
ORIGINAL RESEARCH PAPERS

Architecture Design and Reliability Evaluation of a Novel
Software-Defined Train Control System

Ming Chang1,2 • Nan Nan3 • Dongxiu Ou3 • Lei Zhang1

Received: 5 April 2021 / Revised: 12 December 2021 / Accepted: 17 January 2022 / Published online: 17 February 2022

� The Author(s) 2022

Abstract Communication-based train control (CBTC) has

been the prevailing technology of the urban transit sig-

naling system. However, CBTC also faces a few issues to

extend and maintain because of its complicated structure.

This paper presents a novel urban transit signaling system

architecture, software-defined train control (SDTC), which

is based on cloud and high-speed wireless communication

technology. The core functions of the proposed SDTC,

including the onboard controller, are implemented in the

cloud platform, with only sensors and input–output (IO)

units remaining on the trackside and the train. Because of

the scalable framework, the system function can be

expanded according to the user’s demand, making signal-

ing as a service possible. With warm standby server

redundancy, SDTC has better reliability. Compared with

the traditional CBTC architecture, the mean time between

failures is improved by 39% by calculating typical project

parameters by the Markov model based on some

assumptions.

Keywords Communication-based train control (CBTC) �
Software-defined � Train control � Cloud computing �
System architecture � Reliability

1 Introduction

Communication-based train control (CBTC) has been the

prevailing train control system in urban rail transit. The

conventional CBTC mainly consists of the zone controller

(ZC), the computer interlock (CI), the automatic train

supervision (ATS) on the track side, and the vehicle

onboard controller (VOBC) on the train. The CBTC system

is mature and reliable, which can provide safe and efficient

service for the operation of urban rail transit [1, 2].

It is worth noting that some defects have been exposed

with the worldwide application of the CBTC system. For

example, the VOBC, ZC, and CI all contain safe logic

operations, among which the interfaces are complex, and

the subsystems have different hardware boards, which

cannot be interchangeable. This will increase the difficulty

of installation and maintenance.

Two trends have emerged for optimizing CBTC archi-

tectures and reducing complexity. One is to simplify

trackside equipment and allow the onboard controller to

perform more logical computing functions, i.e., a train-

centric or train-to-train (T2T) communication-based

architecture. Alstom’s T2T CBTC Urbalis Fluence system

will be put into operation in Lille [3]. Chen et al. proposed

a new train-centric CBTC solution using the information

entropy method to compare the structure and function

& Dongxiu Ou

Ou.dongxiu@tongji.edu.cn

Ming Chang

lancechang@outlook.com

Nan Nan

Nannan@casco.com.cn

Lei Zhang

reizhg@tongji.edu.cn

1 The Key Laboratory of Road and Traffic Engineering,

Ministry of Education, School of Transportation Engineering,

Tongji University, 4800 Cao’ an Rd., Shanghai, China

2 CASCO Signal Ltd., No.14-15, Lane 299, Wenshui Rd,

Shanghai, China

3 Shanghai Key Laboratory of Rail Infrastructure Durability

and System Safety, School of Transportation Engineering,

Tongji University, 4800 Cao’ an Rd., Shanghai, China

Communicated by Tao Tang.

123

Urban Rail Transit (2022) 8(1):45–55

https://doi.org/10.1007/s40864-022-00165-y http://www.urt.cn/

http://orcid.org/0000-0001-5270-7794
http://orcid.org/0000-0002-2951-5177
http://orcid.org/0000-0002-2415-3058
http://orcid.org/0000-0003-1961-3176
http://crossmark.crossref.org/dialog/?doi=10.1007/s40864-022-00165-y&domain=pdf
https://doi.org/10.1007/s40864-022-00165-y
http://www.urt.cn/

complexity between the conventional CBTC system and

the train-centered system [4]. Liu et al. proposed a train

control system based on train-to-train communication

(T2T-CBTC) and designed a risk prediction method esti-

mated by a statistical model test [5]. Song et al. reviewed

the development of train control systems. The authors put

forward a train-centric architecture and analyzed the sys-

tem availability and performance mainly with respect to

communication by Petri Net [6–8]. Wang et al. introduced

a new sense-based semipermanent scheduling method for

resource allocation to improve the transmission delay of

the T2T system, and the method also evaluated the quality

of service and how to defend against Sybil attacks [9–11].

Another idea for optimizing CBTC architectures is to

virtualize the trackside controllers currently placed at each

equipment station and deploy them in the cloud center.

This enables the use of commercial off-the-shelf (COTS)

servers instead of dedicated industrial control computers,

which reduces the costs and simplifies the maintenance

operations. Increasing numbers of maintenance and train

management systems are going to the cloud for powerful

data analysis, intelligent diagnostics, and dispatch man-

agement functions. In addition, Siemens’ interlock based

on the Distributed Smart Safe System (DS3) platform has

been in operation in Achau, Austria, since 2020 [12]. DS3

is a safety integrity level 4 (SIL4) product implemented on

COTS hardware, demonstrating that it is possible to

transfer safety-critical products into the cloud. The Swiss

Railways’ SmartRail 4.0 project proposes that the Euro-

pean Train Control System (ETCS) interlocking system

will be implemented in the cloud and has commissioned

ESG Rail to analyze the requirements and the potential

routes for the SIL4 data center [13].

Both train-centric and cloud architecture trends are

evolving towards simplifying the CBTC architecture and

reducing the system complexity. However, the division of

system component functions in these schemes is still lim-

ited to their physical location. Even in the case of ‘‘inter-

locking in the cloud,’’ the allocation of functions to the

components of the train control system is similar to that of

conventional architecture.

In fact, with the development of modern wireless com-

munication technologies, it is possible to break the space

barrier. As one of the ultra-reliable low-latency commu-

nication (uRLLC) scenarios, the train control system has

been defined in the 5G Release 16 of 3GPP TR 22.289: the

end-to-end transmission delay shall be less than 100 ms

and the reliability shall reach 99.9999% [14]. Research on

the application of 5G to transportation, such as vehicle-to-

everything, vehicle networks, etc., has begun to appear

[15–18]. If the train-to-ground wireless communication can

reach millisecond delays with extremely high reliability,

then there will be no physical separation between train and

ground boundaries. That is, not only can the interlocking or

ZC be put into the cloud, but the logical computing units of

the onboard controller can also be put into the cloud,

resulting in greater flexibility and reliability.

In this paper, a new train control system architecture for

urban rail transit is proposed, the so-called Software-de-

fined Train Control (SDTC) system, and the reliability

indices of the architecture are evaluated. The contributions

of the SDTC are as follows:

(1) The SDTC‘s logic computing functions are deployed

in the cloud, and each subsystem shares a common

safety and redundancy architecture to solve mainte-

nance problems for the hardware of the traditional

system.

(2) Considering resource management as the core con-

cept, SDTC regards physical devices as resources

and divides entity, control, and applications into

vertical layers, which simplifies the system. Also, it

is convenient for migration, expansion, and man-

agement, making signaling as a service possible.

(3) Due to the low delay and high-reliability communi-

cation technology, there are only sensors and

actuators on the train, and the control model is in

the cloud, which makes the upgrade and expansion

easier.

(4) The reliability index of SDTC is improved due to the

use of the Markov model to model and quantitatively

evaluate the conventional CBTC and SDTC.

Section 1 in this paper presents an introduction and

literature review, Sect. 2 presents the architecture of SDTC,

and Sect. 3 describes the reliability model used to evaluate

the CBTC and SDTC system and discusses the quantified

results. Conclusions are made in Sect. 4.

2 SDTC Architecture

2.1 CBTC System Structure

The arrangement of traditional CBTC equipment is shown

in Fig. 1, which does not consider backup equipment, such

as the track circuit or Eurobalises. The overall CBTC

system architecture is divided into three levels: a control

center, a station, and a terminal.

In the control center, there are central ATS devices for

dispatching functions. A line controller, such as a data

storage unit (DSU), manages data versions and temporary

speed limits. The maintenance support system (MSS) will

be set up in a maintenance center for the status monitoring

and maintenance functions.

Normally, among three to five stations, there is an

equipped station (usually with switches) that is deployed

46 Urban Rail Transit (2022) 8(1):45–55

123

with CI, ZC, and local ATS devices. The other stations are

unequipped stations, linked by a cable to the equipped one.

The CI can be divided into a logic calculation unit and an

input–output (IO) unit called Object Controller (OC). The

OC connects to wayside devices, such as switches, signals,

platform doors, etc. The logic computing unit of the

interlock runs on the safety hardware platform, integrated

by 2 out of 2 (2oo2) or 3 out of 2 (3oo2) architectures to

ensure safety and reliability. Local ATS is used to take

over the equipment control of the equipped station area in

the event of disconnection from the center. The ZC is used

to obtain the track state from the CI and the running state

from the VOBC and to calculate the moving authorization

of the train.

On the train, as shown in Fig. 2, the VOBC is deployed

at the head and tail cabs to form a hot standby redundancy.

For each VOBC device, there are three main parts: the

speed measurement and localization unit, the IO unit as the

interface with rolling stock, and the core unit for ATP and

ATO logic operation. Moreover, the ID plug can identify

the train where the VOBC is installed.

2.2 Architecture of SDTC

One way to enhance system scalability is through software-

defined functions on general-purpose hardware devices,

from the earliest software-defined networks, storage, data

center, and cloud to the industrial field [19], such as soft-

ware-defined power grids [20], vehicular [21], and the

internet of things [22]. It is time for software to define

everything. The core of the software-defined concept is to

disentangle the applications from their specific hardware

and to provide a common interface between them. As for

the signaling system, whether ZC, CI, or VOBC, if func-

tions can be separated from their specific hardware, it can

minimize the variety of devices while preserving system

flexibility.

This paper proposes a two-layer structure train control

system, where the logical operation layer is located in the

cloud, and only the IO and sensors are kept on the rail and

train sides. Figure 3 shows the schematic diagram of the

SDTC, which consists of the safety-related cloud parts,

including the controller in cloud (CiC) for each train, the

line resource manager (LRM), a train registration and

allocation controller (TRAC), a multiple IO unit installed

on the train, and a wayside IO unit installed on the side of

the track. Between the cloud and the train, there are low

delay, high reliability, and high-speed wireless communi-

cation. The cloud is deployed on the control center, and the

backup servers can be placed in the same center or the

backup center, which connects through a high-speed net-

work and is transparent to the application. Thus, in the

event of a major disaster, it is possible to transfer between

multiple cloud centers, which minimizes the impact on

system operations.

The CiC runs on the SIL4 cloud platform and performs

the core logic computing functions of a traditional VOBC.

It establishes communication with the Multi-IO module on

the corresponding train according to the TRAC assignment,

receives real-time speed and location from the train, and

sends emergency braking or traction commands to the

Multi-IO. The CiC obtains the switch status on the line

from the LRM and the position of the ahead train by other

Fig. 1 Architecture of a conventional CBTC system (without the backup system)

Urban Rail Transit (2022) 8(1):45–55 47

123

CiCs, and accordingly calculates movement authorizations

and door opening and closing commands.

The TRAC assumes two functions: one is to match and

manage the Multi-IO and CiC in the cloud, i.e., assigning

the corresponding CiC to the new train when it comes into

service. This includes informing two CiCs on the same

train that they are mutually redundant. The other function

is to inspect the working status of the CiC. If one CiC fails,

Fig. 2 VOBC architecture on the train

Fig. 3 SDTC architecture

48 Urban Rail Transit (2022) 8(1):45–55

123

it can request the cloud platform to cut off the failed CiC

server and replace it with the standby server, to enhance the

availability of the entire system.

The LRM manages and distributes line resources.

Through communication with the Wayside-IO, it obtains

real-time information about the trackside equipment, such

as the position of switches, the platform door status, etc.

The LRM also needs to maintain temporary speed limits

across the line and performs other features such as data

version management for other subsystems.

The Multi-IO, placed on the train, is used to realize the

communication and interface with the train and man–ma-

chine interface display, and to obtain the information of the

speed sensor, Eurobalise antenna, Doppler radar, and other

equipment installed beneath the train. In addition, the

Multi-IO does not need complex processing ability, but

only enables communication with the rolling stock’s

equipment and sensor status acquisition in short cycles, and

sends it to the CiC in the cloud. It also receives the com-

mand from the CiC and sends it to the rolling stock or

man–machine interface for display. Perhaps with the inte-

gration of signaling devices with rolling stock TCMS, the

Multi-IO will no longer be required, and train driving can

be done by the CiC communicating directly with the

TCMS.

The Wayside-IO, a device installed on the trackside, is

used to communicate with basic signaling devices such as

switch controllers, signals, platform doors, etc. It obtains

the status of these devices and sends them back to the

LRM, or it actuates the switch action, flashes the signal, or

opens and closes the platform doors.

As the core logic is implemented in the cloud platform,

the SDTC system provides more flexible and easier

methods to maintain features than the traditional CBTC

architecture. The resources of the cloud can depend on the

customer’s demand; they do not need excessive investment

in the early stages, and can also increase along with the

system expansion.

2.3 Safety and Redundancy Mechanisms

For the train control system, safety and reliability are the

most important characteristics, which must be verified by

hardware redundancy to avoid the dangerous results of the

failures. The multicore processor is a virtualization plat-

form that enables a SIL4 level safety vote to avoid random

hardware failures [23]. Figure 4 shows a safety train con-

trol cloud platform based on multicore servers. It is used to

implement safety computing on commercial servers, avoid

random errors through multicore voting, and support the

implementation of SIL4-level functional applications.

Software encoding can be used to reduce the unde-

tectable rate of random faults on COTS devices [24].

Furthermore, to enhance the diversity between the chan-

nels, different software encoding can be applied in different

central processing unit (CPU) cores of the 2oo2 architec-

ture or using different operating systems or compilers, thus

further reducing the probability of common cause failure in

the system.

The examples in Fig. 4 are four multicore servers (#1,

#2, #x, and #y) with multiple cores per server. With a

hypervisor, the cores are separated and mapped to separate

CPUs to run their respective virtual machine applications.

On this virtual machine, a real-time operating system and

corresponding train control application (such as CiC, LRM,

or TRAC) are run to achieve the corresponding functions.

Between the server, and through the high-speed network

connection, 2oo2 votes to compare might be realized.

For example, for the CiC controller in Fig. 4 (between

server #1 and #2, and between server #x and #y) and the

virtual machine corresponding to the core of the respective

server, it composes a pair of 2oo2 architecture controllers

to realize the safety operation of SIL4-level function.

Besides, two pairs of servers, running onboard controllers,

can be associated with the same train and form a double

2oo2 redundant architecture. If one server fails, the CiC

application running on the other server can control the train

and avoid emergency braking or other conditions that could

affect train operations.

Similar to the original CBTC, a hot standby in the SDTC

is required to maintain uninterrupted service. To increase

availability, the SDTC can set up additional warm servers

in the cloud, which can quickly replace crashed working

devices, thus restoring the hot standby redundancy [25, 26].

If this mechanism was used in the traditional architecture,

extra warm standby hardware had to be deployed for every

specific subsystem, thus leading to unaffordable costs. In

the cloud, however, the same warm standby server can be

used for all the working servers, including the CiC, the

LRM, or the TRAC, simply by migrating the virtual

machine to another server. In this way, the overall system

reliability is strengthened by adding a few servers.

Figure 5 presents an example of how the redundancy

mechanism works in the SDTC. The TRAC runs on the

cloud platform and traces the correspondence between the

CiC application and the Multi-IO, as shown in Fig. 5.

When the TRAC receives registration information from the

Multi-IO, it determines whether there is already a CiC

corresponding to it. If not, it assigns and creates a new CiC

and informs the ID to bind it.

TRAC communicates with each CiC periodically. When

it detects a CiC crash (CiCx-1 on server #x in Fig. 5, for

example), the TRAC isolates the CiC’s server #x and

wakes up the warm standby server #z to replace the failed

one. During the cut-and-replace process, Train 1 and Train

2 are controlled by the CiC that is solely deployed on

Urban Rail Transit (2022) 8(1):45–55 49

123

servers #1 and #2. After all the applications in the #x server

relocated to the server #z, Train 1 and 2’s CiC is recovered

to double 2oo2 redundant architecture. It should be noticed

that server #z is not a specific CiC backup; however, it can

be used to replace any failed server. In the following sec-

tion, the reliability index of SDTC is calculated and com-

pared with the classic CBTC framework.

3 Reliability Evaluation

3.1 RAM (Reliability, Availability

and Maintainability) Model of CBTC

Mean time between failures (MTBF) is the index to mea-

sure the system reliability. The reciprocal of MTBF,

expressed in k, is the failure rate of the system, as shown in

Eq. 1. According to the failure rate of the basic components

and the structural model of the system, the failure rate of

the subsystem and the entire system can be obtained

gradually through the fault tree analysis and Markov state

transition matrix [27].

k ¼ 1

MTBF
ð1Þ

Here the key components that make up a CBTC system are

identified, which are ATS, VOBC, ZC, DSU, CI, OC, and

DCS, and the failure of any one of those key components

will cause the system to fail. The MSS is excluded because

it does not impact regular operations. The reliability block

diagram of a CBTC system can therefore be described as a

serial architecture, as shown in Fig. 6a.

For a system consisting of N subsystems in a serial

structure, the failure rate ksystem can be calculated accord-

ing to Eq. (2), where ksub_i indicates the failure rate of the

subsystem i, (1 - ksub_i) means the probability that the

subsystem works properly, so the product of all subsystem

(1 - ksub_i) indicates that the entire system works nor-

mally. When the failure rate of each subsystem is very low,

the failure rate of the entire system is about equal to the

sum of the failure rates of each subsystem.

ksystem ¼ 1�
Y

N
1 1� ksub ið Þ �

XN

1
ksub i ð2Þ

Referring to IEEE 1474.1 specifications [1], the avail-

ability index A of the CBTC system is the probability that

the system is capable of operating its intended function at a

random point in time, as determined by the system MTBF

and the mean time to repair (MTTR), as shown in Eq. (3).

A ¼ MTBF

MTBFþMTTR
ð3Þ

For the serial architecture, the MTTR of the entire

system is the sum of the product of each subsystem’s

MTTRsub_i and its failure rate ksub_i, divided by the failure

rate of the system ksystem, as shown in Eq. (4).

MTTRsystem ¼
X

i
ðMTTRsub i � ksub iÞ=ksystem ð4Þ

Considering the VOBC shown in Fig. 2 as an example, a

Markov model of the redundant architecture is obtained

and as shown in Fig. 7. Each train has two sets of VOBC

equipment that are redundant with each other. For S0, and

under usual circumstances, both ends of the VOBC are

working normally, one of which is hosted to control the

train, and the other is a backup. Both S1 and S2 are

Fig. 4 Safety and redundancy

of the servers

50 Urban Rail Transit (2022) 8(1):45–55

123

degraded cases, with one VOBC out of order. The differ-

ence is that S1 is an undetected failure, while S2 is

detectable. In both cases, however, the system still has an

operating VOBC, so that it is in an available state. S3 is a

failed state; that is, both ends of the VOBC are unavailable.

Due to the cost, it is not feasible to design different hard-

ware for two VOBCs on the same train; thus, there is a

common cause fault in the system, which may lead to dual

devices crashing together. Besides, when the failure is

detected, or the system is unavailable, repairs should be

done as soon as possible. After rebooting, or replacing the

failed board, the system resumes to the normal state S0.

According to Fig. 7, the state transition matrix of the

system can be obtained as shown in Eq. (5).

Fig. 5 A scenario of TRAC

A

B

Fig. 6 Reliability block

diagram of a CBTC and

b SDTC

P ¼

1�2kð1� bÞð1� aÞ � 2kð1� bÞa� kb 2kð1� bÞð1� aÞ 2kð1� bÞa kb
0 1� k 0 k
l 0 1� l� k k
l 0 0 1� l

2

664

3

775 ð5Þ

Urban Rail Transit (2022) 8(1):45–55 51

123

in which k is the failure rate of the device, a is the

detection rate, b is the common cause failure factor, and l
is the restore rate, reflecting the maintenance rate of the

system. Therefore, according to Eq. (6), starting from the

initial state S0 = [1,0,0,0], the probability of the system

being in each state at any time can be calculated. Along

with increasing time, the probability of being in each state

will converge on a limited value.

S0tþDt; S1tþDt; S2tþDt; S3tþDt½ � ¼ S0t; S1t; S2t; S3t½ � � P ð6Þ
S0þ S1þ S2þ S3 ¼ 1 ð7Þ
AVOBC ¼ S0þ S1þ S2 ð8Þ

As shown in Eq. (7), the sum of the probabilities of each

state is equal to 1, and the availability in Eq. (8) of the

system is derived because all states except state 3 are

available. According to Eq. (3), Eq. (9) can be deduced for

the MTBF of the system.

MTBF ¼ MTTR � A
1� A

ð9Þ

Therefore, the reliability indexes of each subsystem in

the CBTC system can be calculated in a sequence, and the

reliability of the entire CBTC system can be obtained using

the serial structure shown in Fig. 6a and Eqs. 1, 2, 3, 4, and

5.

3.2 SDTC Reliability

For the SDTC architecture shown in Fig. 3, and the RAM

model of SDTC shown in Fig. 6b, it is clear that ATS,

Multi-IO, CiC, TRAC, LRM, OC, and DCS are key com-

ponents. Therefore, we can calculate the SDTC index

similarly to the CBTC system.

In the SDTC system, TRAC, CiC, and LRM are all

deployed in the safety-related cloud, with the same

redundancy mechanism shown in Fig. 5. Compared with

the classic hardware architecture, the warm standby server

in the cloud platform is not constrained to a specific device.

Thus, the platform and the data are separated. As long as

the specific configuration is loaded, it can act as that

device, which is one of the advantages of SDTC systems.

The Markov model can also be used to evaluate the

reliability of servers in the cloud [28]. The following

assumptions were made: (1) the fault server is only

repaired after being isolated; (2) the working server will

not recover directly after failure, but will be replaced by the

warm standby server; (3) there are common cause faults

between redundant working servers; (4) whether or not the

fault is detectable does not affect the overall availability of

the system, so this model does not consider the detection

rate; and (5) there are several warm standby servers rep-

resented as W0, W1, etc.

Therefore, the running state of a subsystem in the SDTC

and its transition diagram is shown in Fig. 8. S0 is a natural

state, comprising two redundant hot standby working ser-

vers and a warm standby server W0. When a working

server crashes, the system transfers into S1 with a single

working server and an inactive warm standby W0. Nor-

mally, warm standby W0 will be activated into S3, thus

restoring one out of two structures, while the second

backup server W1 becomes a warm standby. Otherwise, if

the rest of the working system fails when the W0 has not

yet been activated, it goes from S1 to failure state S2, at

which point the system becomes unavailable. Similarly, if

while in the S3 state there is a working server failure, the

system will be put into the degraded state S4. When the

isolated failure server recovers, the system returns to a

normal state S0. Note that if the working one fails at the

state S4, it will go to the fault state S5 before warm standby

W1 is activated.

Fig. 7 VOBC Markov model

Fig. 8 Markov model for the CiC subsystem with two warm standby

servers

52 Urban Rail Transit (2022) 8(1):45–55

123

State S0 is the same as S3, S1 is the same as S4, and S2

is the same as S5, but only with a different server W0 or

W1 on standby. If the system has other warm standby

servers, it will have a more identical status. However,

because of the rapid activation time, unless a common

mode failure occurs, the warm standby system switches in

time to resume redundancy before another server fails.

Therefore, no further states need to be considered.

The transition matrix for the Markov model shown in

Fig. 8 is shown in Eq. (10).

in which k1 and k2 are the failure rate of the server in the

working state and the warm standby state, respectively, b is

a common cause failure factor, l is the restore rate, and o is
the warm standby activation rate.

In this model, the system is unusable when it is in states

2 and 5, whereas it is available in the other states. Thus, the

availability of the CiC subsystem for a train is shown in

Eq. (11).

ACiC ¼ S0þ S1þ S3þ S4 ð11Þ

3.3 System Comparison

To assess the reliability between the conventional CBTC

and the new SDTC architecture, an average project is

assumed. Thirty trains are running on this line, which is

implemented on the CBTC system, with 30 pairs of

VOBCs, three ZCs, six CIs, 16 OCs, one ATS, and one

DCS. For the SDTC architecture, 30 pairs of CiCs, one

LRM, and one TRAC are in the cloud, 30 pairs of Multi-IO

on the trains, 16 Wayside-IO outside, and the same one

ATS and one DCS system.

For the CBTC system, the parameters of a specific type

of CBTC produced by CASCO are adopted, as shown in

Table 1. The MTBF value of a single device is calculated

in a sequence according to Eqs. 5, 6, 7, 8, and 9, and the

MTTR is modeled on analysis. For the VOBC, it is rou-

tinely rebooted locally by the driver or remotely by the

operator after the train arrives at the terminal station. Here,

the running time is presumed to be 1 h. For other subsys-

tems, because their failure will lead to a large range of train

emergency brakes, they must be repaired immediately.

Considering 0.5 h as MTTR, after obtaining the RAM

value of each device of every subsystem, Eqs. 1, 2, 3, and 4

can be used to calculate the overall index of the number of

N and the index of the entire CBTC system.

For SDTC systems, the calculation was performed

depending on the following principles: (1) ATS and DCS

are outside the focus of this study, so the same value of

CBTC was used; (2) because of the similar function, the

number and the failure rate of Wayside-IO are the same as

OC; and (3) Multi-IO is the IO and speed and location

measurement, which is two out of three major modules of

VOBC in Fig. 2; thus, its failure rate is set as 2/3 of VOBC.

Meanwhile, the CiC, LRM, and TRAC structures in the

cloud are the same.

With the continuous improvements in technology, the

reliability of commercial servers is also improving.

LENOVO shows that there are 150,000 hours of MTBF-

certified servers [29]. Here, 3 years (i.e., 25,623 hours) was

taken as the server’s MTBF. According to the Markov

model shown in Fig. 8, the failure rate of the server is k1 =
3.90274e-05. The failure rate of a warm standby server is

less than that of a working server, assuming k2 = 0.5 9 k1.
If the common cause coefficient b is 0.01 and the activation

rate time of the warm standby system is 0.01 h (i.e., o =

100), for the MTTR, and due to the faulty server rapidly

replacing and restarting in the cloud, it was set to be 0.01 h.

Then, according to Eqs. (10) and (11), the RAM of each

system can be calculated. Finally, the overall SDTC reli-

ability value is computed as shown in Table 2.

Comparing Table 2 with Table 1, it is clear that the

reliability of the system has been improved. In general, the

MTBF of SDTC is 8870.56 h, which is about 139% of the

MTBF of 6398.14 h in the conventional system, which

represents a significant improvement. In the MTTR index,

the 0.86 h in the SDTC have decreased by 10% as com-

pared with 0.95 h in the CBTC. However, SDTC is only

slightly better than CBTC in availability. Because the

existing CBTC provides enough redundant design, a single

device failure would not affect the normal operation of the

system.

When looking at individual subsystems one by one, for

the LRM and TRAC with only one on the line, their

P ¼

1� 2k1ð1� bÞ � k1b 2k1ð1� bÞ k1b 0 0 0

0 1� k1 � o� k2 k1 o k2 0

0 0 1� o 0 o 0

0 0 0 1� 2k1ð1� bÞ 2k1ð1� bÞ 0

l 0 0 0 1� k1 k1
l 0 0 0 0 1� l

2

6666664

3

7777775
ð10Þ

Urban Rail Transit (2022) 8(1):45–55 53

123

availability is close to 100%, indicating that it is almost

impossible to fail. To enhance the reliability of the system,

it is key to replace the logic operation function of the

VOBC with CiC in the cloud. The MTBF (of 30 pairs of

CiC) is 85,404 h, which is 12 times as much as that of the

VOBC and shows that the reliability of the system is

greatly improved by using a warm standby server archi-

tecture to enhance redundancy in the cloud. In the tradi-

tional CBTC architecture, it is difficult to use warm

standby architecture in the VOBC. Since each train is

physically isolated, it would require additional costs to add

more hardware. In the cloud, on the other hand, applica-

tions are separated from hardware, and it is possible to

execute with specific data when it is needed, which pro-

vides huge advantages.

4 Conclusions

This paper presents a software-defined train control system,

which deploys application software in a safe cloud to

implement the logical computing functions of CBTC and to

remotely control the train via wireless communication. In

comparison to ‘‘interlocking in the cloud,’’ the SDTC fur-

ther enhances the flexibility and reliability of the train

control system by deploying the core functions of the

VOBC in the cloud as well. According to the reliability

calculations, and compared with the traditional CBTC

structure, the warm standby server redundancy can greatly

enhance the reliability index of the entire system.

Indeed, SDTC is still in the conceptual stage and needs

more research and testing. There are two main directions

for further research: the wireless performance required for

remote control of trains, and whether 5G communication

can meet the requirements. Approaches to building safe

clouds through COTS hardware are another possible area

for future research, such as isolating different CPU cores,

diversifying software coding, and synchronizing safe

clocks, etc.

Acknowledgements This research was funded by the National Key

R&D Program of China (Grant Number 2018YFB1201403), and the

Research Program of Shanghai Science and Technology Committee

(Grant Numbers 18DZ2202600 and 20511106402).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. IEEE 1474.1TM (2004). IEEE standard for communications-

based train control (CBTC) performance and functional

Table 1 RAM for CBTC

architecture
Subsystem Number MTBF MTTR k_N MTBF_N MTTR_N A_N

ATS 1 2.7778E?05 0.5 3.6000E-06 2.7778E?05 0.5 99.999820%

VOBC 30 2.1252E?05 1 1.4116E-04 7.0840E?03 1 99.985886%

ZC 3 2.5432E?06 0.5 1.1796E-06 8.4774E?05 0.5 99.999941%

DSU 1 2.5432E?06 0.5 3.9320E-07 2.5432E?06 0.5 99.999980%

CI 6 8.0801E?05 0.5 7.4256E-06 1.3467E?05 0.5 99.999629%

OC 16 8.8010E?06 0.5 1.8180E-06 5.5006E?05 0.5 99.999909%

DCS 1 1.3954E?06 0.5 7.1665E-07 1.3954E?06 0.5 99.999964%

CBTC 1.5630E-04 6398.14 0.95 99.985129%

Table 2 RAM for the SDTC

architecture
Subsystem Number MTBF MTTR k_N MTBF_N MTTR_N A_N

ATS 1 2.7778E?05 0.5 3.6000E-06 2.7778E?05 0.5 99.999820%

Multi-IO 30 3.1878E?05 1 9.4108E-05 1.0626E?04 1 99.990590%

CiC 30 2.5621E?06 0.01 1.1709E-05 8.5404E?04 0.01 99.999988%

LRM 1 2.5621E?06 0.01 3.9030E-07 2.5621E?06 0.01 &100.00%

TRAC 1 2.5621E?06 0.01 3.9030E-07 2.5621E?06 0.01 &100.00%

Wayside-IO 16 8.8010E?06 0.5 1.8180E-06 5.5006E?05 0.5 99.999909%

DCS 1 1.3954E?06 0.5 7.1665E-07 1.3954E?06 0.5 99.999964%

SDTC 1.1273E-04 8870.56 0.86 99.990271%

54 Urban Rail Transit (2022) 8(1):45–55

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

requirements. rail transit vehicle interface standards committee of

the IEEE vehicular technology society.

2. Diemunsch K, and Rabindran N (2020) Origins and current status

of the different communications-based train control products.

JRC2020. doi: https://doi.org/10.1115/JRC2020-8020

3. Briginshaw D (2013) Alstrom’s simplified CBTC technology to

debut in Lille. International Railway Journal, 53(6). https://trid.

trb.org/view/1253251

4. Chen T, Wang H, Ning B, Zhang Y, Tang T, Li K (2018)

Architecture design of a novel train-centric CBTC system. Int

Conf Intell Rail Transp (ICIRT) 2018:1–5.

5. Liu J, Zhang Y, Han J, He J, Sun J, Zhou T (2019) Intelligent

hazard-risk prediction model for train control systems. IEEE

Trans Intell Transp Syst. https://doi.org/10.1109/TITS.2019.

2945333

6. Song H, Schnieder E (2018) Development and evaluation pro-

cedure of the train-centric communication-based system. IEEE

Trans Veh Technol. https://doi.org/10.1109/tvt.2018.2868881

7. Song H, Schnieder E (2019) Availability and performance anal-

ysis of train-to-train data communication system. IEEE Trans

Intell Transp Syst 20(7):2786–2795.

8. Song H, Wu W, Dong H, Schnieder E (2018) Propagation and

safety analysis of the train-to-train communication system. IET

Microw Antennas Propag. https://doi.org/10.1049/iet-map.2018.

6074

9. Wang X, Liu L, Tang T, Zhu L (2018) Next generation train-

centric communication-based train control system with train-to-

train (T2T) communications. Int Conf Intell Rail Transp (ICIRT)

2018:1–5.

10. Wang X, Liu L, Zhu L, Tang T (2019) Joint security and QoS

provisioning in train-centric CBTC systems under sybil attacks.

IEEE Access. https://doi.org/10.1109/access.2019.2927048

11. Wang X, Liu L, Zhu L, Tang T (2019) Train-centric CBTC meets

age of information in train-to-train communications. IEEE Trans

Intell Transp Syst. https://doi.org/10.1109/TITS.2019.2936219

12. SIEMENS. (2020). First hardware independent cloud-enabled

interlocking in operation. 2020-11-26. https://press.siemens.com/

global/en/pressrelease/first-signalling-cloud-operation.

13. ESG. (2018) On Design, Introduction and Operation Of Safety-

critical Applications in a Data Center In the Railway System of

Schweizerische Bundesbahnen SBB. 2018–06–14. https://www.

smartrail40.ch/download/downloads/Safety-critical%20Applica

tions%20in%20Data%20Center%20in%20the%20Railway%

20System%20SBB.pdf

14. 3GPP. TR 22.289 (2019). Technical specification group services

and system aspects: mobile communication system for rail-

ways(Release 16).

15. Ashraf SA, Blasco R, Do H, Fodor G, Zhang C, Sun W (2020)

Supporting vehicle-to-everything services by 5G New radio

release-16 systems. IEEE Commun Stand Magazine 4(1):26–32.

https://doi.org/10.1109/MCOMSTD.001.1900047

16. Ge X (2019) Ultra-reliable low-latency communications in

autonomous vehicular networks. IEEE Trans Veh Technol

68(5):5005–5016.

17. Sadio O, Ngom I, Lishou C (2020) Design and prototyping of a

software defined vehicular networking. IEEE Trans Veh Technol

69(1):842–850. https://doi.org/10.1109/tvt.2019.2950426

18. Su Y, Lu X, Huang L, Du X, Guizani M (2019) A novel DCT-

based compression scheme for 5g vehicular networks. IEEE

Trans Veh Technol 68(11):10872–10881. https://doi.org/10.1109/

tvt.2019.2939619

19. Jararweh Y, Al-Ayyoub M, Darabseh A, Benkhelifa E, Vouk M,

Rindos A (2016) Software defined cloud: Survey, system and

evaluation. Futur Gener Comput Syst 58:56–74. https://doi.org/

10.1016/j.future.2015.10.015

20. Cao X, Huang H, Wang X et al (2016) Software defined grid:

concept, architecture and samples. Autom Electric Power Syst

40(6):1–9

21. Han S, Cao D, Li L, Li L, Li SE, Zheng N-N, Wang F-Y (2019)

From software-defined vehicles to self-driving vehicles: a report

on CPSS-based parallel driving. IEEE Intell Transp Syst Mag

11(1):6–14. https://doi.org/10.1109/MITS.2018.28765755

22. Mavromatis A, Colman-Meixner C, Silva AP, Vasilakos X,

Nejabati R, Simeonidou D (2020) A Software-defined IoT device

management framework for edge and cloud computing. IEEE

Internet Things J 7(3):1718–1735. https://doi.org/10.1109/JIOT.

2019.2949629

23. Pérez Tijero H, Aldea Rivas M, Medina Ortega D (2017) Mul-

tiprocessor platform for partitioned real time systems. Softw

Pract Exper 47(1):61–78.

24. Ghadhab M, Kaienburg J, Süßkraut M, Fetzer C (2016) Is Soft-

ware coded processing an answer to the execution integrity

challenge of current and future automotive software-intensive

applications? advanced microsystems for automotive applica-

tions. Springer, Cham

25. Srinivasa Rao TSS, Gupta UC (2000) Performance modelling of

the M/G/1 machine repairman problem with cold-, warm- and

hot-standbys. Comput Ind Eng 38(2):251–267.

26. Sousa E, Lins F, Tavares E, Maciel P (2017) Cloud infrastructure

planning considering different redundancy mechanisms. Com-

puting 99(9):841–864.

27. Bukowski JV, Goble WM (1995) Using Markov models for

safety analysis of programmable electronic systems. ISA Trans

34(2):193–198. https://doi.org/10.1016/0019-0578(95)00008-N

28. Matos R, Dantas J, Araujo J, Trivedi KS, Maciel P (2017)

Redundant eucalyptus private clouds: availability modeling and

sensitivity analysis. J Grid Comput 15(1):1–22. https://doi.org/10.

1007/s10723-016-9381-z

29. LENOVO. (2019). 150,000 hours MTBF certification. https://

club.lenovo.com.cn/thread-5421014-1-1.html. 20 January 2019

Urban Rail Transit (2022) 8(1):45–55 55

123

https://doi.org/10.1115/JRC2020-8020
https://trid.trb.org/view/1253251
https://trid.trb.org/view/1253251
https://doi.org/10.1109/TITS.2019.2945333
https://doi.org/10.1109/TITS.2019.2945333
https://doi.org/10.1109/tvt.2018.2868881
https://doi.org/10.1049/iet-map.2018.6074
https://doi.org/10.1049/iet-map.2018.6074
https://doi.org/10.1109/access.2019.2927048
https://doi.org/10.1109/TITS.2019.2936219
https://press.siemens.com/global/en/pressrelease/first-signalling-cloud-operation
https://press.siemens.com/global/en/pressrelease/first-signalling-cloud-operation
https://www.smartrail40.ch/download/downloads/Safety-critical%20Applications%20in%20Data%20Center%20in%20the%20Railway%20System%20SBB.pdf
https://www.smartrail40.ch/download/downloads/Safety-critical%20Applications%20in%20Data%20Center%20in%20the%20Railway%20System%20SBB.pdf
https://www.smartrail40.ch/download/downloads/Safety-critical%20Applications%20in%20Data%20Center%20in%20the%20Railway%20System%20SBB.pdf
https://www.smartrail40.ch/download/downloads/Safety-critical%20Applications%20in%20Data%20Center%20in%20the%20Railway%20System%20SBB.pdf
https://doi.org/10.1109/MCOMSTD.001.1900047
https://doi.org/10.1109/tvt.2019.2950426
https://doi.org/10.1109/tvt.2019.2939619
https://doi.org/10.1109/tvt.2019.2939619
https://doi.org/10.1016/j.future.2015.10.015
https://doi.org/10.1016/j.future.2015.10.015
https://doi.org/10.1109/MITS.2018.28765755
https://doi.org/10.1109/JIOT.2019.2949629
https://doi.org/10.1109/JIOT.2019.2949629
https://doi.org/10.1016/0019-0578(95)00008-N
https://doi.org/10.1007/s10723-016-9381-z
https://doi.org/10.1007/s10723-016-9381-z
https://club.lenovo.com.cn/thread-5421014-1-1.html
https://club.lenovo.com.cn/thread-5421014-1-1.html

	Architecture Design and Reliability Evaluation of a Novel Software-Defined Train Control System
	Abstract
	Introduction
	SDTC Architecture
	CBTC System Structure
	Architecture of SDTC
	Safety and Redundancy Mechanisms

	Reliability Evaluation
	RAM (Reliability, Availability and Maintainability) Model of CBTC
	SDTC Reliability
	System Comparison

	Conclusions
	Acknowledgements
	References

