient method for changing the weight in a
feed forward network, with differentiable activation func-
tion units, to learn a training set of input-output examples
[24]. GE Hinton, Rumelhard and R.O.Williams first intro-
duced BPN in 1986.Being a gradient descent method, which
minimizes the total squared error of the output computed
by the net. The network is trained by supervised learning
method [25, 26]. The architecture of the neural network is
shown in Fig. 5.

Fig. 5 Architecture of NN

Support Vector Machines (SVM)

Support Vector Machine is a very important classifier which
is widely used in various power system related problems.
SVM introduces a unique training algorithm which is used
to maximize the boundary between the various classes [27].
It carries a couple of data set: input vector and class (Pi ,
Qi), where i=1,2,. . . [28].

L (w, ξ) = 0.5(wT w) + C
∑l

i=1
ξi, ξi > 0 (6)

Qi

(
wT ∅ (pi) + b

)
≥ 1 − ξi (7)

The solution of SVM is derived by minimizing Eq. 6 with
respect to Eq. 7. Here b, ω and ξ are the bias, weight and
error term respectively.L is known as the penalty factor. The
different kernel functions like linear, radial, polynomial, sig-
moid function are usually used for mapping and in this
study sigmoid function is used due to its better performance.
SVM maps the input vector into a large dimensional space.
A hyper plane in feature space is used through various
mapping functions to increase its ability of classification.

Results and Discussion

Performance of S-Transform on HIF Fault Detection
Visually

In this paper, HIF, normal faults and other transient signals
as capacitor switching and load switching events are taken
for analysis. The ST is applied to the entire above mentioned
distorted signal to generate time-frequency, time-amplitude
and amplitude-frequency plots, that presents the disturbance
pattern for visual inspections and to know the nature of the
disturbance. All three important information as amplitude,
frequency, and time can be easily calculated to detect and
classify various signals. These signals are simulated using
MATLAB/SIMULINK.



9 Page 6 of 14 Technol Econ Smart Grids Sustain Energy (2016) 1: 9

Fig. 6 a B-ph current signal with HIF b TF-contour c MAT-plot d MAF-plot e MET-plot f MEF-plot g STDT-plot h STDF-plot i median vs.
Time plot
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Figure 6 shows the HIF signal, the time frequency, time-
amplitude and frequency-amplitude plots generated from
its STA matrix. Figure 6a shows the HIF current signal
and Fig. 6b shows the frequency versus time plot of STA
which is called as time-frequency contour (TF-contour). It
is clearly observed from the frequency contour that a sub-
stantial fluctuation occurred at the instant of HIF. Figure 6c
shows the maximum amplitude vs. time plot (MAT-plot)
that is obtained by searching columns of STA at each
frequency. Figure 6d gives the maximum amplitude vs. fre-
quency plot (MAF-plot) that is maximum magnitude versus
normalized frequency by searching rows of STAmatrix. The
plot shows the disturbance frequency components and their
maximum amplitude. Figure 6e shows the energy vs. time
plot (MET-plot) that gives the energy versus time by search-
ing columns of STA at every frequency. Figure 6f shows the
energy vs. frequency plot (MEF-plot), that gives the energy
versus frequency by searching row of STA. Figure 6g shows
the time-standard deviation plot (STDT-plot), which gives
the standard deviation versus time by searching columns of
STA at every frequency. Figure 6h shows the frequency-
standard deviation plot (STDF-plot), that gives the standard
deviation versus normalized frequency by searching rows

of STA. Figure 6i shows the median vs. time plot of STA
matrix.

Figure 7 shows a clear visual comparison between HIF
and all other system conditions (normal fault, capacitor
switching, load switching and no fault) based on energy
with respect to time and frequency in Fig. 7a and b respec-
tively. It is observed that the energy for normal fault con-
dition is relatively higher than the other four conditions
that can be easily distinguishable. In other four conditions,
a little variation in the value of energy is observed but
that can be accurately classified. Similarly Fig. 8 shows
a complete visual comparison between HIF and all other
conditions showing the magnitude vs. time plot (MAT-plot)
and magnitude vs. frequency plot (MAF-plot) in Fig. 8a
and b respectively. Figure 9 shows a clear visual compar-
ison between HIF and all other conditions based on the
standard deviation vs. time plot (STDT-plot) and standard
deviation vs. frequency plot (STDF-plot) in Fig. 9a and b
respectively. Figure 10 shows a noticeable visual compar-
ison between HIF and all other conditions based on the
median vs. time plot. There is a sudden hike in the value
of median approximately at 500 samples with respect to
time.

Fig. 7 Comparison between
HIF and all other system
conditions based on Energy Vs
Time and Frequency
respectively in (a) and (b)
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Fig. 8 Comparison between
HIF and all other system
conditions based on magnitude
Vs time and frequency
respectively in (a) and (b)

Extracted Features

S-transform is implemented to extract various features
from generated current signals of all the proposed system
conditions of power distribution networks. The time and
frequency information of the resultant current signals is
extracted from the generated S-matrix with accurate time
and frequency resolution.

The time information is extracted from the S-matrix as:

MAT = max (abs (S))

Where MAT represents the maximum of the absolute value
of the S-matrix (STA) generated from the S-transformwhich
provides magnitude-time information.

Similarly frequency information is extracted using ST as:

MAF = max
(
abs

(
ST

))
(8)

Where MAF states the maximum of the absolute value
of the transposed STA generated using ST which pro-
vides magnitude-time(samples) information. Various fea-
tures were extracted for each phases such as:

F1i = AF = 1 − (max(MAT ) + min (MAT )) − Fn (9)

Where ‘i’ represents phases (a, b, c)

Fn = max (MAT) + min (MAT) for no fault condition
and AF is known as amplitude factor, represented as F1.

F2i = entropy (MAF) (10)

The entropy of magnitude-frequency plot (MAF-plot) is
taken as feature 2 (F2).

F3i = max (MAF) (11)

Maximum value of magnitude-frequency plot (MAF-plot)
is taken as feature 3 (F3).

F4i = max (MET ) (12)

Maximum value of Energy-time plot (MET-plot) is taken as
feature 4 (F4).

Energy is calculated using the equation

MET = max
(
MAT 2

)
(13)

F5i = max (MAT ) (14)

Maximum value of magnitude-time plot (MAT-plot) is taken
as feature 5 (F5).

F6i = max (MSR (ST DF)) (15)
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Fig. 9 Comparison between
HIF and all other system
conditions based on standard
deviation Vs. Time and
Frequency respectively in (a)
and (b)

Feature 6 (F6) represents mean square root (MSR) of
standard deviation of magnitude-frequency plot (STDF)

F7i = ST DF = std (MAF) (16)

Feature 7 (F7) gives standard deviation of MAF

F8i = ST DT = std (MAT ) (17)

Feature 8 (F8) represents the value of standard deviation of
magnitude-time plot (STDT)

F9i = max(Ri) (18)

Feature 9 (F9) represents the maximum value of the rate
of change of energy (R) at each sample with respect to its
previous sample.

Fig. 10 Median vs. Time plot
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Fig. 11 Flowchart of Proposed
method

Classification Of HIF

The total number of 4000 different HIF and non-HIF
(capacitor switching, load switching and normal fault) cases
are simulated to extract features from respective current sig-
nals. These data are used as features which are extracted
from ST technique and are used in the detection of HIF

events through the proposed pattern recognition technique.
The flowchart of the proposed technique is shown in Fig. 11.

A. Result ANN classifier using input as ST Feature
In this paper, the HIF classification process is real-

ized with multi-layer perceptron (MLP) neural net-
work, where resilient back propagation (RPROP) is

Table 1 Performance of ANN with single and combination of two features vector

Features vector Over all Accuracy (%) For System I Over all Accuracy (%) For System II

Normal condition Noisy condition Normal condition Noisy condition

50db 40db 30db 50db 40db 30db

F1 95.50 % 88.30 % 85.10 % 82.10 % 95.50 % 88.80 % 86.90 % 83.80 %

F2 94.40 % 92.30 % 70.60 % 54.40 % 92.40 % 87.90 % 72.25 % 58.80 %

F3 94.40 % 93.90 % 88.53 % 86.50 % 94.40 % 86.50 % 81.35 % 76.50 %

F4 95.00 % 91.40 % 90.40 % 90.20 % 99.40 % 95.80 % 90.45 % 82.10 %

F5 94.80 % 93.60 % 90.20 % 87.20 % 96.20 % 91.80 % 89.80 % 83.80 %

F6∗ 98.75 % 96.40 % 94.06 % 92.60 % 95.65 % 93.60 % 72.25 % 51.80 %

F7 98.00 % 96.90 % 93.24 % 89.10 % 96.50 % 89.30 % 81.75 % 51.60 %

F8 97.10 % 90.70 % 90.30 % 89.30 % 98.10 % 95.20 % 91.45 % 87.10 %

F9 96.32 % 94.50 % 90.60 % 86.60 % 95.35 % 93.30 % 85.90 % 70.40 %

F6∗ F9 99.60 % 97.60 % 97.20 % 93.50 % 97.60 % 96.40 % 79.25 % 71.20 %

F6∗ F7 100.00 % 100.00 % 97.70 % 93.70 % 95.40 % 94.40 % 78.35 % 51.40 %

F6∗ F8 99.25 % 99.20 % 98.20 % 94.10 % 96.35 % 96.35 % 91.45 % 70.45 %

F7 f8 100.00 % 98.50 % 97.62 % 91.60 % 95.00 % 92.45 % 82.35 % 65.45 %

F8 f9 99.55 % 98.75 % 93.57 % 89.75 % 100.00 % 97.11 % 92.45 % 81.00 %

*An input to ANN results into higher accuracy then other single features vector
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Table 2 Overall performance of ANN with input feature F6 for system I

Signal Normal Condition Noisy Condition

50dB 40dB 30dB

Total cases Correctly classified

HIF 700 680 (97.1 %) 678 (96.8 %) 677 (96.7 %) 675 (96.4 %)

Non-HIF Normal Fault 700 700 (100 %) 700 (100 %) 695 (88.8%) 696 (99.42 %)

Capacitor Switching 100 100 (100 %) 65 (65%) 43 (43 %) 31 (31 %)

Load Switching 100 100 (100 %) 100 (100 %) 90 (90 %) 80 (80 %)

Average Accuracy 1600 1580 (98.7 %) 1545 (96.4 %) 1376 (94.06 %) 1158 (92.6 %)

Table 3 The classification
accuracy in terms of confusion
matrix having feature vector F6
with 50db noisy condition for
system I

Signal HIF Non-HIF

Normal Fault Capacitor Switching Load Switching

HIF 678 0 35 0

Non-HIF Normal Fault 0 700 0 0

Capacitor Switching 0 0 65 0

Load Switching 22 0 0 100

Average Accuracy 96.4 %

Table 4 The architecture of
MLP used for single feature
vector

Architecture The number of layers 3

The number of neuron on the layers Input: 3, Hidden: 8, Output: 4

The initial weights and biases Random

Activation functions Tansig Tansig Logsig

Training parameters Learning rule Resilient back propagation

Learning rate 0.5

Moment constant 0.98

Mean-squared error 1e-05

Table 5 Performance of SVM with single and combination of two features vector

Features vector Over all Accuracy (%) For System I Over all Accuracy (%) For System II

Normal condition Noisy condition Normal condition Noisy condition

50db 40db 30db 50db 40db 30db

F1 97.62 % 95.75 % 94.18 % 93.87 % 98.63 % 96.06 % 92.20 % 80.44 %

F2 96.81 % 91.19 % 72.00 % 56.24 % 95.02 % 94.88 % 70.18 % 49.31 %

F3 97.81 % 95.31 % 95.56 % 92.94 % 96.25 % 95.19 % 89.50 % 82.45 %

F4 100 % 99.06 % 96.25 % 92.25 % 99.88 % 98.44 % 94.25 % 85.89 %

F5 96.13 % 95.19 % 94.19 % 89.50 % 95.88 % 95.31 % 89.25 % 82.13 %

F6 100 % 100.00 % 94.06 % 92.13 % 100.00 % 98.13 % 94.32 % 86.25 %

F7 99.94 % 99.75 % 96.45 % 91.81 % 100.00 % 97.69 % 92.32 % 83.45 %

F8 96.31 % 96.19 % 94.25 % 91.56 % 94.88 % 95.56 % 88.31 % 66.44 %

F9 100 % 99.94 % 92.37 % 89.44 % 100.00 % 84.94 % 77.37 % 68.14 %

F6 F9 100 % 99.94 % 93.18 % 91.50 % 100.00 % 97.25 % 93.20 % 79.78 %

F6 F7 100 % 100.00 % 97.44 % 91.44 % 100.00 % 97.31 % 95.48 % 85.45 %

F6 F8 100 % 100.00 % 97.25 % 92.25 % 100.00 % 97.44 % 90.25 % 75.48 %

F7 f8 100 % 99.94 % 97.69 % 92.31 % 100.00 % 97.06 % 92.88 % 83.25 %

F8 f9 100 % 98.13 % 95.31 % 93.18 % 100.00 % 97.44 % 89.37 % 66.25 %
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Table 6 Overall performance of ANN with input feature F6 for system I

Signal Normal Condition Noisy Condition

50dB 40dB 30dB

Total cases Correctly classified

HIF 700 700 (100 %) 700 (100 %) 677 (96.7 %) 656 (93.71 %)

Non-HIF Normal Fault 700 700 (100 %) 700 (100%) 650 (92.85 %) 666 (95.15 %)

Capacitor Switching 100 100 (100 %) 100 (100%) 81 (81 %) 61 (61 %)

Load Switching 100 100 (100 %) 100 (100 %) 97 (97 %) 90 (90 %)

Average Accuracy 1600 1600 (100 %) 1600 (100 %) 1505 (94.06 %) 1473 (92.13 %)

Table 7 The classification
accuracy in terms of confusion
matrix having feature vector F6
with 30db noisy condition for
system I

Signal HIF Non-HIF

Normal Fault Capacitor Switching Load Switching

HIF 656 0 16 10

Non-HIF Normal Fault 0 666 23 0

Capacitor Switching 0 34 61 0

Load Switching 44 0 0 90

Average Accuracy 92.13 %

Table 8 Comparison of
proposed method with WT
methods

Classification Techniques (System I) Normal Condition With SNR 30dB

WT ST WT ST

ANN 100 % 100.00 % 85.6 % 93.70 %

SVM 100 % 100 % 75.5 % 92.15 %

Table 9 Comparison of
proposed method with existing
methods

Relay System Type Ideal SNR 30dB

Proposed Method (max accuracy using best Feature vector)

ST feature with ANN Redial 100 % 93.70 %

ST feature with SVM Redial 100 % 92.15 %

ST feature with ANN Mesh 100 % 81.00 %

ST feature with SVM Mesh 100 % 86.25 %

Review paper/existing

Ref. [29] Redial 93.6 % NA

Ref. [30] Redial 97.3 % NA

Ref. [5] Redial 96.0 % NA

Ref. [12] Redial 100 % NA
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used as learning algorithm. The test system undertaken
for the study is shown in Fig. 1. Out of total data 60 %
are used for training and 40 % are used for testing for
the classifier.

Table 1 depicts the classification accuracy result for
HIF and non-HIF events with and without noisy condi-
tion for one and the combination of two features vector.
It is clearly seen that even with the reduced number
of features the ANN gives an adequate performance
classification. It is easily noticeable in Table 1 that by
using feature vector F6 as an input to ANN results into
higher accuracy then other single features vector. The
overall performance of ANN using features vector F6
is shown in Table 2. It is evident from Table 2 that
the overall accuracy for classification HIF with other
transient events and normal fault is 98.75 %, 96.4 %,
94.06 % and 92.60 % for normal (without noise),
with SNR 50db,with SNR 40db and with SNR 30db
respectively.

The confusion matrix (4 x 4) is shown in Table 3,
where the diagonal element represents the correctly
classified events and non-diagonal elements depicts the
misclassification.

Taking an appropriate combination of two feature
vector (F6F7) ,the overall accuracy of classification is
also shown in Table 1, where it indicates the percent-
age accuracy is increased to 100 %, 100 %, 97.70 %
and 93.70 % for normal and noisy condition with SNR
(signal to noise ratio) 50db, 40db and 30db respec-
tively. The result indicates an inherent performance
of the technique to detect HIF under noisy condition.
The architecture of the MLP used for training with a
combination of two feature vector is shown in Table 4.

B. Result SVM classifier using input as ST Feature
The overall performances of SVM for HIF clas-

sification with respect to Non-HIFs are explained in
Tables 5, 6 and 7. Table 5 depict the classification
accuracy result for HIF and non-HIF events with and
without noisy condition for one and the combination
of two feature vector. It is clearly seen that even with
the reduced number of features the ANN gives an ade-
quate performance classification. It is easily noticeable
in Table 5 that by using feature vector F6 as an input to
SVM results in higher accuracy than other single fea-
tures vector. The overall performance of SVM using
features vector F6 is shown in Tables 6 and 7.

C. Comparison of proposed method with existing tech-
nique based on accuracy

This section provides a comparison view of pro-
posed ST based method with the WT based method.

Here the fault current extracted from PCC is processed
through WT, and different features like energy content,
standard deviation and entropy of signal are computed
to train and test the ANN and SVM to discriminate
the HIF from other transient condition and normal
fault.

From Table 8, it can be observed that the accuracy
using WT ANN in 30 dB noisy condition is 85.6 %
where as in case of ST ANN is 93.70 % which proves
that ST provides a better accuracy under noisy con-
dition than WT. So it is preferable to implement s-
transform under noisy conditions to detect HIF. Table 9
demonstrates the comparison between the proposed s-
transform based technique, and existing/proposed HIF
detection methods. The information related to SNR 30
dB case are not available in the reference paper [5, 12,
29, 30] and is shown as NA (not available) in Table 9.
The table clearly reveals an inherent performance of the
technique to detect high impedance fault under noisy
condition

Conclusion

In this work a novel method based on s-transform and
pattern techniques for HIF detection and classification is
suggested. In this method the fault current extracted from
PCC is processed through ST to extract time-and frequency
information in term of STA matrix. For appropriate classi-
fication it is necessary to choose a suitable feature vector
that can recognize the characteristics of signal. So statistical
features vectors based on S-transform are retrieved. Then,
the effectiveness of features is improved by selecting com-
bination of optimum features vector. These features vector
are used to train and test the intelligent classifier. ANN
and SVM are used as intelligent classifier in this paper.
Comparative result shows that the SVM based classifier is
superior to ANN based classifier to detect HIF for noisy
condition.

The scope of the paper is limited to the application of
ST for feature extraction. Further, the performance of HIF
detection can be improved through the application other fast
version of discrete s-transform. In the classification stage,
this work is limited to the use of ANN and SVM. So, the
efficiency of HIF classification may enhance through the
other new machine learning techniques like extreme learn-
ing machine(ELM), because of its fast response than SVM
and ANN. The studied system can be further simulated by
using of a time varying HIF model to test the performance
of the proposed method.
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Nomenclatures
Symbol Notations Description
CWT Continuous wavelet transform
τ time shift (translation) constants
d Dilation (scaling) constant
S (τ, f ) S-transform matrix
φ (t, f ) Phase of S-spectrum
ξ Error term
b bias
ω weight
L Penalty factor
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