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Abstract This paper investigates the impact of street pat-

tern, metro stations, and density of urban functions on

pedestrian distribution in Tianjin, China. Thirteen neigh-

borhoods are selected from the city center and suburbs.

Pedestrian and vehicle volumes are observed through

detailed gate count from 703 street segments in these

neighborhoods. Regression models are constructed to

analyze the impact of the street pattern, points of interest

(POIs), and vehicle and metro accessibility on pedestrian

volumes in each neighborhood and across the city. The

results show that when analyzing all neighborhoods toge-

ther, local street connectivity and POIs had a strong

influence on pedestrian distribution. Proximity to metro

stations and vehicle accessibility had a minor impact.

When analyzing each neighborhood separately, both local-

and city-scale street patterns affect pedestrian distributions.

These findings suggest that the street pattern provides a

base layer for metro stations to attract both the emergence

of active urban functions and pedestrian movement.

Keywords Pedestrian volume � Street pattern � Point of
Interest � Space syntax

1 Introduction

While modern cities that are undergoing rapid development

in newly industrialized countries normally benefit from the

construction of mega-scale infrastructure, they also suffer

from severe traffic problems. Globally, there is increasing

concern regarding the loss of human scale in city centers or

suburbs. As a result, research on street-level pedestrian

movement has become a central topic in urban develop-

ment literature. Numerous studies have investigated the

impact of urban form on pedestrian travel behavior. Pop-

ulation density, land use, access to public transport, envi-

ronmental comfort, and urban design are all proven to have

an impact on pedestrian street usage. However, most of

these studies focus on the city or neighborhood level, while

relatively little attention has been paid to overall street

patterns and their impacts on pedestrian movement at the

street level.

Street patterns affect pedestrian movement at different

scales. First, research shows that small-scale urban blocks

can increase the walkability of an area [1, 2]. Other studies

have shown that higher street density also attracts more

active urban functions, such as retail shops and restaurants,

which contributes to street vitality and attracts more human

activity in the city [3].

Second, large-scale street connections can affect the

distribution of different urban functions within cities. The

location of office towers and local restaurants requires very

different scales of accessibility. Intuitively, pedestrian

movement is attracted to various land uses as origins and

destinations, and those land uses and public transport sta-

tions are affected by large-scale street connections. In other

words, although walking is primarily a short-range activity,

the distribution of pedestrians in the city and neighbor-

hoods is affected by collective route choices of multiple
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transportation modes and active land uses, which are

affected by multiple scales of street connections.

Third, the morphology of street patterns can affect the

vitality of urban places. Making a through-traffic motorway

in a densely built fine-grid local street could activate the

area with more shops and more pedestrians [4, 5]. It sug-

gests that pedestrian-friendly space as a local experience is

also affected by the large-scale networks that allow these

vital places to emerge and thrive.

This paper aims to understand the impact of street pat-

tern on pedestrian distribution. The main objective is to

understand how street patterns measured at different scales

might concurrently affect pedestrian distribution within

cities. Specifically, two research questions are explored: (1)

What are the major factors that can explain the pedestrian

distribution in different neighborhood? (2) How do land

use, metro stations, and city- and neighborhood-scale street

connectivity affect the pedestrian distribution at different

locations?

2 Background

Previous research on walking generally diverts into two

categories. The first category primarily addresses the issue

of walkability based on ‘‘comfort and safety,’’ which aims

to evaluate the impact of physical environment (ranging

from pavement, shading, street furniture, and other physi-

cal conditions) on walking activities. Through question-

naires, these studies measure the influence of these factors

on either people’s willingness to walk or their sense of

safety and comfort while walking, while also measuring

how these variables affect frequency of walking [6, 7]. The

second category investigates the spatial conditions of

walking, analyzing the impact of urban form such as

density, land use, and street connectivity on walking

activity. Through on-site observation (such as gate count

surveys) and questionnaires, these studies generally ana-

lyze the impact of these spatial conditions on the distri-

bution of pedestrian volumes [8–11].

Empirical studies on comfort and safety typically com-

pare different neighborhoods in a city but not at the reso-

lution of street segment. On the other hand, some empirical

studies on ‘‘spatial conditions’’ searches the factors to

explain the detail distribution of pedestrians on the streets.

For designers, this could be used to access the potentials of

walking within neighborhoods. This research falls under

the direction of the second category, focusing on how street

patterns can affect both the distribution of land uses as well

as the pedestrian volume within cities.

One of the key issues in the study of urban form is how

street connectivity is measured. Traditionally, researchers

use block size [1, 2], number of intersections per area

[12–14], or average distance between intersections [15] to

measure street connectivity. These methods are similar as

they quantify street connectivity based on metric distance.

Other researchers measured street connectivity based on

accessible walking area and the route directness from a

particular location in the street network [1, 13, 15–17].

While route directness provides another dimension related

to pedestrian perception and navigation within a street

network, it is still based on the local area of a street

network.

Space syntax presents a different way to measure street

connectivity in cities. First, as a theory based on movement

economies, space syntax can assess the influence of street

patterns on both movement and land use. It proposes that

the street pattern can affect both the distribution of

movement and the land use pattern, especially for move-

ment economies such as retail, markets, catering, and

entertainment [18]. Second, as a method, the syntactical

measurements are based on topological geometry which

can be calculated at various scales. It also allows for a

combination of metric distance with topological distance

measured in angular turns [19]. Last, the ability to reveal

the multiscale structure embedded in the street network

enables space syntax to determine the distribution of urban

functions as well as different modes of movement patterns

[20–24].

Specifically, there is a growing body of research on the

influence of street connectivity on land use and pedestrian

movement. Recent studies tend to focus on multiple case

areas within a city. They also aim to systematically

investigate how street connectivity interacts with other

important factors, such as land use or density, to affect

pedestrian movement. One study analyzing pedestrian

volume in the Atlanta downtown, midtown, and highland

areas showed that land use has a major impact on pedes-

trian volume among the three areas. Street connectivity

(measured by a 1-mile metric reach over directional dis-

tance) had a significant influence on pedestrian distribution

at the street scale in each area [10]. Another study in

London used 6-year origin and destination (OD) survey

data to build a prediction model with four variables: land

use diversity equitability intensity, population density,

integration r2 km, and public transport accessibility. The

results show that integration r2 km and land use diversity

play major roles [25]. Many studies have found a strong

influence of active land use and local street patterns on the

distribution of pedestrian movement.

Most of these studies, however, neglect the influence of

street patterns on the distribution of active land use, and

this influence may function at various scales beyond the

local scale. In fact, the spatial analysis of commercial

functions based on multiple-scale street connectivity is

another well-studied topic in space syntax research. Early
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studies in the UK and Iran found that the location of a

‘‘center’’ depends on both how the area is connected to the

city as a whole and the local catchment area (measured as

3–5 turns) [26]. Read’s study on Dutch cities suggests that

the configuration of street networks has a ‘‘bi-plex’’

structure: a super-grid network that facilitates movement

between different places in the city and local street net-

works. This bi-plex structure leads to a clear distinction

between the volumes of movement (pedestrian and car) and

types of shops [20]. Read states that vital urban places are

created by the interface between different scales of

movement networks [5]. Recent empirical study on the

multi-scalar structure of centralities on shopping frontage

in Buenos Aires demonstrates that syntactical measure-

ments have stronger explanatory power compared to the

distance decaying model [24]. Sheng and Liu’s analysis in

the Wangfujing shopping area in Beijing shows that the

distribution of restaurants, the number of reviews in

Dazhongdianping (Chinese Yelp), and street pedestrian

volumes are all highly correlated with the same syntactical

measurements (integration r3 km) [27]. These findings

suggest that the distribution of active land use can be

explained by multiple-scale street connectivity.

However, recent research findings challenge the rela-

tionship between aggregate flow data with the scale factors

in syntactical measurements and the individual movement

pattern [28]. Based on agent simulation, this research

argues that it is not the movement scale but the underlying

topological structure, the differences between a few well-

connected streets with many poorly connected ones, that

determines the distribution of flow volumes. In other

words, their research suggests that the topological geom-

etry of the local street pattern itself determines the distri-

bution of flow. Following this line of thinking, it could be

inferred that different neighborhoods may have very dif-

ferent correlations between flow volumes and street pat-

terns because they may have distinctive street patterns.

Therefore, more detailed empirical study is needed to

further test the correlation between different modes of

movement and the scale attributes of syntactical measure-

ments using a large number of actual flow data.

This paper aims to address the following questions: Can

the neighborhood pedestrian distributions be explained by

both city- and local-scale street patterns? Are there any

differences if we analyze the neighborhood separately or

combine them into one model? Finding answers to these

questions requires sufficient samples in one city, ranging in

location from central areas to inner and outer suburbs.

Within these neighborhoods, the pedestrian observation

gate should be evenly distributed to cover all kinds of

streets, ranging from small alleys to large avenues. Using

Tianjin as a case city, this research aims to understand how

both local- and city-scale street patterns affect pedestrian

distributions within different neighborhoods.

3 Case Study Area

3.1 Overview of Tianjin

Tianjin is the fourth largest city in China, with a population

of approximately 15 million people. From the 1900s to the

1940s, Tianjin consisted of concession territories ceded

from nine countries. Beginning in the 1980s, Tianjin

underwent a period of rapid urban development. This

resulted in a complex, hybrid street pattern of both Western

and Eastern (historical and modern) influences, which

makes Tianjin an excellent city for this type of study.

Three sets of data are used in this research: street con-

nectivity maps, non-residential land use location, and

pedestrian/vehicle movement data. The street network for

all of Tianjin city is drawn based on the Baidu street map

2014. It is measured by the Depthmap software with two

widely used measurements: integration and choice. ‘‘Inte-

gration’’ (also known as ‘‘angular closeness centrality’’)

measures the average angular distance from one street

segment to all other street segments within a given metric

radius. It shows the potential of the ‘‘to-movement’’ of each

street segment. ‘‘Choice’’ (also known as ‘‘angular

betweenness centrality’’) measures the potential of a street

segment to be passed by all pairs of shortest paths within a

given metric radius. It shows the potential of the ‘‘through-

movement’’ of each street segment. Because the value of

choice does not follow a normal distribution, most empir-

ical studies use a log-choice value of a certain radius.

Figure 1 shows the street connectivity in Tianjin measured

by the integration and logged choice values within a 10 km

radius. One new syntactical measurement, normalized

angular choice (NACH), based on choice and total depth

[29], will also be used in the analysis.

Land use data are obtained from a Baidu point of

interest (POI) database. Previous study shows that com-

mercial land use has a strong and positive relationship with

the pedestrian flow on streets in China [10, 11]. Therefore,

this research focuses on the sum of five important com-

mercial POIs including commercial and office towers,

retail, restaurants, offices, and hotels, all of which are

chosen because of their potential attractions for pedestrian

movement.

3.2 Pedestrian Movement

Thirteen neighborhoods are selected within the city to

monitor pedestrian movement and volume. The location of

these neighborhoods ranges from typical city centers to the
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suburbs. Table 1 shows the general information about these

neighborhoods. Based on the distance from the city center

(the crossing of NanJingLu and YingKouDao), six neigh-

borhoods are located in the central area of Tianjin, five

neighborhoods are located in the inner suburbs, and two

neighborhoods are located in the outer suburbs.

For each neighborhood, 30–100 street segments are

chosen as gates to monitor traffic flows. For each street

segment, 5 min of two-directional flow of pedestrian,

cyclist, and vehicle traffic is counted four times per day in

one weekday as well as one weekend day in September

2014 and September 2015. The only exception is the

Binjiangdao neighborhood, which only has one weekday’s

gate count. In total, 215,577 pedestrians are recorded in

these two survey periods. Their distributions are presented

in Fig. 2.

4 Method

4.1 Variables

Based on previous research, this study divides the mea-

surable variables into four categories: (1) Urban perfor-

mance data, which refers to the actual use of urban space.

These include pedestrian and vehicle volume and POI

distribution within each neighborhood. (2) City-scale street

connectivity, which will be quantified by integration,

choice, or normalized angular choice (NACH) value of

large radii (5 km–n). These values correlated well with the

observed vehicle volume data and will serve as a proxy for

the variable. Another variable included is the proximity to

metro stations which potentially have an impact on

pedestrian distributions. (3) Local-scale street connectivity,

which is quantified by the integration or choice value of

small radii (500 m–3 km) to reflect different transportation

movement at the neighborhood scale. (4) Street density,

which refers to the total length of accessible streets from

each street segment within certain radii (100 m–1 km). It

has been widely used in previous studies on pedestrian

volume and POIs without the use of space syntax.

4.2 Theoretical Framework

Based on the four types of variables mentioned above,

Fig. 3 shows an analytical diagram for different neigh-

borhoods. This diagram provides a hypothetical framework

for the analysis. For instance, in those center neighbor-

hoods with high levels of POI and pedestrian volume, the

local street network usually has a fine grid structure (high

integration or choice value in small radii). If the city-scale

streets are meshed well with the local grids, a strong

attractor can be created for both active land use and

pedestrians [5]. This strong attractor might be further

intensified by building a metro station. Neighborhoods

located in the sub-center likely have a good local street

network but limited connections with city level streets. For

suburban neighborhoods, they probably either have a

fragmented local street network or the local grid is poorly

connected to outside street network. This likely leads to

lower concentration of active land use and fewer pedes-

trians on the streets.

Space syntax provides a great tool to measure both the

city and local street connectivity. With these measure-

ments, the detail distribution of pedestrians at street scale

can be analyzed in those 13 neighborhoods across the city.

Fig. 1 Integration r10 km and log-choice r10 km of Tianjin 2014
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Table 1 General information of 13 neighborhoods

Zones Neighborhoods Area

(ha)

#Gates Street

length

Street

density

#

POIs

POI

density

Max ped.

volume

Max veh.

volume

Distance to

city

Central

area

BinJiangDao

(BJD)

66.41 109 14173 213.4 371 5.59 4356 4403 447

JinWan (JW) 85.15 40 13426 157.7 128 1.5 870 3811 931

NanJingLu (NJL) 114.1 41 14837 130 145 1.27 2564 5402 1111

AnShanDao

(AShD)

55.71 33 10416 187 89 1.6 1874 4300 1512

YingKouDao

(YKD)

85.91 28 12660 147.4 220 2.56 2033 4403 1641

XiaoBaiLou

(XBL)

126 64 19795 157.1 324 2.57 1890 6444 1906

Inner

suburbs

HaiGuangSi

(HGS)

109 37 14132 129.6 241 2.21 1997 5466 2596

WuJiaoYao

(WJY)

158.9 51 18977 123.3 165 1.07 1043 5783 3451

XiNanJiao (XNJ) 207.7 73 24593 118.4 314 1.51 1184 3069 3453

NanLou (NL) 127.3 37 14526 114.1 218 1.71 2096 3706 4243

ZhongShanLu

(ZSL)

227.4 76 41392 182 371 1.63 1448 2670 5581

Outer

suburbs

HongQiNanLu

(HQNL)

217.2 56 25654 118.1 207 0.95 910 3687 7020

HuaYuan (HY) 347.2 62 37489 108 290 0.84 1425 2064 9088

Fig. 2 Spatial distribution of

pedestrian volumes in 13

neighborhoods
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5 Analysis

To understand the impact of city street pattern on the dis-

tribution of pedestrian volumes, this research firstly ana-

lyzes the vehicle and POI data which might have an impact

on pedestrian distribution within cities.

5.1 Vehicle Volume

Although the vehicle volume is not the main subject of this

study, it can be compared with the analysis on pedestrian

movement to illustrate the relationship between different

scales of movement and syntactical measurements. Toge-

ther with the distance from the metro, this could potentially

show where pedestrians are coming from at the city scale.

Because driving in a city normally involves much longer

distances than walking, we analyzed the vehicle movement

data of 13 neighborhoods in one model.

Figure 4 shows the determination coefficient (R2 value)

between weekday and weekend vehicle flow with three

syntactical measurements of the 12 different radii. In total,

there are 637 street segments which allow driving. The

result shows that for both the weekday and weekend flows,

10 km radius log-choice and NACH value have the

strongest correlation (R2 = 0.577–0.607) with vehicle vol-

ume. Thus, in later analysis, the NACHr10 km value will

be used to create a vehicle accessibility and visibility

measurement.

In order to better measure vehicle accessibility and

visibility within the selected neighborhoods, we further

combine NACHr10 km with the angular turn measurement

(angular step depth, or ASD) and create a new variable,

‘‘main road ASD [normalized angular choice weight

(NACH wgt.)].’’ The threshold to define a main road is set

to 1500 cars/h. Angular step depth is a way of calculating

the angular distance from one street segment to other

segments. For instance, a 45� turn is 0.5, a 90� turn is 1,

and a 135� sharp turn is 1.5.

In Fig. 5, we use the BinJiangDao (BJD) neighborhood

as an example to illustrate how this variable is constructed.

First, the main roads are selected and the average values of

NACHr10 km on those main roads are calculated. Second,

angular step depths are calculated from those two main

roads (NanJingLu and XinAnLu, respectively). Finally, the

main road ASD for the BinJiangDao (BJD) neighborhood

is calculated by the following formula:

Main roadASD¼1:4215= 1þASD1ð Þþ1:1421= 1þASD2ð Þ
ASD1 is theAngular StepDepth fromNanJingLu:

ASD2 is theAngular StepDepth fromXinAnLu:

It is necessary to point out that main road ASD is a

hybrid measurement of syntactical measurement and actual

layout of main road structure in the city. It combines the

vehicle accessibility with the visibility: NACHr10 km is

well correlated with the vehicle volumes; angular step

depth gives a topological decaying factor which penalized

the street without direct connection to main roads.

5.2 POIs

After constructing one variable to quantify vehicle acces-

sibility and visibility, we further developed a new measure

to properly quantify POI data within each neighborhood. In

previous studies, the land use or POI data are either treated

directly at the street segment scale or use a certain metric

reach as a buffer zone to aggregate the data together onto

the street segment [10]. The principle behind this type of

analysis is that for each street segment, not only should the

shops that directly open their doors onto this segment be

considered as potential of this particular space, but all the

other shops located in the vicinity should also be taken into

account. However, metric distance alone may not be a good

way of defining vicinity. In this research, we propose

Fig. 3 Diagram of the multiscale street network model for different neighborhoods
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Fig. 4 City-scale street

connectivity analysis on vehicle

volumes for all neighborhoods

in one model

Fig. 5 Illustrations of main road ASD variable (using BinJiangDao as an example)
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Table 2 R2 value between pedestrian volume and different ways of measuring POI in each individual case and all cases together

AShD

P=Probability value

*P\ 0.05, **P\ 0.001, ***P\ 0.0001

Fig. 6 Illustration of the

function of POI#200 and its

application in a street segment

in BinJiangDao (BJD)

neighborhood.
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Table 3 Correlation matrix between pedestrian volumes, POI data and all spatial variables

Weekday Weekend POI#200 Weekday POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend
Log_Ped_Weekday 1.000 1.000 1.000 1.000 1.000 1.000
Log_Ped_Weekend 0.809 1.000 1.000 0.952 1.000 0.889 1.000 0.597 1.000 0.764 1.000
POI#200 0.446 0.436 1.000 0.772 1.000 0.583 0.549 1.000 0.667 0.674 1.000 0.408 0.364 1.000 0.079 0.197
Main Road ASD[Nach] 0.588 0.669 0.724 0.473 0.224 0.579 0.539 0.343 0.459 0.436 0.428 0.334 0.320 0.620 0.283 0.232
Metro MSD -0.493 -0.353 -0.261 -0.174 0.018 -0.173 -0.080 -0.393 -0.375 -0.462 -0.447 -0.331 -0.275 -0.299 -0.494 -0.482
Integra�on_R500 -0.309 -0.376 0.349 0.234 0.500 0.548 0.532 0.712 0.213 0.191 0.395 0.449 0.403 0.447 0.598 0.625
Integra�on_R1000 -0.204 -0.237 0.587 0.399 0.511 0.459 0.426 0.584 0.371 0.370 0.531 0.535 0.375 0.552 0.594 0.487
Integra�on_R1500 0.099 0.055 0.750 0.594 0.661 0.445 0.428 0.475 0.396 0.378 0.481 0.453 0.379 0.428 0.453 0.293
Integra�on_R2000 0.342 0.281 0.866 0.550 0.615 0.537 0.500 0.493 0.318 0.315 0.428 0.390 0.468 0.379 0.320 0.079
Integra�on_R2500 0.437 0.382 0.892 0.446 0.483 0.582 0.538 0.475 0.300 0.298 0.411 0.453 0.556 0.345 0.203 -0.032
Integra�on_R3000 0.517 0.465 0.883 0.376 0.401 0.591 0.527 0.433 0.231 0.226 0.372 0.444 0.593 0.348 0.211 0.004
Integra�on_R5000 0.602 0.550 0.866 0.300 0.325 0.646 0.574 0.494 0.058 0.019 0.141 0.449 0.659 0.285 0.182 0.003
Integra�on_R7500 0.629 0.601 0.869 0.252 0.267 0.639 0.571 0.465 0.100 0.067 0.202 0.434 0.581 0.272 0.219 0.025
Integra�on_R10000 0.605 0.574 0.889 0.294 0.317 0.641 0.576 0.483 0.126 0.087 0.205 0.388 0.469 0.361 0.166 0.018
Integra�on_R15000 0.640 0.611 0.871 0.372 0.382 0.644 0.574 0.508 0.190 0.153 0.274 0.374 0.433 0.339 0.189 0.090
Integra�on_R20000 0.655 0.625 0.868 0.366 0.377 0.676 0.603 0.495 0.223 0.189 0.282 0.357 0.417 0.397 0.233 0.115
Integra�on_R25000 0.652 0.626 0.860 0.359 0.368 0.682 0.610 0.496 0.189 0.151 0.237 0.346 0.384 0.410 0.210 0.108
Integra�on Rn 0.662 0.636 0.850 0.362 0.371 0.677 0.607 0.478 0.204 0.169 0.235 0.324 0.374 0.441 0.192 0.101
Log_Ch500 0.044 -0.037 0.308 0.307 0.369 0.337 0.344 0.328 0.045 -0.028 -0.048 0.200 0.167 0.160 0.498 0.532
Log_Ch1000 0.399 0.277 0.651 0.415 0.422 0.677 0.689 0.595 0.195 0.133 0.362 0.397 0.355 0.475 0.658 0.601
Log_Ch1500 0.547 0.401 0.710 0.454 0.462 0.736 0.741 0.587 0.186 0.147 0.392 0.448 0.380 0.533 0.619 0.521
Log_Ch2000 0.601 0.464 0.739 0.483 0.490 0.766 0.778 0.563 0.159 0.130 0.347 0.452 0.409 0.509 0.562 0.441
Log_Ch2500 0.621 0.489 0.764 0.488 0.481 0.756 0.775 0.520 0.157 0.130 0.330 0.470 0.445 0.493 0.517 0.388
Log_Ch3000 0.644 0.522 0.770 0.485 0.474 0.743 0.765 0.492 0.163 0.138 0.325 0.475 0.444 0.455 0.483 0.362
Log_Ch5000 0.635 0.541 0.779 0.429 0.418 0.705 0.728 0.443 0.124 0.095 0.234 0.488 0.471 0.450 0.434 0.320
Log_Ch7500 0.641 0.552 0.787 0.397 0.381 0.669 0.687 0.402 0.149 0.109 0.214 0.513 0.436 0.466 0.410 0.294
Log_Ch10000 0.641 0.556 0.798 0.381 0.363 0.639 0.657 0.381 0.174 0.127 0.209 0.513 0.402 0.489 0.405 0.287
Log_Ch15000 0.637 0.562 0.811 0.368 0.349 0.622 0.637 0.362 0.182 0.133 0.196 0.511 0.379 0.470 0.404 0.289
Log_Ch20000 0.638 0.565 0.811 0.359 0.338 0.609 0.621 0.349 0.218 0.164 0.208 0.496 0.362 0.455 0.413 0.294
Log_Ch25000 0.632 0.558 0.810 0.358 0.335 0.604 0.616 0.345 0.229 0.173 0.211 0.493 0.362 0.454 0.419 0.296
Log_Ch 0.629 0.551 0.808 0.357 0.330 0.601 0.614 0.344 0.253 0.194 0.223 0.495 0.359 0.439 0.441 0.302
Segment LengthR250 -0.454 -0.461 -0.050 0.062 0.327 0.186 0.177 0.266 0.245 0.180 0.198 0.225 0.168 0.106 0.334 0.368
Segment LengthR300 -0.552 -0.543 -0.032 -0.035 0.222 0.259 0.225 0.367 0.234 0.160 0.237 0.288 0.142 0.176 0.472 0.496
Segment LengthR500 -0.647 -0.673 0.012 0.023 0.355 0.362 0.332 0.581 0.365 0.306 0.450 0.250 0.133 0.300 0.658 0.695
Segment LengthR1000 -0.488 -0.469 0.308 0.096 0.227 0.253 0.207 0.386 0.538 0.564 0.683 0.389 0.366 0.363 0.558 0.534

POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200 Weekday
1.000 Log_Ped_Weekday 1.000 1.000 1.000 1.000 1.000
0.638 1.000 Log_Ped_Weekend 0.894 1.000 0.914 1.000 0.769 1.000 0.678 1.000 0.900

1.000 0.157 0.330 1.000 POI#200 0.660 0.746 1.000 0.670 0.642 1.000 0.452 0.514 1.000 0.524 0.530 1.000 0.361
0.023 0.162 0.464 0.017 Main Road ASD[Nach] 0.299 0.289 0.585 0.472 0.380 0.353 0.294 0.359 0.524 0.170 0.280 0.185 0.321

-0.388 -0.355 -0.576 -0.096 Metro MSD -0.498 -0.361 -0.224 -0.142 -0.104 -0.077 -0.262 -0.241 -0.113 -0.484 -0.406 -0.408 -0.163
0.030 0.272 0.565 0.533 Integra�on_R500 0.355 0.263 0.523 0.354 0.260 0.367 0.217 0.223 0.664 0.360 0.262 0.436 0.213
0.196 0.159 0.254 0.660 Integra�on_R1000 0.535 0.473 0.669 0.423 0.302 0.416 0.476 0.448 0.843 0.301 0.154 0.295 0.136
0.162 0.105 0.128 0.637 Integra�on_R1500 0.525 0.440 0.596 0.512 0.418 0.527 0.615 0.603 0.762 0.006 -0.086 0.125 0.274
0.068 0.055 0.123 0.663 Integra�on_R2000 0.471 0.407 0.599 0.590 0.496 0.597 0.649 0.636 0.638 -0.011 -0.085 0.064 0.407
0.023 0.092 0.240 0.702 Integra�on_R2500 0.473 0.432 0.581 0.603 0.537 0.554 0.584 0.567 0.522 -0.013 -0.053 0.063 0.449
0.013 0.140 0.336 0.687 Integra�on_R3000 0.474 0.455 0.629 0.620 0.564 0.551 0.478 0.475 0.536 -0.016 -0.064 0.024 0.398
0.066 0.182 0.404 0.567 Integra�on_R5000 0.435 0.386 0.567 0.651 0.586 0.563 0.556 0.590 0.693 0.012 -0.022 -0.010 0.436
0.082 0.207 0.450 0.525 Integra�on_R7500 0.364 0.328 0.530 0.657 0.566 0.596 0.524 0.557 0.614 0.018 -0.015 0.052 0.430
0.098 0.232 0.460 0.484 Integra�on_R10000 0.397 0.372 0.618 0.627 0.523 0.578 0.551 0.591 0.607 0.061 0.019 0.091 0.404
0.098 0.271 0.514 0.499 Integra�on_R15000 0.290 0.285 0.588 0.629 0.512 0.593 0.569 0.607 0.617 0.009 -0.040 0.090 0.411
0.120 0.259 0.491 0.492 Integra�on_R20000 0.275 0.270 0.547 0.642 0.527 0.603 0.567 0.603 0.638 0.007 -0.024 0.074 0.409
0.116 0.264 0.508 0.483 Integra�on_R25000 0.267 0.257 0.520 0.641 0.523 0.603 0.568 0.604 0.615 0.001 -0.034 0.077 0.407
0.098 0.268 0.506 0.464 Integra�on Rn 0.271 0.240 0.492 0.636 0.518 0.606 0.564 0.598 0.608 0.004 -0.051 0.062 0.409

-0.071 0.075 0.379 0.133 Log_Ch500 0.095 -0.098 0.163 0.196 0.120 0.179 -0.120 -0.151 0.187 0.420 0.339 0.466 0.266
0.200 0.232 0.487 0.565 Log_Ch1000 0.402 0.276 0.555 0.544 0.434 0.553 0.371 0.243 0.574 0.415 0.315 0.432 0.269
0.192 0.219 0.365 0.646 Log_Ch1500 0.460 0.372 0.650 0.598 0.491 0.607 0.504 0.395 0.631 0.335 0.252 0.362 0.329
0.179 0.217 0.336 0.623 Log_Ch2000 0.465 0.401 0.666 0.637 0.544 0.621 0.565 0.475 0.657 0.290 0.239 0.348 0.343
0.159 0.214 0.357 0.610 Log_Ch2500 0.461 0.414 0.670 0.644 0.562 0.615 0.589 0.520 0.659 0.265 0.230 0.344 0.363
0.150 0.195 0.361 0.603 Log_Ch3000 0.460 0.415 0.675 0.643 0.563 0.611 0.603 0.541 0.653 0.254 0.222 0.329 0.386
0.145 0.182 0.408 0.567 Log_Ch5000 0.385 0.334 0.617 0.650 0.574 0.587 0.622 0.576 0.670 0.202 0.171 0.275 0.411
0.151 0.212 0.451 0.543 Log_Ch7500 0.348 0.293 0.569 0.659 0.571 0.572 0.617 0.580 0.661 0.162 0.138 0.251 0.440
0.151 0.234 0.485 0.526 Log_Ch10000 0.354 0.292 0.553 0.658 0.568 0.556 0.612 0.585 0.653 0.153 0.127 0.258 0.448
0.162 0.251 0.504 0.506 Log_Ch15000 0.330 0.266 0.504 0.651 0.560 0.532 0.615 0.573 0.640 0.131 0.099 0.229 0.450
0.176 0.257 0.509 0.499 Log_Ch20000 0.312 0.245 0.484 0.646 0.554 0.520 0.611 0.570 0.633 0.131 0.093 0.225 0.450
0.195 0.259 0.512 0.498 Log_Ch25000 0.305 0.234 0.479 0.643 0.553 0.516 0.602 0.558 0.629 0.124 0.089 0.220 0.448
0.251 0.256 0.508 0.494 Log_Ch 0.316 0.234 0.479 0.648 0.558 0.521 0.596 0.522 0.613 0.129 0.091 0.225 0.450

-0.046 -0.219 -0.025 0.229 Segment LengthR250 0.018 -0.079 0.126 0.046 0.014 0.028 -0.038 0.123 0.213 0.055 0.121 0.178 0.201
0.067 -0.132 0.050 0.236 Segment LengthR300 -0.071 -0.124 0.125 0.124 0.039 0.104 0.009 0.065 0.109 0.105 0.068 0.391 0.131
0.017 0.053 0.278 0.405 Segment LengthR500 0.212 0.170 0.431 0.220 0.156 0.220 0.249 0.228 0.475 0.491 0.410 0.603 -0.035
0.121 0.084 0.156 0.639 Segment LengthR1000 0.493 0.389 0.496 0.281 0.209 0.278 0.321 0.242 0.604 0.336 0.138 0.295 -0.044
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another way of measuring POI data which combines the

human visual perception and movement potentials.

Figure 6 illustrates the logic of this method. A

10 m 9 10 m grid is constructed in Depthmap. We start

with a street segment in the corner (marked by white

double arrows), showing where all shops align with the

street, and then flow into a distance decay function. As

illustrated in the bar chart below, the shops 200 m ahead

will be counted 50%, and this number will be added to the

starting position. Wherever people make a turn to a side

street there is a sudden drop in values because not all shops

on side streets are instantly visible from the starting posi-

tion. The formula for this method is as follows:

POI#200 ¼ 2000=ðð2000þ 0:05 �MSD2Þ � (ASDþ 1Þ2Þ

POI#200 measures the percent of POI counted for any

street segments away from the starting street segment. The

unit is measured as a percentage. Metric Step Depth (MSD)

is the metric distance from each selected starting street

segment. The unit is measured in meters. Angular Step

Depth (ASD) is the angular turn from each selected start-

ing street segment. The unit is measured by decimal points.

We tested this method by comparing its results with

other methods in a regression analysis against the observed

pedestrian volume in neighborhood and all neighborhoods

together. The other POI measures only simply count the

number of POI on each street segment and aggregate them

within certain metric distances (presented as POI R100 or

POI R500 in Table 2). Table 2 shows the proposed method

POI#200, has a substantially higher correlation with

pedestrian volume in most of neighborhoods (8 out of 13).

When putting all neighborhoods in one model, POI#200

still explains 0.297 of the distribution of pedestrian vol-

umes in all street segments. It shows that POI#200 is a

much better measure than other POI indexes. Therefore, it

will be used in the following analysis. In the later part of

this paper, wherever we refer to POI, it is POI#200.

5.3 Correlation Between Pedestrian Volume, POI,

and Syntactical Measurements

After setting up variables for POI, main road ASD, and

metro MSD (metric distance from each metro station), a

correlation analysis between pedestrian volumes, POI, and

all spatial variables is performed. There are two kinds of

syntactical measurements used: integration and log-choice.

For each kind of measurement, 13 radii are tested, ranging

from 500 m to n (means the radius covers the whole map)

(Table 3).

First, the results show that in most neighborhoods (with

the exception of the HuaYuan and NanJingLu neighbor-

hoods) the weekday pedestrian data are strongly correlated

with the syntactical measurements. Second, POI data also

show a stronger correlation with syntactical measurements

in most neighborhoods. That tendency is also very clear

when observing all cases together: integration of small

radii (1000–2000 m) are well related with POI (Pearson

correlation coefficient R = 0.64–0.66), while the highest

correlation between pedestrian volume and syntactical

measurement is log-choice r2000 m (R = 0.46). Third, in

different neighborhoods the highest correlation between

pedestrian volumes and syntactical measurements are very

different. In some cases, the integration value is stronger

than log-choice, while in other cases the opposite is true.

Besides the type of measurement used, these best corre-

lated variables also vary in scale, ranging from 1 km all the

way to 25 km and n. This raises an important question that

is analyzed in the later part of this paper.

Finally, street density measurements show very different

results among each of the case areas. In neighborhood

AnShanDao (AShD), they are negatively related to

pedestrian volume. In the HongQiNanLu (HQNL), Jin-

wan (JW), XiaoBaiLou (XBL), and ZhongShanLu (ZSL)

case areas, they are positively related to pedestrian

volumes.

It is interesting to point out that when we put all the

neighborhoods together, the correlation between street

densities and pedestrian volumes decreased significantly,

Table 3 continued

Weekend POI#200 Weekday Weekend POI#200 Weekday Weekend POI#200
1.000 1.000

1.000 0.912 1.000 0.836 1.000
0.311 1.000 0.440 0.430 1.000 0.514 0.539 1.000
0.190 0.688 0.237 0.292 0.608 0.264 0.271 0.134

-0.080 0.110 -0.054 0.048 0.010 -0.300 -0.302 -0.229
0.108 0.579 0.391 0.348 0.406 0.252 0.272 0.647
0.020 0.650 0.510 0.483 0.500 0.270 0.276 0.660
0.135 0.681 0.596 0.574 0.602 0.283 0.286 0.654
0.265 0.617 0.513 0.489 0.677 0.286 0.289 0.640
0.306 0.555 0.413 0.392 0.614 0.289 0.293 0.605
0.272 0.533 0.357 0.334 0.584 0.291 0.295 0.570
0.311 0.518 0.332 0.302 0.502 0.308 0.335 0.504
0.325 0.544 0.285 0.267 0.480 0.321 0.352 0.496
0.293 0.561 0.255 0.233 0.475 0.329 0.350 0.516
0.292 0.561 0.166 0.146 0.448 0.344 0.359 0.500
0.300 0.548 0.121 0.094 0.426 0.348 0.355 0.466
0.295 0.542 0.123 0.104 0.443 0.346 0.347 0.450
0.301 0.529 0.090 0.069 0.436 0.330 0.324 0.384
0.187 0.301 0.593 0.564 0.217 0.263 0.261 0.397
0.186 0.599 0.649 0.634 0.282 0.434 0.400 0.487
0.226 0.619 0.617 0.629 0.334 0.456 0.412 0.471
0.239 0.583 0.562 0.583 0.414 0.460 0.417 0.463
0.261 0.561 0.512 0.534 0.494 0.457 0.416 0.451
0.284 0.547 0.470 0.496 0.534 0.448 0.411 0.438
0.309 0.519 0.450 0.488 0.582 0.424 0.395 0.404
0.340 0.528 0.449 0.492 0.607 0.415 0.381 0.385
0.352 0.527 0.437 0.485 0.619 0.409 0.372 0.373
0.356 0.529 0.415 0.467 0.623 0.398 0.358 0.349
0.358 0.530 0.410 0.466 0.626 0.393 0.352 0.334
0.357 0.530 0.408 0.466 0.627 0.391 0.351 0.331
0.358 0.528 0.406 0.466 0.626 0.395 0.349 0.325
0.117 0.094 0.329 0.243 0.294 0.133 0.177 0.504
0.062 0.103 0.235 0.162 0.193 0.120 0.146 0.499

-0.043 0.388 0.330 0.301 0.533 0.178 0.209 0.600
-0.143 0.364 0.705 0.726 0.531 0.233 0.258 0.621
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but the correlation between street densities and the distri-

bution of POIs remained quite high: the segment length

r1000 m R = 0.639. This result can be compared with the

correlation of syntactical measurements with POIs: the

integration r1000 m is R = 0.660. They measure the same

radii. The integration r2500m is R = 0.702, which marks

the strongest correlation between syntactical measurements

with POIs, although the syntactical measurements work

better than street density. We should point out that the

formula of integration is: Integration Ri = Node Count Ri2/

Total Depth Ri. Node Count Ri calculates the number of

street segments within a given radius i. Thus, while node

count is a measurement of street density which neglects

their length, it is still related to street density, especially in

a small radius.

This finding suggests that the way street density affects

pedestrian volumes is through its more direct influence on

POIs: the higher the street density, the more active land

uses are located in the area and the more pedestrians are

attracted to the area. To put it in simple terms, density

centralizes pedestrian movement across the city; syntacti-

cal structure distributes pedestrians within neighborhoods.

5.4 Multiple Regressions of Pedestrian Volume,

Syntactical Measures, and POI

In this section, we will explore how pedestrian volume can

be explained by POI and syntactical measures. Four vari-

ables, i.e. POI #200, main road ASD, metro ASD, and one

space syntax measurement (integration or log-choice), are

included in the analysis. To standardize the results, the Z-

score of each variable is used (Table 4).

The R2 values of the model are highlighted for each

neighborhood as well as all cases together. The results

show that except for XBL (R2 = 0.3304) and YKD (R2 =

0.1961), the R2 values for the individual neighborhood are

above 0.4. All four variables are significant when putting

all samples in one model. However, when looking at the

results case by case, there are some differences. For

instance, POI measure was significant in all neighborhoods

except for AnShanDao (AShD), Jinwan (JW), XiNanJiao

(XNJ), and NanJingLu (NJL) (P value [ 0.05). In these

four neighborhoods, the distribution of pedestrian volumes

tends to depend more on street connectivity.

Generally, syntactical measures are significant, except in

BinJiangDao (BJD), HongQiNanLu (HQNL), XiaoBaiLou

(XBL), and NanJingLu (NJL) (P value[ 0.05). In these

cases, the pedestrian volumes are more related to POIs.

Table 4 Multiple regression on the distribution of pedestrian volumes with 4 variables in individual neighborhoods and all cases together

AShD

*P\ 0.05, **P\ 0.001, ***P\ 0.0001
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Comparing the contributions from POIs and syntactical

measures, they tend to be an ‘‘either/or’’ pair of variables,

as they are related in most cases as shown in previous

analysis. Therefore, in the following section, we will focus

on the influence of spatial conditions, removing POI from

the model. Furthermore, among the three remaining vari-

ables (main road ASD, metro ASD, and one space syntax

measurement), we select two variables with stronger sig-

nificance (low P value) for the following analysis.

Not surprisingly, by removing two variables (especially

POI) the R2 value of the model decrease; however, there

are still nine neighborhoods with R2 values higher than 0.4.

Table 5 shows that the selected syntactical measurement is

significant in all cases expect the HongQiNanLu (HQNL).

For the other 12 cases, the coefficient values of syntactical

measurements are generally over four times higher than

those of the other variable. The exceptional cases are

XiaoBaiLou (XBL), XiaoBaiLou (NJL), and NanLou (NL),

where the distance from the metro station has a similar

impact on distribution of pedestrian volumes.

Second, although the main road ASD is the least

selected syntactical variable and only significant in three

cases: BinJiangDao (BJD), HongQiNanLu (HQNL),

XiNanJiao (XNJ), if we consider those cases which were

explained by syntactical measurements with radii larger

than 3 km, almost half of the neighborhoods (6 out of 13,

marked by yellow background) are still affected by large-

scale street connectivity. The fact that main road ASD does

not perform well in many cases might be because it is

based on a large-radius (NACHr10 km) syntactical mea-

surement, which is strongly related to large-scale integra-

tion or log-choice values; therefore, its influence is

‘‘overwritten’’ by other syntactical measurements of large

radii.

Third, the syntactical measurements and metric distance

from the metro are often selected as good combinations.

When looking at the radii of syntactical measurement, 7

out of 13 cases are well correlated at small radii,

1000–2000 m. AnShanDao (AShD), YingKouDao (YKD),

NanJingLu (NJL), and WuJiaoYao (WJY) cases are highly

related at very large radii, 20 km to n. When looking at the

type of syntactical measurements, integration is better than

log-choice in 5 out of 13 cases, especially at small radii

(three cases). As mentioned before, small radii of integra-

tion values are often well related with both street density

and distribution of POI. This result indicates that in those

three cases (BinJiangDao, NanLou, XiNanJiao) the ‘‘to-

movement’’ (to the concentration area of POI) plays a

dominant role over the ‘‘through-movement.’’ Similarly,

there are also four cases in which small-scale log-choice

plays a better role. In these four cases, the local street

pattern has a great impact on distributing the pedestrians

attracted by POIs. For those neighborhoods where pedes-

trian volumes are well related with large-scale syntactical

measurements, log-choice played better role than integra-

tion. This result suggests that the distribution of pedestrian

volume is a complex spatial phenomenon. Although the

street pattern has a clear impact on each individual case,

Table 5 multiple regression on distribution of pedestrian volumes with two selected spatial variables

AShD
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there are still variations which could not be explained by

one type of syntactical measurement with one radius.

Fourth, when putting all cases into one model, log-

choice r2000 and distance from metro together generate a

R2 of 0.2752. This result is much lower than the analysis

for vehicle movement. Unlike cars, which travel over

longer distances and larger areas, pedestrian movement is

restricted to much smaller areas and more affected by local

environments.

Figure 7 better illustrate the influence of different vari-

ables on pedestrian distribution within the city. It combined

all pedestrian observation in model and started with four

variables, then removed POI and main road ASD gradually.

In the four-variable model, POI has the highest coefficient.

But as discussed earlier, this is because they are treated by

both the metric and angular reach. Only choosing POI as a

single variable could have an R2 value of 0.291 (adjusted

R2 = 0.269). This partly confirmed the previous findings in

Atlanta, GA, USA [10], but in the case of Tianjin, the non-

residential land use had much less impact. Removing POI

in the model caused a 0.1 decrease in R2 value. The three

spatial variables had different impact on pedestrian vol-

umes. Main road ASD and metro MSD represent the major

street connectivity at the city scale. Log-choice r2000

represents detailed street connectivity at the local scale. In

a three-variable model, the coefficient for main road ASD

and metro MSD are 0.043 and - 0.100, indicating that the

impact of the metro station location is more important than

the accessibility and visibility of city scale street networks.

Removing the main road ASD causes only about a 0.01

decrease in R2 value in the model, which also suggests that

city-scale network has a weak impact on local pedestrian

movement when putting all neighborhoods in one model.

5.5 Neighborhood Summary

Previous analysis shows in at least six neighborhoods, the

distribution of pedestrian volume is strongly correlated

with a syntactical measurement smaller than 1.5 km radii.

In six other neighborhoods, the radii of best correlated

syntactical measurement are larger than 5 km, which is

clearly beyond the reach of most walking activity. When

combined all samples together, a syntactical measurement

(log-choice) of 2 km radii is strongly correlated with

pedestrian distribution within cities.

The syntactical measurements of different scales related

to both pedestrian volumes and POIs in different neigh-

borhoods are presented in Fig. 8. The relationship with

choice values is shown in red. The relationship with inte-

gration values is shown in blue. The heights of the gray

background represent the R2 value between pedestrian

volumes and POIs for each neighborhood study. Compar-

ing the effectiveness of choice (in red) and integration (in

blue), regardless of the chart format, the choice measure-

ment shows a more stable pattern than that of the inte-

gration measurement. Based on the curves of log-choice

values, these 13 cases could be divided into three groups.

The curved line of group A appears in the shape of a

‘‘high heel,’’ starting with a low correlation in small radius,

quickly reaching the peak, then gradually descending with

the radii growing. Among the five cases, most neighbor-

hoods are urban centers or have been considered sub-

Fig. 7 Multiple-variant model analysis of four, three, and two variables (above) and the scatter plots of three variables: logChr2000, main road

ASD, and metro MSD (below)
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Fig. 8 R2 value between two

kinds of syntactical

measurements with pedestrian

volumes (line chart) and POIs

(bar chart)
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centers for years. JinWan (JW) is an exceptional case

because it has an extremely low correlation between POI.

In fact, this area has been redeveloped in 2014; therefore,

there are very few shops or offices open at that time.

Despite this fact, the distribution of pedestrians still

revealed a fairly good correlation with the log-choice

r1000. This group of neighborhoods demonstrated that the

syntactical measurement of street pattern alone could

explain the distribution of pedestrians to certain degree

even there is almost no active land uses.

The curved line of group B appears in the shape of a

‘‘climbing’’ hill, starting with low correlation in small

radius, then gradually going up as the radius grows. Some

of these neighborhoods are normally located nearby the

vital urban centers. For example, Anshandao (AShD),

YingKouDao (YKD), and NanJingLu (NJL) are located to

the east, south, and west of BinJiangDao (BJD) neighbor-

hood, respectively. BinJiangDao (BJD) is the busiest

shopping center of Tianjin. Except for their locations, these

three neighborhoods are quite similar: even though the

distribution of POIs is highly related to syntactical mea-

surements, the correlation between POIs and pedestrian

volume (R2\ 0.2) is still relatively low. These areas are

highly accessible by cars because of their central location,

but the shops inside are far less attractive compared with

BinJiangDao (BJD). Therefore, pedestrian movement in

these cases is mostly concentrated along the main roads

such as NanJingLu (NJL) and YingKouDao (YKD), shown

as a seepage pattern penetrating the neighborhoods. As a

result, large-scale syntactical measurement (such as log-

choice r10 km or r25 km) and distance decay from the

metro have a large impact on the distribution of pedestrian

volumes. Although the other cases of WuJiaYao (WJY),

XiNanJiao (XNJ), and HuaYuan (HY) are not located

nearby any dominant urban centers, all of them are located

nearby very busy junctions for vehicle traffic. This result in

a similar distribution of pedestrian traffic concentrated on

main roads, which later penetrates to individual

neighborhood.

Two neighborhoods do not show either the high heel or

climbing patterns. XiaoBaiLou (XBL) is a famous histor-

ical center of Tianjin which still has a lot of shops. How-

ever, the correlation between POI and pedestrian volumes

is very low (R2 = 0.273) when compared with other centers

such as BinJiangDao (BJD) (R2 = 0.597). The correlations

between syntactical measurements are also very low at all

radii. Only the distance decay from the metro station has a

relative higher coefficient value when compared with log-

choice r1000 (see Table 5). The reason is that most shops

are concentrated on KaiFengDao road, which is not a

syntactically well-connected street at either large or small

radii. The mismatch between POIs and syntactical center

makes it is difficult to explain the distribution of pedes-

trians within the neighborhood.

In the case of HongQiNanLu (HQNL), the results are

due to its unique location. First, it is a vital residential area

with lots of local shops concentrated on a well-connected

local street YuanZhongLu. Secondly, it is near a busy

intersection of major streets, which attracts many large-

scale shops. As a result, there is a positive correlation

between POI and pedestrian volumes in this case, but

neither the distributions of POI nor pedestrian volume

show a good correlation with syntactical measurements.

This is because the neighborhood has both a local center

and city-scale center in one area, which makes it a hybrid

neighborhood that cannot be explained by any syntactical

measurements at one radius.

6 Discussion: What Truly Motivates People
to Walk?

This paper starts with the research question of exploring

the impact of multiscale street patterns on pedestrian dis-

tribution within the city. Using data from 703 gate count

surveys in 13 neighborhoods in Tianjin, we analyzed the

correlation between pedestrian volumes with POIs and

street connectivity measured by the space syntax tool.

Based on the empirical analysis, we constructed and tested

different ways of aggregating POIs and different ways of

including vehicle accessibility and visibility in the model.

The modeling process started with a correlation analysis

between urban performance data (pedestrian and vehicle

movement and POIs) and different spatial variables. The

street density measurement of small radii (500 m–1 km)

still correlated well with POIs, but not with pedestrian

volumes. Pedestrian volumes showed good correlation with

syntactical measurements but varied in the types and radii.

In the multiple regression analysis using four variables,

when each neighborhood was analyzed separately, POI and

syntactical measures were both major variables affecting

the pedestrian volume. After removing POI and one less

effective spatial variable, the regression model still had

strong explanatory power (R2[ 0.4 in 9 out of 13 cases).

Among all three spatial variables, syntactical measure-

ments of various scales had the highest explanatory power

but vary in different radii. Together with the neighborhoods

affected by main road ASD, nearly half of the cases were

affected by syntactical measurements beyond walking

distance. This finding demonstrates that the scale attributes

of syntactical measurement have a correlation with dif-

ferent scales of movement (vehicle and pedestrian). How-

ever, when analyzing pedestrian movement, it suggests that

the distribution follows at least two patterns: (1) a con-

centration pattern following the human-scale network,
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which is attracted by the local-scale street connectivity and

agglomerations of POIs in radii ranging from 1000 to

2000 m; and (2) a seepage pattern beyond the human-scale

network, which is attracted by the interface between city-

scale movement (vehicle and metro accessibility) and local

street pattern.

These two patterns show two distinct types of walking

scenarios: in the neighborhoods dominated by concentra-

tion pattern, the local street networks show clear differ-

ences between a few well-connected streets and many

poorly connected ones. It follows the explanation described

by Jiang [28]. The distribution of active urban functions

further enhances the unevenness of the local streets. The

pedestrian distribution logic of these neighborhoods is

similar to many cases in the UK [25] and downtown cases

in the United States [10]. In the neighborhoods dominated

by seepage pattern, the local street connectivity tends to be

similar. Only large-radii analysis can reveal the differ-

ences. Pedestrians are mostly attracted by office towers or

an agglomeration of shops along main streets.

When putting all neighborhoods into one model and

including POI and three syntactical measurements, the R2

value increases to 0.38. Among them, POI has the highest

coefficient if using the proposed way of aggregating POIs

(POI#200). However, other ways of aggregating POIs

showed that log-choice r2000 had the highest coefficients.

These findings suggest that in an across-city model, the

local street pattern plays a vital role in the distribution of

pedestrian volumes. City-scale street network, represented

by metro MSD and main road ASD, has minor effects.

For the bigger question on what motivates people to

walk, although POI and local street connectivity proved to

be major factors, the city-scale variables (main road ASD

and metro MSD) should not be underestimated. As a matter

of common sense for planners and developers, changing

the local street pattern or land use is relatively easy, since it

is merely a local intervention, but changing how a partic-

ular area is linked within the city as a whole is far more

difficult. It is a strategic decision that has long-term city-

wide impacts. In this sense, creating a vital urban place

requires a multiscale network strategy including the right

local street pattern together with good access to metro and

main roads in the city.
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