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Abstract
In this work, we consider a fractional-order epidemiological model for computer 
viruses to study memory effects on population dynamics. This model is derived 
from a well-known integer-order epidemiological model and the Caputo fractional 
derivative. Our objective is to provide a rigorous mathematical analysis for dynam-
ics of the fractional-order model. Here, positivity, linear invariant, asymptotic sta-
bility properties including local and global asymptotic stability, uniform and Mit-
tag-Leffler stability are established. It is worth noting that the stability properties 
are investigated by a simple approach, which is based on stability theory for frac-
tional-order dynamical systems and an appropriate linear Lyapunov function. As 
an important consequence, dynamical properties of the fractional-order model are 
determined fully. Additionally, a set of numerical experiments is conducted to sup-
port the theoretical findings. As we expect, the numerical results are consistent with 
the theoretical ones.

Keywords Global dynamics · Fractional differential equations · Caputo fractional 
derivative · Epidemiological models · Computer viruses

Mathematics Subject Classification 34C60 · 37N25 · 37N99

1 Introduction

In information technology, computer viruses are known as malicious codes or pro-
grams that have the ability to self-replicate and to spread via wired and wireless 
networks. Nowadays, computer viruses have become a big threat to Internet security, 
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privacy as well as to work and daily life because of the continuous development 
of the Internet. This leads to urgent requests for effective measures to prevent and 
control computer viruses. For this purpose, mathematicians and engineers have built 
many mathematical models to study characteristics and transmission mechanisms of 
computer viruses (see, for instance, [9, 19–21, 25, 26, 38, 40, 41, 44, 46, 49–51]). 
These models are based on basic principles of mathematical epidemiology and the 
high similarity of the spread of computer viruses and biological viruses in combi-
nation with reasonable technical hypotheses, which are not only biologically moti-
vated but also practical. The main approach used here is the use of integer-order and 
fractional-order differential equations to model the spreading of computer viruses 
[19–21, 25, 40, 41, 44, 46, 49–51]. As an important consequence, effective measures 
for preventing and controlling computer viruses can be suggested. Recently, we have 
studied dynamics and approximate solutions for some computer virus propagation 
models [10, 11, 23].

In a previous work [41], Piqueira and Araujo proposed a modified epidemiolog-
ical model for computer viruses and analyzed its dynamics. This model is repre-
sented by

where the total population denoted by T, is divided into 4 groups, that are 

 (i) S: the group of non-infected computers subjected to possible infection;
 (ii) A: the group of non-infected computers equipped with anti-virus;
 (iii) I: the group of infected computers;
 (iv) R: the group of removed computers due to infection or not.

Note that the parameters are assumed to be positive. We refer the readers to [41] for 
more details of the model (1) as well as its dynamical properties.

The model (1) has attracted the attention of many researchers in various aspects. 
In [42], Piqueira and Batistela modified the model (1) by applying the quaran-
tine concept while approximate methods for the model (1) are studied in [12, 18]. 
Recently, variants of the model (1) in the context of fractional derivatives have also 
been studied. In a recent work [16], Dokuyucu et al. extended the model (1) with the 
help of the Atangana-Baleanu fractional derivative in the Caputo sense. Before this 
work, Singh et al. in [46] had considered the model (1) in the context of the Caputo-
Fabrizio derivative having non-singular kernel. In 2017, Bonyah et al. [7] modeled 
the transmission of computer viruses by combining the model (1) with the Caputo 
fractional derivative and the beta-derivative; however, dynamics of the proposed 
fractional-order models has not been discussed in [7]. Although the model (1) has 

(1)

Ṡ = −𝛼SASA − 𝛽SI + 𝜎R,

İ = 𝛽SI − 𝛼IAAI − 𝛿I,

Ṙ = 𝛿I − 𝜎R,

Ȧ = 𝛼SASA + 𝛼IAAI,
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been extended and developed at some levels, to the best of our knowledge, complete 
dynamical analysis of the model (1) under the Caputo fractional derivative has not 
been studied yet. This motivates us to conduct this research.

Motivated and inspired by importance of mathematical models of computer 
viruses in general and the model (1) in particular, in this work we analyze (1) in 
the context of the Caputo fractional derivative to study memory effects on popula-
tion dynamics. The derivation of the proposed fractional-order model is explained 
in terms of memory effect. It should be emphasized that fractional-order models are 
able to describe complex systems arising in real-world applications more accurately 
than integer-order ones due to the effective memory function of fractional deriva-
tives [4–6, 13, 29, 43, 47]. In recent years, many mathematicians, engineers, biolo-
gists and ecologists have proposed a large number of fractional-order differential 
equation models and studied their applications in both theory and practice (see, for 
example, [1–3, 17, 22, 28, 46] and references therein). Recently, we have proposed 
and examined some fractional-order differential equations arising in biology and 
epidemiology [23, 24].

Our main objective is to establish positivity, linear invariant and stability proper-
ties including the local and global asymptotic stability (GAS), uniform and Mittag-
Leffler stability of the fractional-order model. Here, the positivity and linear invari-
ant are investigated by using some standard techniques. Meanwhile, it is well-known 
that the stability problem of fractional-order systems is very important but not a 
simple task. However, by a simple approach, which is based on the Lyapunov stabil-
ity theory [17, 33, 34, 37, 48] in combination with an appropriate linear Lyapunov 
function, the stability properties of the proposed fractional-order model are ana-
lyzed rigorously. As an important consequence, the dynamics of the fractional-order 
model is determined fully.

From the mathematical analysis point of view, the proposed fractional-order 
model (3) is a generalization of the integer-order model (1). Therefore, the dynamics 
of the integer-order model is also obtained thanks to the dynamical analysis for the 
fractional-order model. As an important consequence, qualitative studies of the both 
fractional-order and integer-order models performed in [7] and [41] are improved. 
On the other hand, the present approach can be extended to investigate fractional-
order versions of the model (1) in the context of other fractional derivatives. In prac-
tice, the fractional-order model is more flexible than the integer-order one because 
of the appearance of fractional-order � , which not only expands the space of param-
eters but also can provide more computer virus transmission scenarios. This is very 
useful in studying the parameter estimation problem. In Example 2 in Sect. 4, we 
perform a numerical experiment using synthetic data in order to show advantages of 
the fractional-order model in the parameter estimation problem. This example shows 
that the fractional-order model can fit the given data set better than the integer-order 
model as long as the parameter � is chosen reasonably. This agrees with an analysis 
of a fractional-order model using real data of dengue fever, which was performed in 
[15].
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The plan of this work is as follows:
Sect. 2 provides some preliminaries and auxiliary results. Dynamics of the frac-

tional-order model is analyzed in Sect. 3. Numerical experiments are performed in 
Sect. 4. Some conclusions and remarks are presented in the last section.

2  Preliminaries and auxiliary results

We first recall from [8, 13, 29, 43] the definitions of fractional derivatives in 
the Caputo sense and their properties.

Let [a, b] be a finite interval of the real line ℝ and AC[a, b] be the space of abso-
lutely continuous functions on [a,  b]. The left-sided and right-sided Caputo frac-
tional derivatives of order 0 < 𝛼 < 1 defined via the Riemann-Liouville fractional 
integrals of a function f (t) ∈ AC[a, b] are given by (see [29, Section 2.4])

and

 respectively.

Definition 1 ( [8]) Suppose that 𝛼 > 0,   t > a,   �, a, t ∈ ℝ . The Caputo fractional 
derivative is given by

Property 1 (Linearity property [13]). Let f (t), g(t) ∶ [a, b] → ℝ be such that C
a
D�

t
f (t) 

and C
a
D�

t
g(t) exist everywhere and let c1, c2 ∈ ℝ . Then, C

a
D�

t
(c1f (t) + c2g(t)) exists 

everywhere, hence

Lemma 1 (Generalized mean value theorem [39]). Suppose that f (t) ∈ C[a, b] and 
C
a
D�

t
f (t) ∈ C(a, b] for 0 < 𝛼 < 1 , then we have

with a ≤ � ≤ t and for all t ∈ (a, b].

C
a
D

𝛼

t
f (t) =

1

Γ(1 − 𝛼) ∫
t

a

f �(𝜏)d𝜏

(t − 𝜏)𝛼
, t > a

C
b
D

𝛼

t
f (t) = −

1

Γ(1 − 𝛼) ∫
b

t

f �(𝜏)d𝜏

(𝜏 − t)𝛼
, t < b

C
a
D𝛼

t
f (t) =

1

Γ(n − 𝛼) ∫
t

a

f (n)(𝜉)

(t − 𝜉)𝛼+1−n
d𝜉, n − 1 < 𝛼 < n ∈ ℕ.

C
a
D�

t

(
c1f (t) + c2g(t)

)
= c1

C
a
D�

t
f (t) + c2

C
a
D�

t
g(t).

f (t) = f (a) +
1

Γ(�)

(
C
a
D�

t
f (�)

)
.(t − a)� ,
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Theorem 1 ([14, Theorem 2.2]) Assume that f ∈ C1[a, b] is such that C
a
D�

t
f (t) ≥ 0 

for all t ∈ [a, b] and all � ∈ (�0, 1) with some �0 ∈ (0, 1) . Then, f is monotone 
increasing. Similarly, if C

a
D�

t
f (t) ≤ 0 for all t and � mentioned above, then f is mono-

tone decreasing.

Consider the following general dynamical system governed by the Caputo frac-
tional differential equations

Definition 2 ( [34]). A point y∗ is called an equilibrium point of the Caputo frac-
tional dynamical system (2) if and only if f (t, y∗) = 0.

We now consider some concepts of stability for the system (2) based on concepts 
presented in [1, 13, 17, 30, 34, 36].

Definition 3 (Concepts of stability) The equilibrium point y∗ = 0 of the system (2) 
is said to be 

 (i) stable if for every 𝜖 > 0 and t0 ∈ ℝ+ there exists 𝛿 = 𝛿(𝜖, t0) > 0 such that for 
any y0 ∈ ℝ

n the inequality ‖y0‖ < 𝛿 implies that ‖y(t;t0, y0)‖ < 𝜖 for t ≥ t0;
 (ii) local asymptotically stable if it is stable and there exists some 𝛾 > 0 such that 

limt→∞ ‖y(t)‖ = 0 whenever ‖y0‖ < 𝛾;
 (iii) uniformly stable if for every 𝜖 > 0 there exists 𝛿 = 𝛿(𝜖) > 0 such that for 

t0 ∈ ℝ+, y0 ∈ ℝ
n with ‖y0‖ < 𝜖 the inequality ‖y(t;t0, y0)‖ < 𝜖 holds for t ≥ t0;

 (iv) globally asymptotically stable if it is stable and limt→∞ ‖y(t)‖ = 0 for all y0 
satisfying ‖y0‖ < ∞.

Definition 4 (Class-K functions [27]) A continuous function � ∶ [0, t) → [0,∞) is 
said to belong to class-K if it is strictly increasing and �(0) = 0.

Theorem  2 (Lyapunov stability and uniform stability of fractional order systems 
[17]) Let x = 0 be an equilibrium point for the non-autonomous fractional-order 
system (2). Let us assume that there exists a continuous Lyapunov function V(y(t), t) 
and a scalar class-K function �1(.) such that, ∀y ≠ 0

and

(2)C
t0
D�

t
y(t) = f (t, y), y(t0) = y0, � ∈ (0, 1).

�1(‖y(t)‖) ≤ V(y(t), t)

C
t0
D

�

t y(t) ≤ 0, with � ∈ (0, 1]
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then the origin of the system (2) is Lyapunov stable (stable).

If, furthermore, there is a scalar class-K function �2(.) satisfying

then the origin of the system (2) is Lyapunov uniformly stable (uniformly stable).

Theorem 3 (Fractional order Barbalat’s lemma [48, Theorem 3]) If a scalar func-
tion V(t,  y(t)) is positive semi-definite and the Caputo fractional derivative of 
V(t, y(t)) along the solution y(t) of the system (2) satisfies C

t0
D�

t
V(t, y(t)) ≤ −�(‖y(t)‖) , 

where �(.) belongs to class-K , then y(t) → 0 as t → +∞ if yi(t) i = 1, 2,… , n are 
uniformly continuous.

Corollary 1 ([48, Corollary 3]) If a scalar function V(t, y(t)) is positive semi-definite 
and the Caputo fractional derivative of V(t, y(t)) along the solution y(t) of the system 
(2) satisfies C

t0
D�

t
V(t, y(t)) is negative semi-define, then y(t) → 0 as t → +∞ if 

fi(t, y(t)) i = 1, 2,… , n for the system (2) are bounded.

Definition 5 (Mittag-Leffler Stability [34]) The solution of (2) is said to be Mittag-
Leffler stable if

where t0 is the initial time, � ∈ (0, 1) , � ≥ 0 , b > 0 , m(0) = 0 , m(x) ≥ 0 , and m(x) is 
locally Lipschitz on x ∈ 𝔹 ∈ ℝ

n with Lipschitz constant m0.

Theorem 4 (Theorem 5.1 in [34]) Let y = 0 be an equilibrium point for the system 
(2) and 𝔻 ⊂ ℝ

n be a domain containing the origin. Let V(t, y(t)) ∶ [0,∞) × 𝔻 → ℝ 
be a continuously differentiable function and locally Lipschitz with respect to y such 
that

where t ≥ 0 , x ∈ � , � ∈ (0, 1) , �1, �2, �3, a and b are arbitrary positive constants. 
Then x = 0 is Mittag-Leffler stable. If the assumptions hold globally on ℝn , then 
y = 0 is globally Mittag-Leffler stable.

3  Fractional‑order model and its dynamics

In this section, we consider the model (1) in the context of the fractional Caputo 
derivative and analyze its dynamics.

V(y(t), t) ≤ �2(‖y‖)

‖y(t)‖ ≤ {m[y(t0)]E�(−�(t − t0)
�)}b

�1‖y‖a ≤ V(t, y(t)) ≤ �2‖y‖ab,
C
0
D

�

t V(t, y(t)) ≤ −�3‖y‖ab,
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3.1  Mathematical formulation

We now introduce a fractional-order version of (1) using the Caputo fractional 
derivative. Following the approach in [3, 15], we generalize the model (1) by con-
sidering the following system

Note that all the integer-order derivatives in (1) are replaced by the Caputo frac-
tional derivatives and each parameter ∗ is replaced by ∗� , respectively. This makes 
the fractional-order model more flexible. Here, the dimensions of the parameters 
have been adjusted to ensure that both sides of the system (3) have the same dimen-
sion (see [3, 15]).

A simple approach for explaining memory effects on the model (3) is the use of 
the Grunwald-Letnikov definition for the Caputo fractional derivative C

0
D�

t
y(t) . Sup-

pose the function C
0
D�

t
y(�) satisfies suitable smoothness conditions in every finite 

interval (0, t). We use a grid

and the classical notation of finite differences

where

and

is the usual notation for the binomial coefficients [43, p. 43]. Then, the Grunwald-
Letnikov definition reads [43]

Applying Grunwald-Letnikov definition to the model (3), we obtain

(3)

C
0
D�

t
S(t) = −��

SA
SA − ��SI + ��R,

C
0
D�

t
I(t) = ��SI − ��

IA
AI − ��I,

C
0
D�

t
R(t) = ��I − ��R,

C
0
D�

t
A(t) = ��

SA
SA + ��

IA
AI.

0 = 𝜏0 < 𝜏1 < … < 𝜏n+1 = t = (n + 1)h, 𝜏n+1 − 𝜏n = h,

1

h�
Δ�

h
y(t) =

1

h�

(
y(�n+1) −

n+1∑
�=1

c�
�
y(�n+1−�)

)
,

c�
�
= (−1)�−1

(
�

�

)
,

(
�

�

)
∶=

�(� − 1)(� − 2)… (� − � + 1)

�!

C
0
D�

t
y(t) = lim

h→0

1

h�
Δ�

h
y(t).
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which implies that

for h small enough. Hence, to determine the value of (
S(�n+1), I(�n+1), R(�n+1), A(�n+1)

)
 we must use all the past values of (

S(�j), I(�j), R(�j), A(�j)
)
 for j = 0, 1,… , n.

Note that it follows from the original ODE model (1) (corresponding to � = 1 ) 
that

for h small enough. So, 
(
S(�n), I(�n), R(�n), A(�n)

)
 is sufficient to compute (

S(�n+1), I(�n+1), R(�n+1), A(�n+1)
)
.

We now focus on the positivity, linear invariant and equilibria of (3). Note 
that thanks to Theorem 3.1 and Remark 3.2 in [35], we obtain the existence and 
uniqueness of solutions of the system (3).

Theorem 5 (Positivity and linear invariant) The set

C
0
D�

t
S(t) = lim

h→0

1

h�

(
S(�n+1) −

n+1∑
�=1

c�
�
S(�n+1−�)

)
= −��

SA
S(t)A(t) − ��S(t)I(t) + ��R(t),

C
0
D�

t
I(t) = lim

h→0

1

h�

(
I(�n+1) −

n+1∑
�=1

c�
�
I(�n+1−�)

)
= ��S(t)I(t) − ��

IA
A(t)I(t) − ��I(t),

C
0
D�

t
R(t) = lim

h→0

1

h�

(
R(�n+1) −

n+1∑
�=1

c�
�
R(�n+1−�)

)
= ��I(t) − ��R(t),

C
0
D�

t
A(t) = lim

h→0

1

h�

(
A(�n+1) −

n+1∑
�=1

c�
�
A(�n+1−�)

)
= ��

SA
S(t)A(t) + ��

IA
A(t)I(t),

S(�n+1) ≈

n+1∑
�=1

c�
�
S(�n+1−�) + h�

[
− ��

SA
S(�n+1)A(�n+1) − ��S(�n+1)I(�n+1) + ��R(�n+1)

]
,

I(�n+1) ≈

n+1∑
�=1

c�
�
I(�n+1−�) + h�

[
��S(�n+1)I(�n+1) − ��

IA
A(�n+1)I(�n+1) − ��I(�n+1)

]
,

R(�n+1) ≈

n+1∑
�=1

c�
�
R(�n+1−�) + h�

[
��I(�n+1) − ��R(�n+1)

]
,

A(�n+1) ≈

n+1∑
�=1

c�
�
A(�n+1−�) + h�

[
��

SA
S(�n+1)A(�n+1) + ��

IA
A(�n+1)I(�n+1)

]
,

S(�n+1) ≈ S(�n) + h
[
− �SAS(�n)A(�n) − �S(�n)I(�n) + �R(�n)

]
,

I(�n+1) ≈ I(�n) + h
[
�S(�n)I(�n) − �IAA(�n)I(�n) − �I(�n)

]
,

R(�n+1) ≈ R(�n) + h
[
�I(�n) − �R(�n)

]
,

A(�n+1) ≈ A(�n) + h
[
�SAS(�n)A(�n) + �IAA(�n)I(�n)

]
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is a positively invariant set of the model (3), that is, 
(
S(t), I(t), R(t), A(t)

)
∈ ΩT for 

all t > 0 if 
(
S(0), I(0), R(0), A(0)

)
∈ ΩT.

Proof First, the system (3) implies that

Let 
(
S(0), I(0), R(0), A(0)

)
 be any initial data with S(0), I(0),R(0),A(0) ≥ 0 . Then, 

the corresponding solution 
(
S(t), I(t), R(t), A(t)

)
 cannot escape from the hyper-

planes of S = 0 , I = 0 , R = 0 and A = 0 , and on each hyperplane the vector field 
is tangent to that hyperplane or points toward the interior of ℝ4

+
 . This means that 

S(t), I(t),R(t),A(t) ≥ 0 for t > 0.
Let 

(
S(0), I(0),R(0),A(0)

)
 be any initial data belonging to the set ΩT . Set 

T(t) = S(t) + I(t) + R(t) + A(t) for t ≥ 0 . Adding side-by-side the 1st, 2nd, 3rd and 
4th equations of (3), we obtain

This equation has a unique solution, that is, T(t) = T  . Hence, 
S(t) + I(t) + R(t) + A(t) = T  for t ≥ 0 . The proof is complete.   ◻

To determine the set of equilibria of the model (3), we consider the following 
system

Thanks to the results established in [41], we obtain three solutions of this system

which form the set of equilibria of (3).

Proposition 1 (Equilibria) The model (3) always has two disease-free equilibrium 
points, which are given by

(4)ΩT ∶=
{
(S, I,R,A)||S, I,R,A ≥ 0; S + I + R + A = T

}

C
0
D�

t
S
|||S=0 = ��R, C

0
D�

t
I
|||I=0 = 0, C

0
D�

t
R
|||R=0 = ��I, C

0
D�

t
I
|||A=0 = 0.

C
0
D�

t
T(t) = 0, T(0) = T .

− ��

SA
SA − ��SI + ��R = 0,

��SI − ��

IA
AI − ��I = 0,

��I − ��R = 0,

��

SA
SA + ��

IA
AI = 0.

(S, I,R,A) = (0, 0, 0, T),

(S, I,R,A) = (T , 0, 0, 0),

(S, I,R,A) =

(
��

��
,
T − (�∕�)�

1 + (�∕�)�
,
T − (�∕�)�

1 + (�∕�)�
, 0

)
,
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Meanwhile, a unique disease-endemic equilibrium point exists if and only if 
T𝛽𝛼 > 𝛿𝛼 . If existing, it is defined by

3.2  Stability analysis

In this subsection, we investigate the GAS and uniform stability of the fractional-
order model (3).

As an important consequence of Theorem 5, we only need to study dynamics of 
the following sub-model

on its feasible set

Note that the representation A = T − S − I − R was used to obtain (5). On the set 
Ω∗ , the model (5) always possesses two disease-free equilibrium points, which are 
given by

Also, a unique disease-endemic equilibrium point exists if and only if T𝛽𝛼 > 𝛿𝛼 . If 
existing, it is given by

Lemma 2 (Local asymptotic stability) The equilibrium point E0

1
 of the model (5) is 

always locally asymptotically stable. Meanwhile, the equilibrium points E0

2
 and E∗ 

are always unstable.

Proof It is important to remark that from the linearization theorem for fractional 
dynamical systems [33], it is sufficient to consider linearized equations around equi-
libria of the system (5).

E
0

1
= (S, I,R,A) = (0, 0, 0, T),

E
0

2
= (S, I,R,A) = (T , 0, 0, 0).

E
∗ = (S, I,R,A) =

(
��

��
,
T − (�∕�)�

1 + (�∕�)�
,
T − (�∕�)�

1 + (�∕�)�
, 0

)
.

(5)

C
0
D�

t
S = −��

SA
S(T − S − I − R) − ��SI + ��R,

C
0
D�

t
I = ��SI − ��

IA
(T − S − I − R)I − ��I,

C
0
D�

t
R = ��I − ��R

Ω∗ =
{
(S, I,R)||S, I,R ≥ 0; S + I + R ≤ T

}
.

E0

1
= (S, I,R) = (0, 0, 0),

E0

2
= (S, I,R) = (T , 0, 0).

E∗ = (S, I,R) =

(
��

��
,
T − (�∕�)�

1 + (�∕�)�
,
T − (�∕�)�

1 + (�∕�)�

)
.
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The linearized equation around the equilibrium point E0

1
 is given by

where Y(t) =
(
S(t), I(t), R(t)

)T and J(E0

1
) is the Jacobian matrix of (5) at E0

1
 , i.e.,

Consequently, all the eigenvalues of J(E0

1
) are

By the stability results of linear systems [37], we conclude that E0

1
 is always locally 

asymptotically stable.
Similarly, the Jacobian matrix of (5) at E0

2
 is given by

Hence, all the eigenvalues of J(E0

2
) are

This implies that E0

2
 is always stable.

Finally, the Jacobian matrix of (5) at E∗ is

Note that ��S∗ = �� . This implies that

The characteristic polynomial of J(E∗) is given by

C
0
D�

t
Y(t) = J(E0

1
)Y(t),

J(E0

1
) =

⎛⎜⎜⎜⎜⎝

−��
SA
T 0 ��

0 − ��
IA
T − �� 0,

0 �� − �� .

⎞⎟⎟⎟⎟⎠

𝜆1 = −𝛼𝛼

SA
T < 0, 𝜆2 = −𝛼𝛼

IA
T − 𝛿𝛼 < 0, 𝜆3 = −𝜎𝛼 < 0.

J(E0

2
) =

⎛
⎜⎜⎜⎜⎝

��
SA
T (��

SA
− ��)T ��

SA
T + ��

0 ��T − �� 0

0 �� − ��

⎞
⎟⎟⎟⎟⎠
.

𝜆1 = 𝛼𝛼

SA
T > 0, 𝜆2 = 𝛽𝛼T − 𝛿𝛼 , 𝜆3 = −𝜎𝛼 .

J(E∗) =

⎛⎜⎜⎜⎜⎝

��
SA
S∗ − ��I∗ ��

SA
S∗ − ��S∗ ��

SA
S∗ + ��

��I∗ + ��
IA
I∗ ��S∗ + ��

IA
I∗ − �� ��

IA
I∗

0 �� − ��

⎞⎟⎟⎟⎟⎠
.

J(E∗) =

⎛⎜⎜⎜⎜⎝

��
SA
S∗ − ��I∗ ��

SA
S∗ − �� ��

SA
S∗ + ��

��I∗ + ��
IA
I∗ ��

IA
I∗ ��

IA
I∗

0 �� − ��

⎞⎟⎟⎟⎟⎠
.
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Therefore, J(E∗) always has an eigenvalue given by

If E∗ exists ( T𝛽𝛼 > 𝛿𝛼 ), then S∗, I∗ > 0 . So, 𝜆∗ > 0 . Consequently, E∗ is always 
unstable. The proof is complete.   ◻

Theorem 6 The equilibrium point E0

1
 of the model (5) is not locally asymptotically 

stable but also globally asymptotically stable with respect to the set Ω∗ − {E0

2
, E∗}.

Proof Consider a Lyapunov functions V ∶ Ω∗
→ ℝ defined by

 The Caputo fractional derivative of V along solutions of (5) satisfies

Note that all solutions of the system (5) are bounded. Therefore, applying the frac-
tional Barbalat’s lemma (Corollary 1), we obtain

Combining this with the local stability of E0

1
 established in Lemma 2, the GAS of E0

1
 

is proved. The proof is completed.   ◻

As a consequence of Theorem 6, we also obtain the uniform stability of E0

1
 as 

follows.

Corollary 2 The equilibrium point E0

1
 of the model (5) is uniform stable.

PE∗ (�) = det
�
J(E∗) − ��

�
= det

⎛⎜⎜⎜⎜⎝

��
SA
S∗ − ��I∗ − � ��

SA
S∗ − �� ��

SA
S∗ + ��

��I∗ + ��
IA
I∗ ��

IA
I∗ − � ��

IA
I∗

0 �� − �� − �

⎞⎟⎟⎟⎟⎠

= det

⎛
⎜⎜⎜⎜⎝

��
SA
S∗ + ��

IA
I∗ − � ��

SA
S∗ + ��

IA
I∗ − � ��

SA
S∗ + ��

IA
I∗ − �

��I∗ + ��
IA
S∗ ��

IA
I∗ − � ��

IA
I∗

0 �� − �� − �

⎞
⎟⎟⎟⎟⎠
.

�∗ = ��

SA
S∗ + ��

IA
I∗.

(6)V(S, I,R) = S + I + R.

(7)

C
0
D�

t
V(S, I,R) = C

0
D�

t
S + C

0
D�

t
I +C

0
D�

t
R

=
[
− ��

SA
S(T − S − I − R) − ��SI + ��R

]

+
[
��SI − ��

IA
(T − S − I − R)I − ��I

]
+
(
��I − ��R

)

= −��

SA
(T − S − I − R)S − ��

IA
(T − S − I − R)I.

lim
t→∞

(
S(t), I(t), R(t)

)
= E0

1
.
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Proof Consider the Lyapunov function given by (6). Note that

for all (S, I,R) ∈ Ω∗ . Therefore, we have

where

Furthermore, the estimate (7) implies that

Hence, the function V satisfies Theorem 2. Consequently, the uniform stability of E0

1
 

is proved. The proof is complete.   ◻

3.3  Dynamics of the fractional‑order model

Summarizing the results constructed in Subsections  3.1 and 3.2, we obtain the 
dynamics of the original fractional-order model (3) as follows.

Theorem 7 (Dynamical analysis of the fractional-order model (3))  

 (i) The set ΩT given by (4) is a positively invariant set of the model (3).
 (ii) The model (3) always possesses the disease-free equilibrium points E0

1
 and E0

2
 

for all the values of the parameters. Additionally, the unique disease-endemic 
equilibrium point E∗ exists if and only if T𝛽𝛼 > 𝛿𝛼.

 (iii) The equilibrium point E0
1
 is always locally asymptotically stable, meanwhile, 

the equilibrium points E0
2
 and E∗ are always unstable.

 (iv) The equilibrium point E0
1
 is always globally asymptotically stable and uni-

formly stable.

By using the Lyapunov functions proposed in Subsection 3.2 and Theorem 4, we 
obtain the Mittag-Leffler stability of the model (3).

Corollary 3 The equilibrium point E0
1
 is also Mittag-Leffler stable.

Remark 1 From the GAS of the fractional-order model (3) we also obtain the GAS 
of the original ODE model (1). This provides an improvement for the results con-
structed in the benchmark work [41].

1

T
(S2 + I2 + R2) ≤ V(S, I,R) = S + I + R ≤ √

3

√
S2 + I2 + R2

�1(‖y‖) ≤ V(y) ≤ �2(‖y‖),

y =
�
S, I, R

�T
, ‖y‖ =

√
S2 + I2 + R2, �1(z) =

z2

T
, �2(z) =

√
3z.

C
0
D�

t
V ≤ 0.
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4  Numerical experiments

In this section, we conduct a set of numerical simulations to support the theoretical 
findings.

Example 1 (Dynamics of the fractional-order model) In this example, we observe 
the behaviour of the fractional-order model to confirm its stability properties. For 
this purpose, consider the model (3) with parameters given in Table 1.

The solutions of the fractional-order model (5) generated by the explicit frac-
tional Euler method (see [31, 32]) are depicted in Figs. 1, 2, 3, 4, 5. In these fig-
ures, each blue curve represents a phase space corresponding to a specific initial 

Table 1  The parameters in numerical experiments

Case � � �
SA

�
IA

� T Source � Remark

1 0.1 25 0.025 0.25 0.8 100 [41] and � is assumed 0.85 𝛽𝛼T < 𝛿𝛼

2 0.1 25 0.025 0.25 0.8 100 [41] and � is assumed 0.95 𝛽𝛼T < 𝛿𝛼

3 0.1 9 0.025 0.25 0.8 100 [41] 0.8 𝛽𝛼T > 𝛿𝛼

4 0.1 9 0.025 0.25 0.8 100 [41] 0.9 𝛽𝛼T > 𝛿𝛼

5 0.1 9 0.025 0.25 0.8 100 [41] 0.99 𝛽𝛼T > 𝛿𝛼
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Fig. 1  The phase spaces of the fractional-order model (5) in Case 1
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Fig. 3  The phase spaces of the fractional-order model (5) in Case 3
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Fig. 4  The phase spaces of the fractional-order model (5) in Case 4
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Fig. 5  The phase spaces of the fractional-order model (5) in Case 5
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data, the green arrows show the evolution of the model and the color circles indi-
cate the position of the existing equilibrium points. It is clear that all the solu-
tions are stable and converge to the equilibrium point E0

1
 . Moreover, the dynamics 

of the model is confirmed.
It is observed from the numerical results in Example 1 that the behaviour of the 

model (3) depends on � . This means that the fractional-order model ( � ∈ (0, 1] ) is 
more flexible than the ODE one ( � = 1 ). On the other hand, the appearance of � 
may be useful in studying the parameter estimation problem since it expands the 
space of parameters and can provide more computer virus spread scenarios. In 
order to support this assertion, let us consider the following simple example with 
synthetic data set.

Example 2 (Numerical simulation with synthetic data) Assume that we observe the 
numbers of computers of the groups S, I, R and A in a system at some points in a 
time period and the observations are recorded in Table 2.

Assume that we have obtained the following set of parameters for the frac-
tional-order model (3):

Our task now is to choose suitable values of � such that the solutions of the frac-
tional-order model fit with the synthetic data as much as possible. Figures 6, 7, 8, 
9 depict the behavior of the model (3) corresponding to three different values of � , 
namely, � ∈ {0.85, 0.9, 1.0} . From these figures, we see that � = 0.85 and � = 0.9 
(fractional order) are better than � = 1 (integer order) and � = 0.85 is the best. This 
shows the role of � in the parameter estimation.

This example only works with synthetic data since real data is not available. 
However, it has shown one of the main advantage of the fractional-order model 
over the integer-order one. This agrees with an analysis of a fractional-order 
model using real data of dengue fever, which was performed in [15].

(8)� = 0.1, � = 25, �SA = 0.025, �IA = 0.25, � = 75, T = 100.

Table 2  Synthetic data used in 
numerical simulation

Observation i 1 2 3 4 5 6 7 8 9 10 11

S(i) 50 7 3 2 2 1 1 1 1 0 0
A(i) 10 0 0 0 0 0 0 0 0 0 0
R(i) 20 12 7 5 3 3 2 1 1 1 1
A(i) 20 81 90 93 95 96 97 98 98 99 99
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Fig. 6  The S-component of the fractional-order model versus the synthetic data
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Fig. 7  The I-component of the fractional-order model versus the synthetic data
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Fig. 8  The R-component of the fractional-order model versus the synthetic data
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Fig. 9  The A-component of the fractional-order model versus the synthetic data
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5  Conclusions and remarks

In this work, a fractional-order epidemiological model for computer viruses, 
which is derived from the well-known integer-order epidemiological model (1) 
and the Caputo fractional derivative, has been considered to analyze memory 
effects on population dynamics. The positivity, linear invariant, stability prop-
erties of the fractional-order model have been analyzed rigorously. It should be 
emphasized that the stability properties are investigated by using an appropri-
ate linear Lyapunov function in combination with stability theory for fractional 
dynamical systems. The main result is that the dynamical properties of the frac-
tional-order model have been determined fully. Also, the present approach can be 
extended to study fractional versions of the model (1) in the context of other frac-
tional derivative operators. Finally, a set of numerical experiments is conducted 
to support the theoretical findings. The experiments show that there is a good 
agreement between the numerical results and theoretical ones.

In the near future, we will study applications of the proposed fractional-order 
model in real-world situations. The present approach will be extended to inves-
tigate dynamics of the original ODE model (1) in the context of other fractional 
derivatives. In addition, numerical methods preserving the mathematical features 
of the model will also be considered.
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