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Abstract
Instantons, which emerged in particle physics, have been intensely studied since the
1970’s and had an enormous impact on mathematics since then. In this paper, we
focus on one particular way in which ideas originating in mathematical physics have
guided the development of algebraic geometry in the past 40+ years. To be precise, we
examine how the notion of (mathematical) instanton bundles in algebraic geometry
has evolved from a class of vector bundles over CP3 both to a class of torsion free
sheaves on projective varieties of arbitrary dimension, and to a class of objects in
the derived category of Fano threefolds. The original results contained in this survey
focus precisely on the latter direction; in particular, we prove that the classical rank
2 instanton bundles over the projective space are indeed instanton objects for any
suitable chamber in the space of Bridgeland stability conditions .
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1 Introduction

Let (M, g) be a 4-dimensional, oriented Riemannian manifold, and let E → M be a
complex vector bundle over M . A connection on E is a C-linear map

∇ : �(E) −→ �(E)⊗�1
M

satisfying the Leibniz rule: given a smooth function f ∈ C∞(M) and a global section
σ ∈ �(E), we have

∇( f · σ) = f · ∇(σ )+ σ ⊗ d f ;

here,�(E) denotes theC∞(M)-module of smooth global sections of the vector bundle
E , and �

p
M denotes the space of smooth p-forms on M .

The composition F∇ := ∇ ◦ ∇ leads to a C∞(M)-linear map

F∇ : �(E) −→ �(E)⊗�2
M

which is called the curvatureof the connection∇. In otherwords, F∇ can be regarded as
a 2-form on M with values in the endomorphism bundle End(E): F∇ ∈ �(End(E))⊗
�2

M .
A connection ∇ is called an instanton connection on the vector bundle E → M if

F∇ is anti-self-dual with respect to the Hodge star operator ∗ : �2
M → �2

M (recall
that ∗2 = 1), that is

∗ F∇ = −F∇ . (1)

which is known as the anti-self-dual Yang–Mills equation. When M is not compact,
one usually also imposes a finiteness condition on the total L2-norm of the curvature,
that is,

‖F∇‖2L2 :=
∫

M
tr(F∇ ∧ ∗F∇) <∞.

Instantons have been intensely studied since the 1970’s, providing the initial ideas
for the rise of a new area ofmathematics, namely gauge theory, that had great influence
inmore traditional areas like differential topology, differential geometry,mathematical
physics, representation theory, and algebraic geometry. In this paper, we focus on the
latter, by explaining how the notion of (mathematical) instanton bundles in algebraic
geometry has evolved in the past 40+ years.

The starting point was the Atiyah–Ward correspondence, which is described in
Sect. 2 below; it was the first fundamental link between mathematical physics and
algebraic geometry to bediscovered, (another one is theHitchin–Kobayashi correspon-
dence), and leads to the highly influential work of Atiyah, Hitchin Drinfeld andManin
[4]. Roughly speaking, the Atiyah–Ward correspondence transformed the differential
geometric problem of finding solutions of the anti-self-dual Yang–Mills equation 1
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over M = R
4 into an algebraic geometric problem of constructing vector bundles

over CP3 with certain properties. These vector bundles were subsequently studied by
mathematicians (namely, Barth, Hulek, Le Potier, Okonek, Schneider, Spindler) who
coined the expression (mathematical) instanton bundles in the 1980’s. What initially
was a class of vector bundles over CP3 became, after the work of Salamon [35] and
Donaldson [17], a class of vector bundles on odd dimensional projective spaces [32]
and on flag manifolds [31].

InSect. 3weexplainwhy it is natural to consider a further generalizationof instanton
bundles on projective spaces both to arbitrary projective spaces and to non locally free
sheaves. The notion of (non necessarily locally free) instanton sheaves was introduced
in [23], and lead also to the notion of perverse instanton sheaves, see Definitions 3.2
and 3.3, respectively. These notions arise when one tries to compactify the moduli
space of instanton bundles when regarded as an open subset either of the Gieseker
moduli space of stable sheaves, or the moduli space of stable representations of a
certain quiver.

In Sects. 4 and 5 we illustrate how it is possible to extend the definition of instanton
to algebraic varieties beyond projective spaces. In Sect. 4, we focus on the specific case
of Fano threefolds of Picard rank one. Also in this setting, we start treating the case of
rank 2 vector bundles: we summarize their main properties and those of their families
presented by Faenzi in [19]. Once again, we are lead to take into account awider family
of sheaves which includes sheaves of arbitrary rank and that are not necessarily locally
free. This is what motivated [13], where the definition of instanton sheaves on Fano
threefolds is provided and their main features are collected. An investigation of rank 2
instanton bundles on a Fano threefold X (in particular on a Fano X of index 2) has also
been conducted by Kuznetsov in [29], but this time the language chosen to present
features of instantons is the one of derived categories. Kuznetsov establishes indeed
a correspondence between instanton bundles on X and objects in the triangulated
category BX := 〈OX ,OX (1)〉⊥, named acyclic extensions of instantons, and shows
how the categorical properties of these latter “reflect” the sheaf-theoretical properties
of instantons. We end Sect. 4 with a brief survey of the main results of [29].

Section 5 is dedicated to review the definition and main properties of h-instanton
sheaves, which have been recently introduced by Antonelli and Casnati in [1]. Their
notion seeks to generalize the previous definitions of instanton sheaves to arbitrary
projective schemes X endowed with an ample and globally generated line bundle
OX (h). For an n dimensional scheme X , the line bundle OX (h) induces a finite map
from X to P

n . The direct image of an ordinary h-instanton sheaf on X by this map is
indeed an instanton sheaf on P

n in the sense of [23], and conversely the pullback of
an instanton sheaf on Pn is an ordinary h-instanton sheaf on X . One of the noticeable
features of an instanton sheaf is that it can be constructed as the cohomology of a
monad. An h-instanton sheaf on X has such a monadic presentation if X is ACMwith
respect to the line bundleOX (h). We then focus on some particular cases of X , where
themonads for ordinary h-instantons aremore neatly presented. Thosemonads overlap
some known monadic presentations on P

n and some smooth quadrics, and provide
some new monadic presentations on scrolls. Next, we review the construction of rank
2 h-instanton bundles on some smooth varieties of low dimension, namely curves,
surfaces, Fano threefolds of Picard rank 1 and scrolls. In particular, we compare the
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rank 2 h-instanton bundles on a Fano threefoldwith the instanton bundles in Sect. 4.We
will see that these two notions coincide inmost cases. In the end, we review an example
of an h−instanton bundle on the image of the Segre embedding P1×P1×P1 ↪→ P

3 to
illustrate that h-instanton bundles on varieties of higher Picard rank can have several
pathologies comparing to the classical instanton bundles.

Finally, Sect. 6 contains the original results presented in this paper. We return to the
setup of Sect. 4 and introduce the notion of C-instanton object in the derived category
of a Fano threefold of Picard number one. This notion is highly inspired by the works
of Faenzi [19], Kuznetsov [29], and Comaschi–Jardim [13], and the examples of
Bridgeland semistable objects in the projective space provided in [25]. The idea is to
find a chamber C in the stability manifold so that semistability in this chamber alone
already provides the correct cohomology vanishing conditions. In the cases of the
projective space and the quadric threefold, we prove that there is a chamber C such
that C-instantons have monad-type descriptions. Examples of C-instanton objects are
provided, including some that do not fit any previous definitions. Additionally, we
prove that the classical rank 2 instanton bundles in the projective space are indeed
C-instanton objects for any suitable chamber C. Acyclic extensions are proved to exist
for stable C-instantons on any Fano threefold of index 2, and moreover such acyclic
extensions are again C-instanton objects.

2 Atiyah–Ward correspondence andmathematical instanton bundles

Wewill now consider our Riemannian manifold (M, g) as being the four dimensional
sphere S4 equipped with the usual round metric; recall that this is conformal to the
usual euclidean metric on R

4 � S4 \ {∞}; by virtue of the Uhlenbeck removable
singularities theorem, any instanton connection on R4 extends to an instanton on S4.

Furthermore, S4 can be identified with the quaternionic projective line HP
1 as

follows: any p ∈ R
4 is associated to the point [p : 1] ∈ HP

1, while ∞ goes to
[1 : 0] ∈ HP

1. One can then consider the smooth map τ : CP3→ HP
1 given by

τ [x : y : z : w] = [x + j y : z + jw].

Note that the fibers of τ are isomorphic to CP
1: the pre-image of the point [u + jv :

1] ∈ HP
1 is the line [u : v : 1 : 0], while τ−1([1 : 0]) = [u : v : 0 : 0].

This so-called twistor map has the following fantastic property, first noticed by
Atiyah andWard in [10]. If (E,∇) is a complex vector bundle on S4 � HP

1 equipped
with an instanton connection, then the curvature Fτ∗∇ of the pull-back connection
τ ∗∇ is a 2-form with values in τ ∗ End(E) = End(τ ∗E) of type (1, 1). This means
that Fτ∗∇ induces a holomorphic structure on the pulled-back vector bundle τ ∗E ; let
us denote this by E .

Observe that E must satisfy some obvious properties. First, its restriction to the
fibers τ−1(p) must always be holomorphically trivial. Second, note that

τ [x : y : z : w] = τ [−y : x : −w : z],
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since their images only differ by multiplication by j on the left; therefore, the pulled-
back bundle τ ∗E must be invariant under the involution ι : CP3 → CP

3 given by
ι[x, y, z, w] = [−y : x : −w : z], ie. ι∗E � E .

The non-trivial key property satisfied by E is provided by the Penrose transform,
which provides an isomorphism between the kernel of the Laplacian operator � cou-
pled to the instanton connection∇, and the sheaf cohomology group H1(CP3, E(−2)),
where E(−2) = E ⊗ OCP3(−2) as usual. It turns out that ker� is empty precisely
because S4 has positive scalar curvature and F∇ is anti-self-dual. Therefore, we must
have that H1(CP3, E(−2)) = 0.

The Atiyah–Ward correspondence correspondence essentially says that the original
smooth instanton connection on S4 can be reconstructed from the associated holomor-
phic vector bundle E satisfying the properties described above. (Since wewould like to
get into algebraic geometry as soon as possible, we are actually omitting many details
here and this claim is an oversimplification of the actual theorems; the interested reader
should look at [9, 36]).

The Atiyah–Ward correspondence was the first fundamental link between mathe-
matical physics an algebraic geometry to be discovered, and it has sparked a flurry of
intense activity among algebraic geometers; Hartshorne [20] and Barth–Hulek [11]
are perhaps the first algebraic geometry papers on bundles on projective spaces moti-
vated by the works of Atiyah and collaborators (especially [4, 10]). However, to our
knowledge, the first reference that uses the expression “instanton bundle" is [33, p.
370]; in this reference, the authors define a complex instanton bundle on CP

3 as a
stable rank 2 holomorphic bundle E with c1(E) = 0 satisfying H2(E(−2)) = 0.

At this point (circa 1977-78), Barth noticed that every such complex instanton
bundle E can be realized as the cohomology of a monad, that is, a complex of sheaves

OCP3(−1)⊕c α−→ O⊕2+2c
CP3

β−→ OCP3(1)
⊕c (2)

for which α is injective, β is surjective, and such that E � ker β/ im α, and where
c = h1(E(−1)). Since the morphisms α and β can be regarded as matrices whose
entries are linear polynomials, this allowed to translate the classification of complex
instanton bundles into a problem in linear algebra. This is essentially the crucial point
explored in the seminal paper [4] by Atiyah, Drinfeld, Hitchin and Manin, where the
full classification of SU (2) instantons on S4 was given.

In 1984, Salamon presented a higher dimensional version of the Atiyah–Ward
correspondence [35]; see also [15]. He considers a map τ : CP2k+1→ HP

k given by

τ [x0 : y0 : · · · : xk : yk] = [x0 + j y0 : · · · : xk + j yk],

thus generalizing the twistor map defined above; the fibers of τ : CP2k+1 → HP
k

are also isomorphic to CP1. Now let E → HP
k be a complex vector bundle equipped

with a connection ∇; this is said to be a quaternionic instanton if its curvature F∇ is
of type (1, 1) with respect to any choice of almost complex structure in HP

k ; when
k = 1, this is equivalent to the usual definition of an instanton on a 4-dimensional
manifold.

123



São Paulo Journal of Mathematical Sciences

It turns out that this condition is just what is needed to prove that the curvature
Fτ∗∇ of the pulled-back connection on τ ∗E is of type (1, 1) onCP2k+1, and therefore
induces a holomorphic structure on τ ∗E .

This motivated the definition of mathematical instanton bundles by Okonek and
Spindler, see [32] in the following year. To be precise, a mathematical instanton bundle
is a rank 2k holomorphic bundle E on CP2k+1 satisfying the following conditions

(1) E is simple, ie. Hom(E, E) = C;
(2) its Chern polynomial is given by ct (E) = (1− t2)−c;
(3) it has natural cohomology in the rank −2k − 1 ≤ p ≤ 0, that is, for each p in

the specified rank, at most one of the cohomology groups H p(E(l)) can be non
trivial;

(4) E has trivial splitting type, ie. E |l is trivial for at least one line � ⊂ CP
2k+1;

(5) E admits a symplectic structure, meaning that there exists an isomorphism φ :
E → E∗ such that φ∗ = −φ.

Later, Ancona and Ottaviani noticed in [7] that conditions (2) and (3) imply condition
(1). Mathematical instanton bundles were the subject of several articles in 1980’s and
1990s. One fact that will be relevant later on is that conditions (2) and (3) imply that
any mathematical instanton bundle is isomorphic to the cohomology of a monad

OCP2k+1(−1)⊕c α−→ O⊕2k+2c
CP2k+1

β−→ OCP2k+1(1)⊕c. (3)

Let ℘ := {yk = 0} ⊂ CP
2k+1 be a hyperplane, and note that the restriction

τ |℘ : ℘ → HP
k of the twistor map is surjective and provides a bijection between the

affine subsets

℘ ⊃ {xk �= 0} = C
2k �→ H

k = {qk �= 0} ⊂ HP
k

(x0, y0, · · · , xk−1, yk−1) �→ (x0 + j y0, · · · , xk−1 + j yk−1).

So lifting a quaternionic instanton connection on HP
k to a mathematical instanton

bundle onCP2k+1 and restricting it to the hyperplane℘ provides an injectivemap from
the moduli space of quaternionic instantons on HP

k to the moduli space of rank 2k
holomorphic bundles on℘ that arise as cohomologyof a linearmonad similar to the one
in display (3). For the case k = 1, Donaldson used the so-called ADHM construction
to show that this map is actually and isomorphism [16]; however, it is unknown to the
authors whether the same is true for k > 1. However, this observation can be regarded
as a motivation to consider holomorphic bundles over even dimensional complex
projective spaces which arise as the cohomology of a linear monad, see Definition 3.2
below.

3 Instanton and perverse instanton sheaves

From this point onwards, we will shift to denoting sheaves by capital roman letters,
while Pn means CPn , as it is more usual in algebraic geometry.
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We start by recalling the characterization of the family of sheaves on projective
spaces that can be represented as the cohomology of a monad as in display (3).

Theorem 3.1 A torsion free sheaf E on P
n is the cohomology of a monad of the form

U ⊗OPn (−1) α−→ V ⊗OPn
β−→ W ⊗OPn (1),

where U, V and W are vector spaces, if and only if

(1) H0(E(−1)) = Hn(E(−n)) = 0 for n ≥ 2;
(2) H1(E(−2)) = Hn−1(E(1− n)) = 0 for n ≥ 3;
(3) H p(E(k)) = 0 for every k and 2 ≤ p ≤ n − 2, when n ≥ 4.

The proof is given in [23, Theorem 3]; the if part is an application the Beilinson
spectral sequence, after some further cohomological vanishings are established; the
converse claim is an easy calculation with long exact sequences.

Since the locally free sheaves on odd and on even dimensional complex projective
spaces arising from quaternionic instantons on quaternionic projective spaces have
c1 = 0, the following definition definition was proposed in [23].

Definition 3.2 An instanton sheaf on P
n is a torsion free sheaf E with c1(E) = 0

satisfying the following cohomological conditions

(1) H0(E(−1)) = Hn(E(−n)) = 0 for n ≥ 2;
(2) H1(E(−2)) = Hn−1(E(1− n)) = 0 for n ≥ 3;
(3) H p(E(k)) = 0 for every k and 2 ≤ p ≤ n − 2, when n ≥ 4.

The number c := h1(E(−1)) = c2(E) is called the charge of E ; this is also often
called the quantum number of E . The trivial bundle O⊕r

Pn is regarded as an instanton
sheaf of charge 0.

Mathematical instanton bundles, as defined in the previous section, are simply
locally free instanton sheaves of rank 2k on P2k+1. Therefore, the previous definition
generalizes the notion of mathematical instanton bundles to include possibly non
locally free sheaves of arbitrary rank on projective spaces of any dimension.

The first observation is that instanton sheaves of rank r less than n − 1 on P
n are

necessarily trivial, i.e.O⊕r
Pn [23, Corollary 6]. Moreover, notice that we do not impose

any condition on the stability of E ; in fact, letting E be a non trivial instanton sheaf
of rank r on P

n , one can show that:

1. if E is reflexive and r ≥ n − 1, then E is μ-semistable;
2. if E is locally free and r ≥ 2n − 1, then E is μ-semistable.
3. when r = 2 and n = 3, then E is Gieseker stable.

The first two claims are contained in [23, Theorem 15], while the third was established
in [26, Theorem 4].

Thus, in general, it is not in principle clear how to construct a moduli space of
instanton sheaves of arbitrary rank and charge. This issue is addressed in [21, 22]
using the ADHM construction of framed instanton bundles on P

n , and more recently
in [28] using representations of quivers. Let us comment on both approaches.
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3.1 The ADHM construction and perverse instanton sheaves

LetV andW be vector spaces of dimension c and r , respectively, and considermatrices

A, B ∈ End(V )⊗ H0(OPn−2(1))

I ∈ Hom(W , V )⊗ H0(OPn−2(1)) , J ∈ Hom(V , W )⊗ H0(OPn−2(1))

where n ≥ 2; these are the so-called ADHM matrices. Let Xn(r , c) denote the set of
all ADHM matrices as above satisfying the ADHM equation:

Xn(r , c) :=
{
(A, B, I , J )

∣∣∣ [A, B] + I J = 0
}

The group GL(V ) acts on Xn(r , c) as follows

g · (A, B, I , J ) = (g Ag−1, gBg−1, gI , Jg−1).

One can then consider the GIT quotient

Fn(r , c) := Xn(r , c)//GL(V );

a quadruple (A, B, I , J ) ∈ Xn(r , c)) is GIT stable if there is no proper subspace
S ⊂ V for which the inclusions A(S), B(S), I (W ) ⊂ S ⊗ H0(OPn−2(1)), see [21,
Section 2.3] and [22] for the case n = 3.

Each point (A, B, I , J ) ∈ Xn(r , c) can be used to construct a complex of sheaves
on Pn as follows, where X = (A, B, I , J ):

E•X : V ⊗OPn (−1) α−→ (
V ⊕ V ⊕W

) β−→ V ⊗OPn (1) (4)

where the maps α and β are given by

α =
⎛
⎝ A + x1V

B + y1V

J

⎞
⎠ β = (−B − y1V A + x1V I

)
.

To be more clear, let [z0 : · · · : zn−2] be homogeneous coordinates on P
n−2 and

[z0 : · · · : zn−2 : x : y] denote homogeneous coordinates on Pn . Then the first line of
the morphism α can be written in the following way

A0z0 + · · · + An−2zn−2 + x1V ,

where 1V denotes the identity in End(V ); the other entries ofα andβ can be interpreted
in a similar way.

Notice that βα = 0 precisely because the ADHM equation holds. Moreover, α is
injective, while coker β has codimension at least 2, since β is surjective along the line
� = {z0 = · · · = zn−2 = 0}; in fact, β is surjective if and only if for each p ∈ P

n−2,
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there is no proper S ⊂ V for which the inclusions A(p)(S), B(p)(S), I (p)(W ) ⊂ S,
a condition that implies the GIT stability of X = (A, B, I , J )).

Finally, two complexes EX and EX ′ are isomorphic if and only if X ′ = g · X .
These observations motivates the following definition.

Definition 3.3 A perverse instanton sheaf is an object E ∈ Db(Pn) quasi-isomorphic
to a complex of the form

OPn (−1)⊕c −→ O⊕r+2c
Pn −→ OPn (1)⊕c

satisfying the following conditions

• Hp(E) = 0 for p �= 0, 1;
• H0(E) is a torsion free sheaf;
• H1(E) is a torsion sheaf of codimension at least 2.

Note that r = rk
(
H0(E)

)
, and this is called the rank of E ; a rank 0 instanton sheaf is

just a perverse instanton sheaf of rank 0. The integer c = ch2(E) is called the charge
of E .

In addition, a framing on E is a choice of isomorphism ϕ : H0(E)|� ∼→ O⊕r
� . The

pair (E, ϕ) is called a framed perverse instanton sheaf.

Therefore, for any X ∈ Xn(r , c) the complex EX presented in display (4) is a per-
verse instanton sheaf of rank r and charge c, equipped with a framing ϕ : H0(E)|� ∼→
W ⊗ O�. The GIT quotient Fn(r , c) can then be interpreted as the moduli space of
GIT stable framed perverse instanton sheaves of rank r and charge c.

Every instanton sheaf in the sense of Definition 3.2 is a perverse instanton sheaf
with H1(E) = 0; and every perverse instanton sheaf with H1(E) = 0 is just an
instanton sheaf. Therefore, every framed instanton sheaf is semistable, in the sense
that it corresponds to a GIT semistable ADHM datum.

Themain example of a perverse instanton sheaf that is not a sheaf is the derived dual
of a non locally free instanton sheaf. In general, the 0th-cohomology of a perverse
instanton sheaf may not be an instanton sheaf.

3.2 Instantons as representations of a quiver

The information contained in a linear monad of the form

V ⊗OPn (−1) α−→ W ⊗OPn
β−→ U ⊗OPn (1) (5)

can be neatly packaged as a representation of the quiver

Q :=

⎧⎪⎨
⎪⎩ •−1

... •
0

... •
1

α0

αn

β0

βn

⎫⎪⎬
⎪⎭ (6)
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with n + 1 arrows between each vertex, satisfying the relations

β jαi + βiα j = 0 with 0 ≤ i, j ≤ n. (7)

Indeed, we place the vector spaces V , W and U on the vertices −1, 0, and 1, respec-
tively. Set [x0 : · · · : xn] as homogeneous coordinates on P

n ; the morphisms α and β

can then be written as follows

α =
n∑

i=0
Ai xi and β =

n∑
i=0

Bi xi

where αi ∈ Hom(V , W ) and βi ∈ Hom(W , U ). To complete the representation of
the quiver Q, we attach the matrices Ai to the arrows αi , while the matrices Bi are
attached to the matrices βi . Finally, the fact that βα = 0 implies that the relations
in display (7) are satisfied. The injectivity of α and surjectivity of β impose further
(open) conditions on the set of representations of Q that come from linear monads;
further details and generalizations can be found in [27] and in [28].

Turning back our attention to themoduli space of instanton sheaves, we observe that
the dimension vector of a representation ofQ associated to the monad for an instanton
sheaf of rank r and charge c is given by (c, r + 2c, c). One can then consider the King
moduli space Rθ (r , c) of θ -semistable representations of Q with fixed dimension
vector (c, r + 2c, c); here, the stability parameter θ is given by

θ = (α,−(α + γ )
c

r + 2c
, γ
)
with α, γ ∈ R.

It is not difficult to see that Rθ (r , c) is empty whenever α > 0 and γ < 0, see [28,
Lemma 7].

The case of rank 2 instanton sheaves was studied in detail in [28]. One can show that
if E is an instanton sheaf, then there is θ such that the corresponding representation
of Q is θ -stable [28, Proposition 8]; moreover, there is a wall in the αγ -plane that
destabilizes every representation corresponding to a non locally free instanton sheaf,
so that perverse instanton sheaves do correspond to certain θ -stable representation of
Q.

In summary, there are at least two ways to construct reasonable (i.e., projective)
moduli spaces of instantons sheaves of arbitrary rank and charge: via the ADHM
construction, or via moduli spaces of representations of quivers. However, both con-
structions include more complicated objects in the derived category of sheaves, like
the perverse instantons sheaves considered in Definition 3.3.

4 Instanton sheaves on Fano threefolds

In Sect. 3, we saw how to generalize the “classical” notion of instanton extending the
definition to torsion free sheaves of arbitrary rank and even to objects belonging to
the derived category Db(Pn). Another possible direction is to construct instantons on
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projective varieties beside projective spaces. For the particular cases of Fano threefolds
of Picard rank one, this was done in [13, 19, 29].

4.1 Instanton bundles on Fano threefolds

The rank 2 locally free instantons on the Fano threefolds of Picard rank one are the
main subject [19].We summarize here themain results of Faenzi’s work. To beginwith
we consider a Fano threefold X of Picard rank one and we denote by HX the ample
generator of Pic(X) � Z. We then write the anticanonical class K X as K X = −iX HX .
We have that iX is a positive (since X is Fano) integer, referred to as the index of X ,
that takes values in iX ∈ {1, 2, 3, 4}. We set iX = 2qX + eX , where qX and eX are
integers such that qX ≥ 0 and 0 ≤ eX ≤ 1. The definition of instanton presented in
[19] is the following:

Definition 4.1 An instanton bundle on X is a rank 2 stable bundle with c1 = −eX ,
and such that

E � E∗(−eX ), H1(E(−qX )) = 0.

Note that the instantonic condition H1(E(−qX )) = 0 is the analogue of the van-
ishing H1(E(−2)) holding for instantons on P

3. Using the Serre’s correspondence
and the stability assumption it can be shown that the instantons satisfy the following
cohomological vanishing:

Lemma 4.2 If E is a rank 2 instanton bundle on X we then have:

Hi (E(−qX )) = 0 and Exti (E,OX (−qX − eX )) = 0, for all i; (8)

and H1(E(−qX − t)) = 0, H2(E(−qX + t)) = 0, for all t ≥ 0.

4.2 Non-emptiness of moduli spaces of instantons

The first main result of [19], concerns the non-emptiness of the moduli space I(n) of
instanton bundles of charge n on all Fano threefolds X of Picard rank one and index
iX > 1 and on non-hyperelliptic Fano threefolds of index one (whichmeans that−K X

is very ample) containing a line � ⊂ X with normal bundle O� ⊕O�(−1).
Theorem 4.3 The moduli space I(n) has a generically smooth irreducible component
whose dimension is the number δ below:

and I(n) is empty when iX = 2 and n = 1, and when iX = 1 and 2n < gX + 2.

iX 4 3 2 1

δ 8n − 3 6n − 6 4n − 3 2n − gX − 2
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The integer gX appearing in the statement of the theorem is the genus of X ; we
recall that this parameter, defined on Fano threefolds of index one, is the genus of a
general codimension 2 plane section of X .

Remark 4.4 Existence of instantons on Fano threefolds of index 2. In the particular
case of Fano threefolds of index 2, the proof of the non-emptiness of the moduli spaces
I(n), for n > 2 relies on the construction of divisors in I(n) parameterizing non-
locally free sheaves E that still satisfy the cohomological vanishing H•(E(−1)) = 0
(note that all these conditions are, by semicontinuity, open). To be more precise, these
sheaves E are elementary transformations of instanton bundles F of charge n − 1
along structure sheavesO� of lines � ⊂ X . This means that the sheaves E fit into short
exact sequences of the form:

0 −→ E −→ F −→ O� −→ 0 (9)

(from which we learn in particular that F � E∗∗ and Sing(F) = �). The non-
emptiness of I(n) can then be proved applying an induction argument. To begin with
we show the existence of a generically smooth irreducible component of I(2) (this
is done applying the well-known Serre’s correspondence relating locally complete
intersection curves on X with rank 2 bundles). The induction step consists then in
showing that for a general pair (F, �) with [F] ∈ I(n− 1) and � ⊂ X a line on X , the
general deformation of a sheaf E fitting into a short exact sequence of the form (9) is
an instanton bundle of charge n. This procedure suggested that, more generally, the
investigation on families of rank 2 non-locally free sheaves E with Hi (E(−qX )) = 0,
might contribute to get a better understanding of I(n).

4.3 Monadic representations of instantons

Faenzi focuses then his attention on instantons defined over Fano threefolds X such that
H3(X) = 0. On these threefolds, the instanton bundles share another common feature
with instantons on the projective space: they can still be represented as cohomology
of monads. This property is remarkable for the following reasons: in the first place it
provides us with a “recipe" to construct instantons, in the second place it allows us to
construct their moduli as GIT quotients. As it turns out, the condition H3(X) = 0 is
indeed equivalent to the fact that X admits a full strong exceptional collection; this
allows to prove analogues of the Beilinson’s theorem on P

n . More specifically, on a
Fano threefold X such that H3(X) = 0, there exist vector bundles Ei , i = 0, . . . , 3,
satisfying

E0 � OX (−qX − eX ), E∗3 (−eX ) � E1, E∗2 (−eX ) � E2

and such that Db(X) = 〈E0, E1, E2, E3〉. Denoting then by 〈F0,F1,F2,F3〉 the dual
collection, we have that each coherent sheaf E on X is the cohomology of a complex
C•E with C j

E = ⊕i H i (F⊗F j−i+3)⊗E j−i+3 where the index i runs betweenmax{0, j}
andmin{3, j+3}. In the particular case in which E is an instanton bundle, the complex
C•E is amonadwhose terms can be described, in further detail, as follows. For an integer
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n let us fix vector spaces I and W whose dimensions are subjected to the following
constraints:

iX n dim(I ) dim(W )

4 n ≥ 1 n 2n + 2
3 n ≥ 2 n − 1 n
2 n ≥ 2 n 4n + 2
1 n ≥ 8 n − 7 3n − 20

and let us denote by U the vector space U := Hom(E2, E3). We fix then an isomor-
phism D : W → W ∗ such that Dt = (−1)eX+1D and we consider the locally closed

subvariety
◦

DX ,n of the vector space Hom(W ∗ ⊗E2, I ⊗E3) � I ⊗W ⊗U defined as

◦
DX ,n := {A ∈ Hom(W ∗ ⊗ E2, I ⊗ E3) | A D At = 0 and A is surjective}.

Finally, we write G(W , D) for the symplectic group Sp(W , D), or for the orthogo-
nal group O(W , D), depending on whether eX = 0, 1; the group Gn := GL(I ) ×
G(W , D) acts then on

◦
DX ,n via (ζ, η) · A = (ζ Aηt ). The second main result of [19]

is the following:

Theorem 4.5 Let X be a smooth Fano threefold of Picard rank one and such that
H3(X) = 0. Let I , W , D, Ei as above. Then an instanton E of charge n on X is the
cohomology of a monad of the form

I ∗ ⊗ E1
D At−−→ W ∗ ⊗ E2

A−→ I ⊗ E3,

and conversely the cohomology of such a monad is an instanton of charge n. The
moduli space I(n) of instanton bundles of charge n is isomorphic to the geometric

quotient
◦

DX ,n/Gn.

4.4 Instanton sheaves on Fano threefolds

The main properties of rank 2 instanton bundles on Fano threefolds, illustrated in [19],
appear as “natural generalizations” of the properties of mathematical instantons on the
projective space.Wemight then wonder if something similar still happens if we extend
our study to sheaves of arbitrary rank and that are not necessarily locally free; in other
words we might try to adapt to the Fano threefolds besides P3 the approach adopted
by Jardim in [23]. This issue had been dealt in [13] where the following definition of
instanton sheaf is presented (the notations adopted are the one we introduced in the
previous section):

Definition 4.6 Let X be a Fano threefold of Picard rank one and index iX = 2qX+eX ,
where qX , eX are integers such that qX ≥ 0 and 0 ≤ eX ≤ 1. An instanton sheaf E on
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X is a torsion free μ-semistable sheaf with first Chern class c1(E) = −eX and such
that:

H1(E(−qX )) = H2(E(−qX )) = 0. (10)

The charge of E is defined to be c2(E).

Remark 4.7 Note that this definition appears to bemore restrictive than the one adopted
in [23] since this latter does not necessarily implies μ-semistability (see e.g. [23,
Example 3]).

Moving to this more general setting, some of the cohomological characterizations of
instantons presented in Lemma 4.2 still hold:

Lemma 4.8 Let E be an instanton sheaf. Then:

Hi (E(−qX )) = Exti (E,OX (−qX − eX )) = 0 for all i .

A conspicuous part of [13] is devoted to the study of the non-locally free instanton
sheaves. An efficient way to produce sheaves of such a kind is performing elementary
transformations of instantons along rank 0 instantons.

Definition 4.9 A rank 0 instanton sheaf on X is a 1-dimensional sheaf T satisfying
Hi (T (−qX )) = 0, i = 0, 1.

Remark 4.10 The vanishing of H0(T (−qX )) implies that H0(T (−n)) = 0 for n � 0.
Accordingly a rank 0 instanton must have pure dimension 1 (that is to say it admits
no zero-dimensional subsheaf).

The notion of elementary transformation had already been introduced in Remark 4.4:
we say that E is the elementary transformation of an instanton F along a rank 0
instanton T if E fits into a short exact sequence of the form:

0 −→ E −→ F −→ T −→ 0. (11)

From this short exact sequencewe can easily verify that the sheaf E is indeed an instan-
ton that moreover satisfies E∗∗ � F∗∗; in particular if ever F is reflexive, F � E∗∗.
Notice therefore that the non-locally free sheaves E constructed in Remark 4.4 and
belonging to the boundary ∂I(n) are instanton sheaves: they are indeed obtained per-
forming elementary transformation of rank 2 instanton bundles F (so that, in particular,
F � E∗∗) along structure sheaves of linesO� (these latter are rank 0 instantons onFano
varieties of index 2 since Hi (O�(−1)) = 0 for i = 0, 1). Via the technique described
above, we can thus construct families of non-reflexive instantons with 1-dimensional
singular locus. The main properties of non-reflexive instantons are summarized in the
following proposition:

Proposition 4.11 Let E be a non-reflexive instanton sheaf of rank r > 0. Then the
following hold:
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• TE := E∗∗/E has pure dimension one;
• E has homological dimension one;
• E∗∗ is an instanton if and only if TE is a rank 0 instanton.

Summing up, we can always construct families of non-reflexive instantons via ele-
mentary transformation of reflexive instantons along rank 0 instantons but, from
Proposition 4.11 we learn that, in general, not all non-reflexive instanton are obtained
in this way. Nevertheless this last assertion holds true if we restrict to the rank two
case.

Theorem 4.12 Let E be a rank 2 instanton sheaf. Then E∗∗ is an instanton bundle and
TE := E∗∗/E is a rank 0 instanton whenever TE �= 0.

Remark 4.13 From 4.10 and Theorem 4.12 we learn the following: a rank 2 instanton
E either does not present singularities or it has purely one dimensional singular locus
Sing(E) = Supp(E∗∗/E).

In the rankone case the investigationof non-reflexive instantons even lead to a complete
classification of the rank one instantons.

Proposition 4.14 Let L be a rank 1 instanton sheaf of charge n on a Fano threefold X
with Picard rank one. The following hold:

• if iX = 3, 4 then n = 0 and L � OX (−eX );
• if iX = 1, 2, we have L � OX (−eX ) whenever n = 0 whilst for n > 0, L always

fits in a short exact sequence of the form:

0→ L → L ′ → O�(−eX )→ 0

for a line � ⊂ X and a rank one instanton L ′ of charge n − 1.

4.5 Instanton bundles on Fano threefolds of index 2

The rank 2 instanton bundles on a Fano threefold X of index 2 are also themain subject
of Kuznetsov’s work [29]. In the article the author’s attention is mainly drawn to the
behavior of these bundles seen as objects in the derived category Db(X) of X . The
definition of instanton provided by Kuznetsov is the following:

Definition 4.15 Let X be a Fano threefold of index 2. An instanton of charge n is
a stable vector bundle E of rank 2 with c1(E) = 0, c2(E) = n and such that
H1(E(−1)) = 0.

We notice therefore that on X , the definition of instanton adopted by Kuznetsov coin-
cides the one presented by Faenzi. Kuznetsov’s investigation of instanton bundles on
X starts with the computation of their cohomology table.

Lemma 4.16 Let E be an instanton bundle of charge n on a Fano threefold X of index
2. Then the cohomology table of E has the following shape:
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t · · · −3 −2 −1 0 1 · · ·

h3(E(t)) · · · ∗ 0 0 0 0 · · ·
h2(E(t)) · · · ∗ n − 2 0 0 0 · · ·
h1(E(t)) · · · 0 0 0 n − 2 ∗ · · ·
h0(E(t)) · · · 0 0 0 0 ∗ · · ·

As an immediate corollary we also get the following:

Corollary 4.17 The charge of an instanton is greater or equal than 2.

Remark 4.18 • By [19, Theorem 3.1], we know that instantons of charge 2 indeed
exist so that 2 is actually the minimal value of the charge of an instanton bundle
on a Fano threefold of index 2. However, I� ⊕OX is an example of a non locally
free instanton sheaf of charge 1.
• By the table displayed in Lemma 4.16, we see that since H0(E) = 0, the Gieseker
stability of an instanton bundle E actually coincides with its slope-stability.
• Because of the stability assumption required inDefinition 4.15, we see that a vector
bundle that is an instanton in the sense of Kuznetsov (or equivalently of Faenzi)
is clearly an instanton in the sense of Definition 4.6. Nevertheless the converse
implication does not hold: it is indeed shown in [13] that Fano threefolds of index
2 admit strictly μ-semistable rank 2 vector bundles E with ch(E) = (2, 0,−n, 0)
and Hi (E(−1)) = 0, for all i . These bundles are therefore instantons according
to Definition 4.6 but not in the sense of Definitions 4.15 and 4.1. In loc.cit. it is
shown that actually the Fano threefolds of index 2 indeed are the only ones carrying
families of strictlyμ-semistable rank 2 instanton bundles of charge n > 0 and that
moreover each instanton E of such a kind fits into a short exact sequence:

0 −→ OX −→ E −→ L −→ 0

with L a rank one instanton of charge n.

4.6 The acyclic extension of instantons

Aswementioned before, one of Kuznetsov’s main aims is to describe the properties of
instantons using the language of derived categories. We recall that for a Fano threefold
X of index 2, the collection of line bundlesOX , OX (1) is exceptional; accordingly we
obtain the following semiorthogonal decompositon of the derived category Db(X):

Db(X) = 〈BX ,OX ,OX (1)〉, BX := 〈OX ,OX (1)〉⊥.

Starting from an instanton E , as E ∈ 〈OX (1)〉⊥ (this is due to Lemma 4.16), we can
construct an object Ẽ ∈ BX performing a left mutation through OX . We recall that
the left mutation throughOX is the functor LO : Db(X)→ 〈OX 〉⊥ sending an object
F ∈ Db(X) to the cone of the evaluation morphism Ext•(OX , F)⊗OX → F . Since
for an instanton bundle E , the complex Ext•(OX , E)⊗OX is concentrated in degree
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−1 (once again, this is due to Lemma 4.16), Ẽ := LO(E) is actually a sheaf object
that fits into a short exact sequence:

0 −→ E −→ Ẽ −→ On−2
X −→ 0.

The sheaf Ẽ is referred to as the acyclic extension of E .

Lemma 4.19 The acyclic extension of an instanton E is a simple slope-semistable
vector bundle Ẽ with ch(Ẽ) = (n, 0,−n, 0)and such that H•(Ẽ) = H•(Ẽ(−1)) = 0.
Moreover h0(Ẽ) = h1(Ẽ) = n − 2 and h2(Ẽ) = h3(Ẽ) = 0.

Recall now that since an instanton E (in the sense of Definition 4.15) has rank 2 and
first Chern class 0, it is self-dual; this property implies in particular a “generalized
self-duality" of its acyclic extension. Consider indeed the functor D : Db(X) →
Db(X), F �→ LO(RHom(F,OX )). It is not difficult to prove that the functor D
satisfies the following properties:

Lemma 4.20 • There exists a natural isomorphism δ : D2 ∼−→ id;
• the category BX is preserved by D.

Once we have defined the functor D we can state the self-duality property of acyclic
extensions.

Proposition 4.21 Let Ẽ be the acyclic extension of an instanton bundle E. Then there

exists a skew-symmetric isomorphism D(Ẽ)
φ−→ Ẽ , in the sense that it fits into a

commutative diagram:

D2(Ẽ)

D(Ẽ) Ẽ .

δẼD(φ)

−φ

As it turns out, an instanton bundle E can be “reconstructed” from its acyclic extension.
Each vector bundle F satisfying the properties of both Proposition 4.21 and Lemma
4.19 is indeed the acyclic extension of a unique instanton bundle.

Theorem 4.22 Let F be a vector bundle on X with ch(F) = (n, 0, −n, 0) and such
that H•(F) = H•(F(−1)) = 0. Then hi (F∗) = 0 for i > 1 and h0(F∗) = h1(F∗) ≤
n − 2; if moreover h0(F∗) = n − 2, then there exists a unique instanton bundle E of
charge n such that F � Ẽ .

It is worth mentioning that also in this setting, we have that the ideal sheaves of
lines I�, � ⊂ X , share several common features with instantons, or better to say, with
their acyclic extensions. It is immediate to prove that I� ∈ BX ; moreover the following
holds

Proposition 4.23 Ideal sheaves I� of lines � ⊂ X are fixed by D: D(I�) � I�.
Moreover this isomorphism is skew-symmetric (in the sense of Proposition 4.21).
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5 h-instanton sheaves on projective varieties

More recently, several authors have further extended the notion of instanton bundles
to beyond Fano 3-folds. This was, once again, initially motivated by gauge-theory:
recall that P2, just like S4 also has the structure of a quarternionic Kähler manifold,
and its twistor space is the full flag manifold F(0, 1, 2) of points and lines in CP

2;
the Atiyah–Ward correspondence provides in this case a correspondence between
quaternionic instantons onCP2 and a class of holomorphic bundles on F(0, 1, 2), and
these are again called instanton bundles.

Following [17], Marchesi, Malaspina and Pons-Llopis provided a mathematical
treatment of the instanton bundles on F(0, 1, 2) in [31]. This case study further moti-
vated the introduction of the notion of instanton bundles on other Fano threefolds with
Picard rank larger than 1, see for instance [2, 3, 6, 12].

In the latest development, Antonelli and Casnati defined a class of sheaves on a
projective scheme X with respect to an ample and globally generated line bundle
OX (h) via certain cohomological vanishing conditions that generalize the example
that have been previously studied (projective space, Fano threefolds of Picard rank
1); they show that these sheaves can be constructed via monads, so it is reasonable
to call them instanton sheaves on X . In this section, we review the definition and
constructions of these instanton sheaves following [1]; let us start with the definition
proposed by these authors.

Definition 5.1 [1, Definition 1.3 and Theorem 1.4] Let X be an irreducible projective
scheme of dimension n (n ≥ 1) endowed with an ample and globally generated line
bundle OX (h). If E is a coherent sheaf on X , k a non-negative integer and δ ∈ {0, 1},
then E is called an h-instanton sheaf if the following assertions hold:

(1) h0(E(−h)) = hn(E((δ − n)h)) = 0;
(2) hi (E(−(i + 1)h)) = hn−1(E((δ − n + i)h)) = 0 if 1 ≤ i ≤ n − 2;
(3) δhi (E(−ih)) = 0 for 2 ≤ i ≤ n − 2;
(4) h1(E(−h)) = hn−1(E((δ − n)h)) = k;
(5) δ(χ(E)− (−1)nχ(E(−nh)))) = 0.

The following chart gives the cohomologies of an h−instanton sheaf E with defect
δ and quantum number k when n ≥ 4.

t · · · −n − 1 −n −n + 1 · · · −2 −1 0 · · ·
hn(E(t)) · · · ∗ ∗

0
0 · · · 0 0 0 · · ·

hn−1(E(t)) · · · ∗
k
∗

0
k · · · 0 0 0 · · ·

hn−2(E(t)) · · · 0 0 0 · · · 0 0 0 · · ·
...

h2(E(t)) · · · 0 0 0 · · · 0 0 0 · · ·
h1(E(t)) · · · 0 0 0 · · · 0 k ∗ · · ·
h0(E(t)) · · · 0 0 0 · · · 0 0 ∗ · · ·
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A cell
a

b
in the above chart means that the cohomology is equal to b when

δ = 0, and is equal to a when δ = 1. An h-instanton sheaf E with δ = 0 is called an
ordinary instanton, and E is called non-ordinary if δ = 1.

Remark 5.2 Definition 5.1 doesn’t require stability for an h−instanton sheaf. Even for
the case that X is smooth and E is an h−instanton bundle of rank 2, E could be strictly
μ−semistable or μ−unstable which is similar to the situation for an instanton sheaf
on Pn (Remark 4.7). We refer to [1, Proposition 8.4] for more details.

5.1 h-Instanton sheaves on projective spaces and projective schemes

When X ∼= P
n , we choose the ample line bundle to be OPn (h) := OPn (1). Then the

definition of an ordinary h−instanton sheaf coincides with Definition 3.2 in Sect. 3,
meaning that if E is an ordinary h-instanton sheaf with rank r and charge c, then E is
an instanton sheaf in the sense of [23]. Thanks to Theorem 3.1, E has the following
monadic presentation, and conversely, the cohomology of such a presentation is an
h−instanton sheaf provided that it’s torsion free.

0→ O⊕c
Pn (−1)→ O⊕2r+c

Pn → O⊕c
Pn (1)→ 0

This property generalizes to non-ordinary h−instanton sheaves. It is proved in [1,
Proposition 3.2] that a non-ordinaryh−instanton sheaf is the cohomologyof themonad
given below, and the cohomology of such a monad is a non-ordinary h−instanton
provided b1, b2 ≥ χ(E).

0→M−1→M0 →M1→ 0,

in which

M−1 := OPn (−1)⊕b1−χ(E)

M0 :=
{
O⊕b0

Pn ⊕�1
Pn (1)⊕k ⊕�n−1

Pn (n − 1)⊕k ⊕OPn (−1)⊕b1 if n ≥ 3

O⊕b0
Pn ⊕�1

Pn (1)⊕k ⊕OPn (−1)b1 if n = 2

M1 := O⊕b0−χ(E)

Pn .

For a general projective scheme X endowed with an ample and globally generated
line bundleOX (h), the full linear series ofOX (h) induces a finite map ϕ|OX (h)| : X →
P

N for some N ∈ Z>0. Then projecting from N − n general points in P
N induces

a finite map p : X → P
n with the property that p∗(OPn (1)) = OX (h). Using the

fact that Ri p∗(E) = 0 (i ≥ 1) for any finite map p and the projection formula, it
is proved ( [1, Theorem 1.4]) that if E is an h-instanton sheaf on X , then p∗(E) is a
OPn (1)−instanton sheaf on P

n . More generally, an h-instanton sheaf is preserved by
a push-forward along a finite map.
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5.2 Monadic presentations of h-instanton bundles

We have seen that monadic presentations exist for instanton sheaves on Pn (Theorem
3.1), perverse instanton sheaves on P

n (Definition 3.3), and for instanton sheaves on
some Fano threefolds (Theorem 4.5). For a smooth n-fold X (n ≥ 3), endowed with
a very ample line bundle OX (h), assume that X is ACM with respect to this line
bundle OX (h). It is proved in [1, Theorem 1.7] that a vector bundle E on X is an
h−instanton bundle with defect δ ∈ {0, 1} and quantum number k ∈ Z≥0 if and only
if it is the cohomology of a monad of certain kind. In this subsection, we recall the
monadic presentations for h−instanton bundles on such a scheme X with an additional
constraint that h0(X , ωX ((n − 1)h)) = 0. With this extra condition, a monad will be
more neatly presented, and it satisfies some duality property. We refer to [1, Theorem
1.7], [24, Theorem 3.3] and [14] for technical details on the construction, and the
construction on a general ACM scheme and on a quadric hypersurface.

Firstly, let us recall that a smooth variety X with a very ample line bundle OX (h)

is ACM if

(1) hi (OX (th)) = 0 for i = 1, 2, ..., n − 1, t ∈ Z;
(2) hi (IX |PN (t)) = 0 (where the embedding is |OX (h)| : X ↪→ P

N ).

A sheaf E ∈ Coh(X) is called Ulrich if

(1) h0(E(−(t + 1)h)) = hn(E((t − n)h)) = 0 for t ≥ 0
(2) hi (E(t)) = 0 for i = 1, 2, ..., n − 1 and t ∈ Z

If X is an ACM scheme, and it satisfies an additional vanishing condition
h0(X , ωX ((n − 1))h) = 0, then the monadic presentation of an ordinary h-instanton
bundle E will be in the following form ( [1, Corollary 7.2])

0→ CU ,h → B→ C → 0 (12)

where C = O⊕k
X , and B is a Ulrich bundle. The sheaf CU ,h is the Ulrich dual sheaf of

C in the sense that CU ,h := C∨((n + 1)h + K X ).
Indeed, for a smooth scheme X , the vanishing condition h0(X , ωX ((n− 1))h) = 0

holds only when X falls into the following three cases: X ∼= P
n ; X is a smooth quadric

hypersurface; or X is a scroll over a smooth curve B.
5.2.1. If X = P

n , the monadic presentations for both ordinary (Sect. 3) and non-
ordinary h-instanton sheaves (Sect. 5.1) are shown in the previous sections.
5.2.2. If X ⊂ P

n+1 is a smooth quadric hypersurface, let OX (h) := OPn (1)|X , S (for
n odd) and S ′, S ′′ (for n even) be the spinor bundles. Then, depending on the parity
of n, monad (12) can be written explicitely as one of the following two monads

0→ O⊕k
X → S(h)⊕s → OX (h)⊕k → 0 for n = odd

in which s = h0(E ⊗ S)− h1(E ⊗ S)+ 2

[
n−1
2

]
k

0→ O⊕k
X → S′(h)⊕s′ ⊕ S′′(h)⊕s′′ → OX (h)⊕k → 0 for n = even
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in which s′ and s′′ are given as follows:

s′ =
⎧⎨
⎩

h0(E ⊗ S ′)− h1(E ⊗ S ′)+ 2

[
n−1
2

]
k if n ≡ 0 (mod4)

h0(E ⊗ S ′′)− h1(E ⊗ S ′′)+ 2

[
n−1
2

]
k if n ≡ 2 (mod4)

,

s′′ =
⎧⎨
⎩

h0(E ⊗ S ′′)− h1(E ⊗ S ′′)+ 2

[
n−1
2

]
k if n ≡ 0 (mod4)

h0(E ⊗ S ′)− h1(E ⊗ S ′)+ 2

[
n−1
2

]
k if n ≡ 2 (mod4)

.

For the cases n = 3, 4, 5, the above monads coincide with the ones in [19], [8] and
[34].
5.2.3. If X is a scroll, i.e., X = P(G)whereG is a locally free sheaf on a smooth curve B,
defineOX (h) := OP(G)(1), and let f be the fiber of the projectionπ : X = P(G)→ B
at a closed point. In this case, X is a variety ofminimal degree inPN , andUlrich bundles
on such varieties are described in [5]. Furthermore, X is ACM with respect toOX (h)

only when B ∼= P
1. We review two examples for dimensions n = 3 and 4 below, and

we refer to [1, Example 7.7 and 7.8] for more details.

Example 5.3 For n = 3, monad (12) for an ordinary h-instanton bundle will be in the
following form

0→ OX ((d − 2) f )⊕k → B→ OX (h)⊕k → 0

where B is a Ulrich bundle on X . Thanks to [5, Theorem 4.7], we know that the Ulrich
bundle B fits into the short exact sequence

0→ B2 → B→ OX ((d − 1) f )⊕s3 → 0,

where B2 is given as an extension

0→ OX (h − f )⊕s1 → B2 → �1
X |P1(2h − f )⊕s2 → 0

for some s1, s2, s3 ∈ Z>0.

Example 5.4 For n = 4, let X be the image of the Segre embedding P
1 × P

3 ↪→ P
7.

Then X is a rational normal scroll with G ∼=
3⊕

i=0
OP1(1). Let p : X → P

3 be the

projection, and we have �1
X |P1 ∼= p∗(�1

P3
).

If E is an ordinary h-instanton bundle with rank r and quantum number k, then
monad (12) becomes

0→ OX (2 f )⊕k → B→ OX (h)⊕k → 0

where B fits into the short exact sequence

0→ OX (h − f )⊕s1 ⊕ p∗�1
P3

(2h − f )⊕s2 → B→ p∗�1
P3

(3h − f )⊕s2
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⊕OX (3 f )⊕s4 → 0

for some s1, s2, s3, s4 ∈ Z>0.

5.3 Examples of h-instanton bundles

In this subsection, we review some constructions of (orientable) h-instanton bundles
on smooth varieties of low dimensions (n ≤ 3) and on scrolls. Firstly, recall that
a rank 2 h-instanton bundle E on X is orientable if it has defect δ ∈ {0, 1} and
c1(E) = (n + 1− δ)h + K X in A1(X) ∼= Pic(X).
5.3.1. When X is a smooth curve endowed with a globally generated ample line
bundle OX (h), an h-instanton sheaf E is necessarily locally free. Moreover, let g be
the genus of X , and choose a non-effective divisor θ ∈ Picg−1(X). Then, by definition
OX (θ + h)r and (OX (θ) ⊕ OX (θ + h))r are respectively, an ordinary h-instanton
bundle of rank r and an non-ordinary h-instanton bundle of rank 2r .

In particular, if X ∼= P
1, an h-instanton sheaves E is

E =
{
O⊕χ(E)

P1
if δ = 0

(OP1 ⊕OP1(−1))⊕χ(E) if δ = 1

The quantum number is this case is k = δχ(E).
5.3.2. When X is a smooth surface, rank 2 orientable h-instanton bundles with defect
δ ∈ {0, 1} and large quantum number always exist. Next, we briefly recall their con-
struction for the case that the Kodaira dimension κ(X) is −∞ ( [1, Example 6.10]),
and we refer to [1, Example 6.10] and [18] for the cases when κ(X) = 0, 1, 2.

Forκ(X) = −∞, letOX (h)be a very ample line bundle on X with h0(X ,OX (h)) =
N + 1. A rank 2 h-instanton bundle can be constructed by the Serre correspondence
in the following extension

0→ OX → E → IZ |X ((1− δ)h − K X )→ 0,

where Z ⊂ X is a 0−dimensional scheme with degree(Z) ≥ (1− δ)(N + 1)+ 1.
5.3.3. When X is a Fano threefold of Picard rank 1, define OX (h) := OX (H) where
the divisor H is an ample generator of Pic(X) (we call OX (H) the fundamental line
bundle in this case). Denote the index of X by iX (iX = 1, 2, 3, 4). According to [2,
Definition 1.1], we call a rank 2 vector bundle E on X a classical instanton bundle if

(1) c1(E) = −εh with ε ∈ {0, 1}
(2) h0(E) = h1(E(−qε

X h)) = 0 where qε
X :=

[
iX + 1− ε

2

]
.

Remark 5.5 Comparing to the other two notions of instanton sheaves on a Fano variety
(Definitions 4.1 and 4.6), we don’t require that c1(E) = −eX for E being a classical
instanton bundle in this context. There is no constraint on stability of E either (Remark
5.2).
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The following proposition shows the relation between classical instanton bundles
and h-instanton bundles of rank 2.

Proposition 5.6 [1, Proposition 8.6] Let X be a Fano threefold of Picard rank 1,
endowed with a very ample fundamental line bundle OX (h). If E is a rank 2 vector
bundle with c1(E) = (4 − δ − iX )h where δ = {0, 1}, then the following assertions
hold:

(1) If E is an h-instanton bundle, then its defect is δ and

(a) if (iX , δ) /∈ {(4, 0), (4, 1), (3, 1)}, then Enorm,h is a classical instanton bundle,

where Enorm,h := E
(
−
[

c1(E)+1
2

]
h
)

.

(b) if (iX , δ) ∈ {(4, 0), (4, 1), (3, 1)}, then Enorm,h is a classical instanton bundle
if and only if h0(E) = 0.

(2) If Enorm,h is a classical instanton bundle and

(a) if (iX , δ) /∈ {(1, 0)}, then E is an h-instanton bundle.
(b) if (iX , δ) ∈ {(1, 0)}, then E is an h-instanton bundle with defect δ if and only

if h0(Enorm,h) = 0.

5.3.4. When X is a scroll of dimension n ≥ 3 on a smooth curve B, rank 2 ordinary
h-instanton bundles on X with quantum number k can be constructed via the Serre
correspondence. Following [1, Section 10], we briefly recall the construction below.

Let G be a locally free sheaf of rank r ≥ 3 on B. Define OX (h) := OP(G)(1), and
assume thatOX (h) is ample and globally generated. For each k ∈ Z≥0, take k general
points bi ∈ B (i = 1, 2, . . . , k), and let Li = π−1(bi ) ∼= P

n−1 be the fibers of the
morphismπ : X = P(G)→ B. Let θ ∈ Picg−1(B) be a non-effective�-characteristic
of B, and D be a divisor on B such that OB(D) = det(G). Then the rank 2 vector
bundle E in the following sequence is proved to be an ordinary orientableμ-semistable
h-instanton with quantum number k:

0→ OX (π∗(D + θ))→ E → IZ |X (h + π∗(θ))→ 0.

Remark 5.7 If X is a Fano threefold with Picard number ρX ≥ 2, then h-instanton
bundles can behave differently from the classical instanton bundle. We review the case
when X is the image of the Segre embedding P

1 × P
1 × P

1 ↪→ P
7. We refer to [12],

[31] and [6] for classical instanton bundles on Fano varieties of higher Picard rank, and
[1, Section 9] for other examples of pathologies of h-instanton bundles on varieties
with higher Picard rank.

Let X be the image of the Segre embedding P1×P
1×P

1 ↪→ P
7, and pi : X → P

1

(i = 1, 2, 3) be the three projections. Define OX (hi ) := p∗i (OP1(1)), and OX (h) :=
OX (h1 + h2 + h3). Let L ⊂ X be the intersection of general sections of |h2| and
|h3|, then L ∼= P

1. Choose s ≥ 0 disjoint such curves, and let Z be their union. There
are rank 2 vector bundles E that fit the following sequence, and one can check that
such vector bundles are orientable, ordinary, and simple h-instanton bundles but are
μ-unstable:

0→ OX (h1 + 3h3)→ E → IZ |X (h1 + 2h2 − h3)→ 0.
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6 Instanton complexes via Bridgeland stability

For the remainder of the article we continuewith the assumptions of Sect. 4, i.e., X will
denote a smooth projective Fano threefold of Picard number one with Pic(X) = ZH .
As before, we write K X = −iX H and iX = 2qX +eX , where iX , qX , eX ∈ Z, iX > 0,
qX ≥ 0 and eX ∈ {0, 1}. For an object E ∈ Db(X) and β ∈ Rwe define the numerical
twisted Chern character as

vβ(E) =
(
chβ

0 (E)H3, chβ
1 (E)H2, chβ

2 (E)H , chβ
3 (E)

)
,

where

chβ
0 (E) = ch0(E)

chβ
1 (E) = ch1(E)− β ch0(E)H

chβ
2 (E) = ch2(E)− β ch1(E)H + β2

2
ch0(E)H2

chβ
3 (E) = ch3(E)− β ch2(E)H + β2

2
ch1(E)H2 − β3

6
ch0(E)H3.

As shown in [30], for every β, α, s ∈ R with α, s > 0, the function

Zβ,α,s(E) = − chβ
3 (E)+

(
s + 1

6

)
chβ

1 (E)H2 + i

(
chβ

2 (E)H − α2

2
ch0(E)H3

)

is the central charge of a stability condition σβ,α,s = (Zβ,α,s,Aβ,α), whose supporting
heart is constructed by the two-step tilting process described below.

(a) Start by considering the Mumford slope

μβ(E) =
⎧⎨
⎩

chβ
1 (E)H2

ch0(E)H3 if ch0(E) �= 0

+∞ otherwise.

The following full additive subcategories of Coh(X) form a torsion pair:

Fβ = {E ∈ Coh(X) : μβ(F) ≤ 0 for all subsheaves F ↪→ E}
Tβ = {E ∈ Coh(X) : μβ(Q) > 0 for all quotient sheaves E � Q}.

Tilting Coh(X) with respect to this torsion pair, we obtain the heart of a bounded
t-structure on Db(X):

Cohβ(X) := 〈Fβ [1], Tβ〉.
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(b) Consider now the tilt slope

νβ,α(E) =
⎧⎨
⎩

chβ
2 (E)H− α2

2 ch0(E)H3

chβ
1 (E)H2

if chβ
1 (E)H2 �= 0

+∞ otherwise.

As before, we have the torsion pair

Fβ,α = {E ∈ Cohβ(X) : νβ,α(F) ≤ 0 for all subobjects F ↪→ E in Cohβ(X)}
Tβ,α = {E ∈ Cohβ(X) : νβ,α(Q) > 0 for all quotients E � Q in Cohβ(X)}.

Tilting Cohβ(X) with respect to this torsion pair, we obtain the desired heart

Aβ,α := 〈Fβ,α[1], Tβ,α〉.

We denote the corresponding Bridgeland slope on Aβ,α by

λβ,α,s(E) = chβ
3 (E)− (s + 1

6

)
α2 chβ

1 (E)H2

chβ
2 (E)H − α2

2 ch0(E)H3
.

We want to propose a new definition of instanton object that “extends” the definitions
by Faenzi [19], Kuznetsov [29], and Comaschi–Jardim [13] included in Sect. 4 and
that can be satisfied by some objects in Db(X). We hope that our categorical approach
will allow for a more systematical way of studying instanton moduli spaces. The idea
will be to replace the μ-semistablity and the vanishing conditions by some type of
Bridgeland stability. To determine the appropriate stability condition recall that in the
classical case of rank 2 instanton bundles on P

3, the vanishing conditions giving the
monad description are obtained after combining μ-stability with the vanishing of one
cohomology group, Serre duality, and the fact that a rank 2 vector bundle with trivial
first Chern class is self-dual.

Let us start by consider the functor

E �→ E D := RHom(E,O(−eX ))[2]. (13)

We have the following:

Proposition 6.1 [25, Proposition 6.12]. Suppose that νβ,α(E) �= 0, then

E is σβ,α,s − semistable ⇐⇒ E D is σ−β−eX ,α,s − semistable.

In particular, if β0 := −eX/2 and νβ0,α(E) �= 0, then E is σβ0,α.s -semistable if and
only if E D is σβ0,α,s -semistable.

Proposition 6.2 If ch(E) = ch(E D) then vβ0(E) = (−R, 0, D, 0). Additionally, if
E ∈ Aβ0,α for all α > 0 then R, D ≥ 0.
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Proof If v = (v0, v1, v2, v3), define v∨ := (v0,−v1, v2,−v3). Then it is clear that

vβ(E)∨ = v−β(E∨).

Thus

vβ0(E)∨ = v−β0−eX (E∨ ⊗O(−eX )) = vβ0(E D) = vβ0(E).

Additionally, if E ∈ Aβ0,α for all α > 0 then

D + α2

2
R ≥ 0 for all α > 0,

implying that R, D ≥ 0. ��
Proposition 6.3 The line bundle O(qX ) is σβ0,α,s -stable for α < iX/2 and s > 0.

Proof This is a straightforward computation as line bundles on a threefold of Picard
rank 1 are tilt stable and Bridgeland stable as long as they belong to Cohβ0(X) and
Aβ0,α , respectively. Notice that

vβ0(O(qX )) =
(

H3,
iX

2
H3,

1

2

(
iX

2

)2

H3,
1

6

(
iX

2

)3

H3

)
,

and so

μβ0(O(qX )) = iX

2
, νβ0,α(O(qX )) =

1
2

(
iX
2

)2 − α2

2

iX
2

.

Thus O(qX ) ∈ Cohβ0(X) because O(qX ) is μβ0 -stable. Therefore, O(qX ) is also
νβ0,α-stable. Since νβ0,α(O(qX )) > 0 if and only if α < iX/2, then for these values
O(qX ) ∈ Aβ0,α . ��
Consider the region

U :=
{

(α, s) : α, s > 0,

(
s + 1

6

)
α2 <

1

6

(
iX

2

)2
}

.

We see U ⊂ Stab(X) via the identification (α, s) ↔ σβ0,α,s . We refer to the set of
stability conditions {σβ0,α,s}α,s>0 as the (α, s)-slice. From the computations above, it
is clear that λβ0,α,s(O(qX )) > 0 for all (α, s) ∈ U .

Definition 6.4 Fix a numerical twisted Chern character vβ0 = (−R, 0, D, 0) with
R ≥ 0, D > 0, and let C be a chamber for vβ0 such that C ∩ U �= ∅. Let E ∈ Db(X)

with vβ0(E) = vβ0 , we say that E is a C-instanton object if E is Bridgeland semistable
for a stability condition in C.
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Remark 6.5 It was proven in [25, Section 5] that for the numerical twisted Chern
character vβ0 = (−R, 0, D, 0), the wall and chamber decomposition of the (α, s)-
slice is finite. Moreover, an algorithm to compute the walls was provided.

Lemma 6.6 Let E be a C-instanton that is also Bridgeland semistable in the outermost
chamber of the (α, s)-slice. Then if (α0, s0) ∈ C, E is σβ0,α,s -semistable for all α ≥ α0,
i.e., in all the chambers to the right of C.

Proof Since the walls are disjoint and each destabilizing wall for E intersects the
vertical line {(α0, s) : s > 0} then it is enough to prove that no subobject of E in the
category Aβ0,α0 can destabilize E for s > s0. Indeed, if A ↪→ E is such subobject
then

λβ0,α0,s(A) ≤ λβ0,α0,s(E) in the outermost chamber, and

λβ0,α0,s(A) = λβ0,α0,s(E) = 0 at the wall produced by A.

Thus, λβ0,α0,s0(A) > λβ0,α0,s0(E) because the numerator of λβ0,α0,s is linear in s. A
contradiction, unless A never really destabilizes E , i.e., λβ0,α0,s(A) = 0 for all s ≥ s0.

��
Theorem 6.7 Let E ∈ Db(X) be an object with vβ0(E) = (−R, 0, D, 0) and C be a
chamber for this Chern character in the (α, s)-slice such that C ∩ U �= ∅. Then

(1) E is a C-instanton object if and only if E D is a C-instanton object.
(2) If E is a C-instanton object then E ∈ 〈O(qX )〉⊥.

Proof Part (1) is a direct consequence of Proposition 6.1 and the fact that vβ0(E) =
vβ0(E D). For part (2) notice that

Hom(O(qX ), E) = 0

since for stability conditions on C, O(qX ) is stable with

λβ0,α,s(O(qX )) > 0 = λβ0,α,s(E).

Notice that

Exti (O(qX ), E) = Ext3−i (E,O(qX − iX ))∗

= Ext3−i (O, E∨ ⊗O(−eX )⊗O(qX − iX + eX ))∗

= Ext3−i (O, E D ⊗O(−qX )[−2])∗
= Ext1−i (O(qX ), E D)∗.

Combining this computation with part (1) we get Ext1(O(qX ), E) = 0. For other
values of i weget a negativeExt between objects in the sameheart,which is impossible.
Therefore E ∈ 〈O(qX )〉⊥. ��
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Example 6.8 It was shown in [25, Proposition 5.3] that the only Bridgeland semistable
objects of twisted Chern character vβ0 = (0, 0, D, 0) with D > 0 in the outermost
chamber of the corresponding finite wall and chamber decomposition of the (α, s)-
slice are precisely the (twisted) Gieseker semistable sheaves. Moreover, if a (twisted)
Gieseker semistable sheaf T with vβ(T ) = (0, 0, D, 0) is also a C-instanton object,
i.e., does not get destabilized at any point before the potential numerical wall produced
by O(qX ), then Theorem 6.7 shows that E is a 1-dimensional instanton sheaf.

Example 6.9 Let X = Q3 ⊂ P
4 be a quadric hypersurface and ι : X ↪→ P

4 the
corresponding inclusion. The spinor bundle S on X is defined by the short exact
sequence

0 −→ OP3(−1)⊕4 M−→ O⊕4
P3

N−→ ι∗S −→ 0,

where the matrix M satisfies

M2 = (x20 + x1x2 + x3x4)I .

Moreover, restricting N to X produces the short exact sequence

0 −→ S(−1) −→ O⊕4X −→ S −→ 0. (14)

The sheaf S(−1) is an instanton sheaf of rank 2 and minimal charge. Notice that in
this case iX = 3 and so qX = 1 = eX . Thus β0 = −1/2 and a simple computation
using the exact sequence (14) leads to

vβ0(S(−1)[1]) =
(
−2H3, 0,

H3

4
, 0

)
=
(
−4, 0, 1

2
, 0

)
.

Notice that since S(−1) is slope stable with μβ0(S(−1)) = 0 then S(−1)[1] ∈
Cohβ0(X), and since νβ0,α(S(−1)[1]) = +∞ then S(−1)[1] ∈ Aβ0,α for all α > 0.

Now, it follows from [25, Theorem 3.1] that S(−1)[1] is asymptotically λβ0,α,s-
stable and so Bridgeland stable in the outermost chamber of the (α, s)-slice.Moreover,
as proven in [25, Section 5.3], if E is an object with vβ0(E) = (−R, 0, D, 0) and
A ↪→ E is a destabilizing subobject producing a 1-dimensional wall in the (α, s)-
slice, then if vβ0(A) = (r , c, d, e) we must have

0 < d < D, (15)

0 < c(6e) ≤ min{(2d)2, (2D − 2d)2}, (16)

− c

6e
(2D − 2d)− R ≤ r ≤ c

6e
2d. (17)

Besides, in our case we also have

ch1(A)H2 ∈ 2Z, ch2(A)H ∈ Z, r ∈ 2Z, 4d ∈ Z, and 24e ∈ Z. (18)
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Thus, using vβ0(S(−1)[1]) = (−4, 0, 1
2 , 0

)
, a straightforward computation shows that

the only possibilities for the Chern character of a destabilizing subobject of S(−1)[1]
are

vβ0(A) =
(

r , 1,
1

4
,
1

24

)
, r = −6, 2,

which produce the only potential destabilizing wall:

W =
{
(α, s) :

(
s + 1

6

)
α2 = 1

24

}
.

Thus, if Cout denotes the outermost chamber for vβ0(S(−1)[1]) in the (α, s)-slice, then
Cout ∩ U �= ∅ and so S(−1)[1] is a Cout -instanton object.

Example 6.10 Let X be a Fano threefold of Picard number one, index 2 and degree
H3 > 1. In this case, eX = 0 and qX = 1. If � ⊂ X is a line then ch(I�[1]) =
(−1, 0, �, 0) and so

v0(I�[1]) = (−H3, 0, 1, 0).

It follows from [25, Example 3.4] and the Gieseker stability ofO� that I�[1] is σ0,α,s-
stable for all α � 0. On the other hand, if I�[1] is ever unstable in the (α, s)-slice
then there should be a destabilising sub-object A ↪→ I�[1] with v0(A) = (r , c, d, e)
satisfying inequalities (15), (16), and (17). Thus, we should have

0 < 2d < 2

and so 2d = 1, c = 1, and 6e = 1. However, c = ch1(A)H2 �= 1 because H3 > 1
and so such A can not exist. Therefore, I�[1] is a C-instanton object for each chamber
C such that C ∩ U �= ∅.

Example 6.11 It was noticed in [25, Example 6.15] that the object A ∈ Db(P3) defined
by the exact triangle

OH (−1)[1] −→ A −→ OH (2), (19)

where H denotes a hyperplane in P3, is Bridgeland stable in the stability chamber that
contains the rank 0 instanton sheaves as stable objects. Thus, such A is a C-instanton
object in our definition.Wewould like to directly check that A has indeed a “monadic”
presentation.

Our starting point is the Euler sequence for the cotangent bundle of H :

0 −→ �1
H (2) −→ OH (1)⊕3 −→ OH (2) −→ 0
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Composing the epimorphism above with OP3(1)
⊕3 � OH (1)⊕3 we obtain an exact

sequence

0 −→ G −→ OP3(1)
⊕3 −→ OH (2) −→ 0, (20)

with the sheaf G being given by the following extension

0 −→ O⊕3
P3
−→ G −→ �1

H (2) −→ 0.

Now there is a composed epimorphism O⊕3
P3

� O⊕3H � �1
H (2) whose kernel K is

given by the exact sequence

0 −→ OP3(−1)⊕3 −→ K −→ OH (−1) −→ 0,

and also satisfies the sequence

0 −→ K −→ O⊕6
P3
−→ G −→ 0. (21)

We then obtain a monomorphism

α : OP3(−1)⊕3 ↪→ K ↪→ O⊕6
P3

and a morphism

β : O⊕6
P3

� G ↪→ OP3(1)
⊕3

whose cokernel is preciselyOH (2).Moreover,βα = 0, and (ker β/ im α) � OH (−1),
since ker β = K and im α � OP3(−1)⊕3.

In summary, the object A is quasi-isomorphic to the complex

OP3(−1)⊕3 α−→ O⊕6
P3

β−→ OP3(1)
⊕3.

Remark 6.12 The C-instanton object A defined by the exact triangle (19) is a new
type of instanton. Indeed, the only instanton complexes previously defined were the
perverse instantons and A does not fall into this category since H−1(A) = OH (−1)
is not a torsion free sheaf (see Definition 3.3).

6.1 Monad descriptions from quiver regions

In this subsection we will study two instances, namely P
3 and the quadric Q3 ⊂ P

4,
in which we have full strong exceptional collections producing quiver regions inter-
cepting the corresponding (α, s)-slice. This will then lead to monad-type descriptions
for some C-instanton objects. We remark that similar techniques may be used to study
other Fano threefolds with full strong exceptional collections.
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6.1.1 X = P
3

In this case we have eX = 0 and so β0 = 0. A simple computation as in [25, Lemma
6.10] shows that for

(α, s) ∈ R =
{
(α, s) : 1 < (6s + 1)α2 <

4− 3α2

2− α2 , 0 < α < 1, s > 0

}

we have OP3(−2)[2],OP3(−1)[2],OP3 [1],OP3(1) ∈ A0,α and moreover

λ0,α,s(OP3(−2)[2]) < λ0,α,s(OP3(1)) ≤ 0 = λ0,α,s(OP3 [1]) ≤ λ0,α,s(OP3(−1)[2]).
Thus, for each (α, s) ∈ R we can choose tα,s ∈ R such that

λ0,α,s(OP3(−2)[2]) < tα,s < λ0,α,s(OP3(1)),

so that tilting A0,α with respect to the torsion pair

F0,α,s = {E ∈ A0,α : λ0,α,s(F) ≤ tα,s for all subobjects F ↪→ E in A0,α}
T0,α,s = {E ∈ A0,α : λ0,α,s(Q) > tα,s for all quotients E � Q in A0,α},

we obtain the heart 〈OP3(−2)[3],OP3(−1)[2],OP3 [1],OP3(1)〉.
Now, notice that everyBridgeland semistable object E with ch(E) = (−R, 0, D, 0)

is in the subcategory T0,α,s and so it is quasi-isomorphic to a complex of the form

0 −→ OP3(−1)⊕D −→ O⊕2D+R
P3

−→ OP3(1)
⊕D. (22)

Moreover, it was also established in [25, Lemma 6.6] that the Bridgeland stability
of E is equivalent to King stability of the complex (22) with respect to the vector
�0 = (−1, 0, 1). In particular, none such objects can be Bridgeland unstable in the
region R. Therefore there is only one Bridgeland chamber C for v0 = (−R, 0, D, 0)
intersecting the region R, and all the C-instanton objects in P

3 have the monad-type
description (22).

Remark 6.13 As explained in Sect. 3.2, in [28] the authors studied in detail the variation
of GIT for representations of the quiver

for the dimension vector #n = (1, 3, 1), i.e., R = 2 and D = 1. They proved that
King’s space of stability parameters #n⊥ has a finite wall and chamber decomposition
where only two chambers have associated nonempty moduli spaces. These chambers
share awall given by the vector�0 := (−1, 0, 1) ∈ #n⊥.Moreover, they proved that the
�0-semistable representations are S-equivalent to complexes (22) quasi-isomorphic to
shifts of instanton sheaves (both locally and non-locally free) or to perverse instantons.

• ... • ... •
α0

α3

β0

β3

(23)
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Fig. 1 The quiver regionR is pictured in the (α, s)-slice in yellow. The blue curve is the potential wall for
O
P3 (2) (the instanton wall), the red curve is the potential wall for O

P3 (1) (the collapsing wall), and the
purple curve is given by the equation of Bridgeland slopes λ0,α,s (OP3 (2)[2]) = λ0,α,s (OP3 (1))

Example 6.14 Consider the unique non split extension

0 −→ OP3(−2)[2] −→ E −→ OP3(2) −→ 0.

At the “instantonwall” given by λ0,α,s(OP3(2)) = 0, the object E is strictly semistable
and so it is stable in a chamber C0 intersecting the region U . Notice that even though
the object E is self-dual, i.e., E D = E , this is not a C0-instanton in our definition
since its Chern character ch(E) = (2, 0, 2, 0) does not satisfy the usual Bogomolov
inequality. Moreover, the chamber C0 can not intersect the quiver regionR since such
E does not have a monad-type description. Indeed, if that were the case then E would
be quasi-isomorphic to a complex of the form

OP3(−1)⊕2 −→ O⊕2
P3
−→ OP3(1)

⊕2,

but this would imply that there is a surjective map OP3(1)
⊕2 � OP3(2), which is

impossible.

Example 6.15 Let E be a rank2 instanton bundle inP3 as defined inSect. 2, in particular
E is μ-stable. Then the classical monad presentation of E tells us that E[1] is quasi-
isomorphic to a complex of the form

O⊕c
P3
−→ O⊕2+2c

P3
−→ OP3(1)

⊕c.
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Moreover, by [28, Proposition 6] this representation of the quiver Q in display (6)
is stable with respect to the vector �0 = (−1, 0, 1). On the other hand, due to the
μ-stability and the locally freeness of E , the object E[1] is stable in the outermost
chamber as it satisfies the hypotheses of [25, Theorem 3.1]. Therefore, Lemma 6.6
implies that E[1] is a C-instanton object for every chamber C such that C ∩ U �= ∅.
Clearly, the same argument shows that if E is μ-stable locally-free instanton sheaf on
P
3 then E[1] is a C-instanton object.

6.1.2 X = Q3 ⊂ P
4

In this case we have eX = 1 and so β0 = −1/2. We have the full strong exceptional
collection

OX (−1), S(−1), OX , OX (1),

where S(−1) is the spinor bundle defined in Example 6.9. Notice that since H3 = 2
then

vβ0(OX (n)) =
(
2, 2

(
n + 1

2

)
,

(
n + 1

2

)2

,
1

3

(
n + 1

2

)3
)

.

Thus, computing the signs of the Mumford and tilt slopes we get

OX (−1)[1], OX , OX (1) ∈ Cohβ0(X),

OX (−1)[2] ∈ Aβ0,α for α ≤ 1

2
,

OX ∈ Aβ0,α for α <
1

2
,

OX (1) ∈ Aβ0,α for α <
3

2
.

For (α, s) in the region

R =
{
(α, s) : 1

4
< (6s + 1)α2 <

9

4
, 0 < α <

1

2
, s > 0

}

we have

λβ0,α,s(OX ) < λβ0,α,s(S(−1)[1]) = 0 < λβ0,α,s(OX (−1)[2]), and λβ0,α,s(OX (1)) > 0,

and from Example 6.9, it follows that all these objects are Bridgeland semistable in
R. Additionally, since within R, λβ0,α,s(OX (1)) approaches zero as we get closer
to (6s + 1)α2 = 9

4 while λβ0,α,s(OX (−1)[2]) approaches zero as we get closer to
(6s + 1)α2 = 1

2 , then the region

R0 =
{
(α, s) : λβ0,α,s(OX (−1)[2]) < λβ0,α,s(OX (1)), α, s > 0

}

123



São Paulo Journal of Mathematical Sciences

has a nonempty intersection with R. Therefore, for each (α, s) ∈ R ∩ R0 we can
choose tα,s ∈ R such that

λβ0,α,s(OX (−1)[2]) < tα,s < λβ0,α,s(OX (1)),

and tilting the heart Aβ0,α with respect to the torsion pair

Fβ0,α,s = {E ∈ Aβ0,α : λβ0,α,s(F) ≤ tα,s for all subobjects F ↪→ E in Aβ0,α}
Tβ0,α,s = {E ∈ Aβ0,α : λβ0,α,s(Q) > tα,s for all quotients E � Q in Aβ0,α},

we obtain the heart 〈OX (−1)[3], S(−1)[2],OX [1],OX (1)〉.
Therefore, it follows that if E is a λβ0,α,s-semistable object for (α, s) ∈ R ∩ R0

with vβ0(E) = (−R, 0, D, 0), then E[1] is quasi-isomorphic to a complex of the form

OX (−1)⊕a −→ S(−1)⊕b −→ O⊕c
X −→ OX (1)⊕n .

A straightforward computation of the Chern characters of this complex gives us

n = 0, a = c = D − R

8
= ch2(E)H , and b = c + R

4
.

Thus, if C is a chamber for vβ0 = (−R, 0, D, 0) intersecting the regionR∩R0, then
every C-instanton object has a monad-type description of the form

OX (−1)⊕c −→ S(−1)⊕c+ R
4 −→ O⊕c

X .

6.2 Acyclic extensions revisited

Let X be a Fano threefold of Picard number one and index 2. In this case qX = 1 and
ex = 0. As in the case of rank 2 instanton bundles we have the following.

Lemma 6.16 Let E be an stable C-instanton object with v0(E) = (−R, 0, D, 0). Then

dim Exti (OX [1], E) =
{

D − R
H3 if i = 1

0 otherwise.

Proof Asimple verification of slopes as the one in Proposition 6.3will give usOX (2) ∈
A0,α for all α2 < 2. Moreover, OX (2) is stable for each stability condition in the
(α, s)-slice with α2 < 2.

Now, notice that

Exti (OX [1], E) ∼= Ext3−i (E,OX (−2)[1])∗
= Ext4−i (OX (2), E∨)∗

= Ext2−i (OX (2), E D)∗.
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Since E D is again a stable C-instanton object and λ0,α,s(OX (2)) > 0 on the region U ,
then

Exti (OX [1], E) = 0 for i ≥ 2.

Likewise, Exti (OX [1], E) = 0 for i ≤ 0 because OX [1] is stable for every stability
condition in the (α, s)-slice and λ0,α,s(OX [1]) = λ0,α,s(E) = 0. Thus

dim Ext1(OX [1], E) = χ(E) = D − R

H3 .

��
Proposition 6.17 Let E be an stable C-instanton object, then there exists a C-instanton
object Ẽ fitting into an exact sequence

0 −→ E −→ Ẽ −→ O
⊕D− R

H3

X [1] −→ 0,

and satisfying Hom•(OX [1], Ẽ) = 0.

Proof Since Hom•(OX [1], E)⊗OX [1] = O
⊕D− R

H3

X by Lemma 6.16, then Ẽ is just
the cone of the evaluation map

Hom•(OX [1], E)⊗OX [1] → E .

The semistability of Ẽ follows from the facts that

0 −→ E −→ Ẽ −→ O
⊕D− R

H3

X [1] −→ 0 (24)

is a short exact sequence in A0,α whenever E ∈ A0,α , and that

λ0,α,s(E) = λ0,α,s(OX [1]) = 0.

The vanishing of Hom•(OX [1], Ẽ) follows from applying this functor to the short
exact sequence (24). ��
Example 6.18 Assume that H3 > 1 and let � ⊂ X be a line. Then O� is a rank 0
instanton sheaf and also a C-instanton. In fact,O� is a Gieseker stable sheaf and so it is
λ0,α,s-semistable for all α � 0 (see [25, Proposition 5.3]), and ifO� was ever unstable
in the (α, s)-slice then it would have to be destabilized by a sub-object A ↪→ O� with
v0(A) = (r , c, d, e) satisfying

2d = 1, and 0 < c(6e) ≤ 1,

which is impossible since H3 > 1. The acyclic extension ofO� is exactly I�[1], which
is a strictly semistable C-instanton (see Example 6.10). Notice that unlike the case of
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rank 2 instanton bundles whose acyclic extensions are sheaves, the acyclic extension
of a rank 0 instanton sheaf that is also an stable C-instanton is necessarily a complex.
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