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1  Introduction

1.1 � Comodules and contramodules

Let � be a field, C a coalgebra over � . Let Δ ∶ C → C⊗ C be the comultiplication, 
� ∶ C → � the counit. A right comodule over C is a vector space X over � equipped 
with a structure map 𝜌 ∶ X → X ⊗ C . This structure map must satisfy the natural 
coassociativity and counitality conditions. Coassociativity is the requirement that 
the diagram 

 commutes and counitality is the requirement that the composite 

 is the identity.
At the end of their paper [7] Eilenberg and Moore point out that there is another 

natural kind of “module” over C which they call a contramodule. A contramodule 
over C is a vector space Y equipped with a structure map � ∶ Hom

�
(C, Y) → Y  sat-

isfying the following contraassociativity and contraunitality conditions. Contraasso-
ciativity is the requirement that the diagram 

 commutes and contraunitality is the requirement that the composite 

 is the identity.
Since C∗ ⊗ Y  is naturally a subspace of Hom

�
(C, Y) , the structure map � makes 

Y a module over the algebra C∗ . Similarly, a comodule X gets a C∗-module structure 
from the composition 
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 If C is finite dimensional, then Hom
�
(C, Y) = C∗ ⊗ Y  and there is no difference 

between comodules, C∗-modules and contramodules. This is the simplest example of 
the comodule-contramodule correspondence.

The theory of contramodules over a coalgebra was completely neglected until 
the early 2000’s when Positselski, motivated by his work on the theory of semi-
infinite cohomology in the geometric Langlands program, took up the study of 
contramodules. Much of his work was published in 2010 [23]. Positselski showed 
how to set up the co-contra correspondence for coalgebras without any finite 
dimensionality hypotheses. This correspondence is not a one-to-one correspond-
ence, but Positselski was able to prove that it defines an equivalence between 
appropriate derived categories of comodules and contramodules. In [4] Bohm, 
Brzeziński, and Wisbauer gave a clean account of the theory of comodules and 
contramodules in categories of modules in terms of monads, comonads, and 
adjoint functors. This account fits in well with the original work of Eilenberg and 
Moore.

The starting point for our work is that the ingredients for the comodule-con-
tramodule correspondence are present in many interesting examples which are not 
module categories. The simplest (and perhaps the most fundamental of all exam-
ples) is the category of sets. Other examples, which we study in some detail in this 
paper, include the category of chain complexes, simplicial sets and topological 
spaces. Further examples, which we do not study, include the categories of spectra, 
G-sets where G is a discrete group, and G-spaces where G is a topological group.

Let C be a closed symmetric monoidal category. Such a category C comes 
equipped with a symmetric tensor product bifunctor ⊗ ∶ C × C → C satisfy-
ing the usual associativity and unitality conditions and an internal hom bifunctor 
[ , ] ∶ Cop ⊗ C → C such that for each pair of objects A,B ∈ C there is a natural iso-
morphism of functors of X

Here C(A,B) denotes the set of morphisms in C with source A and target B, while 
[A, B] denotes the internal hom object. Let I be the monoidal unit in C . The internal 
hom object determines the hom set:

The diagrams, which define a coalgebra and its comodules in the category of vector 
spaces, use only the tensor functor ⊗ . So they make sense in C and define the notion 
of a comonoid C in C and its comodules. Since C is closed, contramodules over C 
are defined by using the formal analogues of the diagrams in the category of vector 
spaces which define contramodules with Hom

�
(C, Y) replaced by the internal hom 

object [C, Y]. Therefore, we have comonoids, comodules and contramodules in any 
closed symmetric monoidal category. The aim of this paper is to develop the co-
contra correspondence in this general context.

C(X ⊗ A,B) → C(X, [A,B])).

C(I, [A,B]) = C(A,B).
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1.2 � The co‑contra correspondence

Let C be a comonoid in C . Now we consider the categories of comodules and con-
tramodules over C. The definition of a morphism of comodules (or contramod-
ules) over C is a morphism (in C ) of their underlying objects such that the obvi-
ous diagrams commute. This defines two perfectly good categories: the category 
CC of comodules over C and the category CC of contramodules over C. If we are 
working with vector spaces over a field, these sets of morphisms have a natural 
vector space structure and all is well. But in C we can only get sets of morphisms 
in this way. What we really want is to give the categories CC and CC the structure 
of categories enriched in C . The theory of enriched categories is quite subtle; the 
standard reference is [16].

In other words, this means that for any two comodules X,X′ over C we must 
construct a hom object [X,X�]C ∈ C , and for any two contramodules Y , Y ′ over C 
we must construct a hom object [Y , Y �]C ∈ C . The obvious idea is to define [X,X�]C 
as the equaliser of two morphisms in C from [X,X�] → [X,X� ⊗ C] . This equaliser 
must exist: the categories CC and CC have the structure of enriched categories over 
C if C satisfies the following completeness property (see Proposition 2.8):

Assumption 1  Each pair of morphisms X ⇉ Y  with a common left inverse admits 
an equaliser.

We will also need the dual assumption:

Assumption 2  Each pair of morphisms X ⇉ Y  with a common right inverse admits 
a coequaliser.

Our first objective is to establish the next theorem, the general comodule-con-
tramodule correspondence.

Theorem 1  (Theorem 2.11) Suppose a closed symmetric monoidal category C satis-
fies Assumptions 1 and 2. Then there is an enriched adjoint pair of enriched functors

We devote Chapter 2 to describing the construction of L ⊣ R but we postpone 
the proofs to Chapter 4. In Chapter 3 we explain how the construction in Chap-
ter 2 works in three examples: the category of chain complexes over a field, the 
category of sets, and the category of simplicial sets.

Let us discuss this result in  , the category of sets. The monoidal product 
is the cartesian product of sets and the internal hom set is the set of functions. It 
is easy to see that any set C has a unique structure of a comonoid. The comultipli-
cation is the diagonal map. A simple argument with unitality (cf. Sect. 3.3) shows 
that the diagonal map is, indeed, the unique comonoid structure on C.

If X is a set, then a bijection

(L ⊣ R), L ∶ CC ⇄ CC ∶ R .
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defines the structure of a comodule over C on X (cf. Sect. 3.3). If Y is a set, then a 
bijection

defines the structure of a contramodule over C on Y (cf. Sect. 3.5).

Theorem 2  (Theorems 3.5 and 3.6) Let C be a set considered as a comonoid in the 
category of sets. 

1.	 Every comodule over C is isomorphic to 
∐

c∈C Uc , where Uc is a collection of sets 
parametrised by C.

2.	 Every contramodule over C is isomorphic to 
∏

c∈C Vc , where Vc is a collection of 
sets parametrised by C.

3.	 The functors  and  are char-
acterised by 

 where all sets Vc must be non-empty.

1.3 � Homotopy theory in categories of comodules and contramodules

The motivation for introducing homotopy theory is the main theorem of Positselski. 
It states that in the algebraic context of comodules and contramodules over a DG-
coalgebra the co-contra correspondence defines an equivalence between the cod-
erived category of comodules and the contraderived category of contramodules. It is 
natural to think about this theorem in terms of Quillen’s model categories.

A model category is a category M together with three distinguished classes of 
morphisms: cofibrations, fibrations and weak equivalences, satisfying appropriate 
axioms. If M , N  are model categories, a Quillen adjunction between them is a pair 
of adjoint functors

satisfying certain axioms. Further axioms turn a Quillen adjunction into a Quillen 
equivalence.

A symmetric monoidal model category is the natural notion of a category 
with a compatible symmetric monoidal structure and model structure ( [10, 13] 
for further details). Let C be a symmetric monoidal model category and let C be 

∐

c∈C

Uc → X

Y →
∏

c∈C

Vc

L

(
∏

c∈C

Vc

)
=
∐

c∈C

Vc, R ∶

(
∐

c∈C

Uc

)
=
∏

c∈C

Uc

(A ⊣ B), A ∶ N ⇄ M ∶ B ,
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a comonoid in C . Form the categories CC and CC . There are forgetful functors 
GC ∶ CC → C and GC ∶ CC → C . Under suitable conditions, we can use these func-
tors to define induced model structures on CC and CC . With more conditions we 
can show that the functors L ∶ CC ⇄ CC ∶ R define a Quillen adjunction. With yet 
more conditions we can adjust the model structures of CC and CC , by a technique 
known as Bousfield localisation, so that with the new model structures the func-
tors L ∶ CC ⇄ CC ∶ R become a Quillen equivalence. This leads to the following 
two results.

Theorem  3  (Proposition  5.6) Suppose that the closed symmetric monoidal model 
category C is cartesian closed. If the left-induced model structure exists on CC and 
the right-induced model structure exists on CC , then the pair (L ⊣ R) is a Quillen 
adjunction.

Theorem 4  (Theorem 5.7) Suppose that C satisfies the following assumptions. 

1.	 C is a locally presentable category,
2.	 C is a cartesian closed symmetric monoidal model category,
3.	 C is a left and right proper model category.

Let C be a comonoid in C . Then there exist a left Bousfield localisation LBL(CC) 
and a right Bousfield localisation RBL(CC) such that the functors

form a Quillen equivalence.

The last theorem should be interpreted to mean, as hinted in the previous para-
graph, that under certain categorical assumptions we can find reasonable model 
structures on CC and CC so that the functors (L ⊣ R) define a Quillen equivalence 
(see Chapter 5). As a specific example, the category of simplical sets satisfies all 
the conditions of this theorem (Theorem 5.8).

1.4 � Comodules and contramodules in the category of topological spaces

In Chapter 6 the base category is the category W of compactly generated, weakly 
Hausdorff spaces, the most standard convenient category of topological spaces. A 
comonoid in W is a topological space C with comultiplication given by its diago-
nal map. Most of the chapter is devoted to the general study of comodules and 
contramodules in W . One non-obvious fact about this category is the following 
theorem.

L ∶ LBL(CC) ⇄ RBL(CC) ∶ R
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Theorem 5  (Theorem 6.8) Let C be a topological space considered as a comonoid 
in W . Then the category of contramodules WC is cocomplete.

The conditions of Theorem  4 do not hold in W for set-theoretic reasons. Yet 
we can prove some interesting facts about the topological comodule-contramodule 
correspondence.

Theorem  6  (Propositions  6.10,  6.12 and Theorem  6.14) Let C be a topological 
space considered as a comonoid in W . 

1.	 The co-contra correspondence L ∶ WC
→ WC ∶ R is a Quillen adjunction 

between WC and WC.
2.	 If all topological spaces are subsets of a Grothendieck universe, the adjunction 

L ∶ WC
→ WC ∶ R defines a Quillen equivalence between a left Bousfield locali-

sation LBL(WC) and a right Bousfield localisation RBL(WC).
3.	 If X, Y ∈ WC are CW-complexes and f ∈ WC(X, Y) is a weak equivalence, then 

R(f) is a weak equivalence.
4.	 Suppose that C is a CW-complex of finite type. If X, Y ∈ WC are fibrant and 

f ∈ WC(X, Y) is a weak equivalence such that �0(f ) is an isomorphism, then R(f) 
is a weak equivalence.

2 � Monad‑Comonads adjoint pairs over closed categories

2.1 � Closed categories

Let us consider a symmetric monoidal category C with hom sets C(X, Y) , tensor 
product ⊗ , unit object I , associator � , symmetric braiding � , left unitor � and right 
unitor � . The latter four are natural isomorphisms

depending on objects X, Y , Z ∈ C.
The category C is called a closed symmetric monoidal category if for any object 

X ∈ C the endofunctor −⊗ X admits a right adjoint endofunctor [X,−]C called the 
internal hom [17]. When the category in question is clear, we use the shorthand 
notation [X, Y] for [X, Y]C.

Recall the functor of global sections:

The relation between the hom and the internal hom is a natural isomorphism

𝛼X,Y ,Z ∶ (X ⊗ Y)⊗ Z
≅
�������→ X ⊗ (Y ⊗ Z), 𝛾X,Y ∶ X ⊗ Y

≅
�������→ Y ⊗ X,

𝜆X ∶ I ⊗ X
≅
�������→ X, 𝜛X ∶ X ⊗ I

≅
�������→ X,

(1)
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In general, [X, Y] is not even a set. A good category to keep in mind for illustration 
purposes is the category of  of G-sets for a group G. This category is carte-
sian: X ⊗ Y  is the product X × Y  . The internal hom [X, Y] is the set of all the func-
tions X → Y  . The ordinary hom is its fixed point set: .

2.2 � Enriched categories

The standard reference for enriched categories is Kelly’s book [16]. A category A 
enriched in C has hom objects and compositions

for all X, Y , Z ∈ A , satisfying the standard axioms. It can be turned into an ordinary 
category by setting

In the opposite direction, an enrichment of a category A is a structure of enriched 
category such that (4) holds.

A closed symmetric monoidal category C is enriched in itself. Its opposite cat-
egory Cop is enriched in C:

For categories A,B enriched in C , a C-enriched functor H ∶ A → B consists of the 
following data, satisfying the standard axioms:

•	 a map H ∶ A → B from the objects of A to the objects of B,
•	 an A ×A-indexed family of morphisms in C

 which respect the enriched composition and units in A and B.

2.3 � Adjoint functors

Fix a closed symmetric monoidal category C . Consider a pair of endofunc-
tors T ,F ∶ C → C , not necessarily enriched. There are three different notions of 
adjointness:

•	 If a natural isomorphism of bifunctors 

(2)C(X, Y) ≅ Γ([X, Y]).

(3)[X, Y]A ∈ C, cX,Y ,Z ∈ C([Y , Z]A ⊗ [X, Y]A, [X, Z]A)

(4)A(X, Y) ∶= Γ([X, Y]A) .

(5)[X, Y]C ∶= [X, Y] , [X, Y]Cop ∶= [Y ,X] .

(6)HX,Y ∶ [X, Y]A → [HX,HY]B,
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 is chosen, then T and F are externally adjoint.
•	 If T and F are enriched and a natural isomorphism of bifunctors 

 is chosen, then T and F are internally adjoint.
•	 Further, if the natural isomorphism (7) is enriched, then T and F are enriched 

adjoint.

Without standard notation to distinguish the three, we write (T ⊣ F) in all of 
them. These notions are related.

Lemma 2.1  An enriched adjoint pair of endofunctors is internally adjoint. An inter-
nally adjoint pair of endofunctors is externally adjoint.

Proof  The second claim is obvious: just forget the enrichment. The first claim fol-
lows from applying the global sections (1) Γ to the internal adjunction �

as functors  . 	� ◻

Definition 2.2  Let (T ⊣ F) be an internally adjoint pair of endofunctors on C . We 
define the chief (or the chief object) of the pair (T ⊣ F) as C ∶= TI.

The following lemma, motivating our interest in the chief, is surprising, due to 
its implications.

Lemma 2.3  Let (T ⊣ F) be an internally adjoint pair of endofunctors of C and C 
their chief. Then there are natural isomorphisms of functors

such that the following diagram commutes for all X, Y ∈ C : 

(7)[T−,−], [−,F−] ∶ Cop ⊗ C → C

C(T−,−) ≅ Γ([T−,−])
Γ(�)
≅ Γ([−,F−]) ≅ C(−,F−)

F ≅ [C,−], T ≅ −⊗ C
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Proof  Using the isomorphism iX ∶ X → [I,X] , we obtain the first natural isomor-
phism as the composition

Thus, we have natural isomorphisms of bifunctors ≅1 , ≅2 and ≅3 . We define ≅4 as 
the composition

This ensures commutativity of the square. It remains to notice that the natural iso-
morphism of representable functors

yields, by the Yoneda Lemma, an isomorphism of representing objects

natural in X. Hence, �X is a natural isomorphism of functors. 	�  ◻

Since [C,−] and − ⊗ C are enriched adjoint, the surprising lemma allows us to 
replace an internal adjunction with an enriched (possibly different) adjunction.

Corollary 2.4  Let (T ⊣ F) be an internally adjoint pair of enriched endofunctors of 
C . There exists an enriched adjunction (T ⊣ F).

2.4 � Monads and comonads

Consider an object C of a monoidal category C and the corresponding enriched 
adjoint pair (T ⊣ F) of endofunctors T = − ⊗ C and F = [C,−] . It is well known 
that

Our goal is to make a precise dual enriched statement to this one. Consider a monad 
(F,�, �) and a comonad (T , �, �) . Here

are natural transformations, satisfying associativity and unitality conditions [4, 2.3, 
2.4], [6, §2], [30, Sec. II]. See [32] for what makes a (co)monad strong or enriched.

Lemma 2.5  Let C be a closed symmetric monoidal category, C ∈ C . Consider the 
enriched endofunctors T = − ⊗ C and F = [C,−] , together with their enriched 
adjunction (T ⊣ F) . There are bijections between the following three sets

[C,X]
≅
�������→ [TI,X]

≅
�������→ [I,FX]

≅
�������→ FX.

[X ⊗ C, Y]
≅
�������→ [X, [C, Y]]

≅
�������→ [X,FY]

≅
�������→ [TX, Y].

𝛾X ∶ C(X ⊗ C,−) = Γ([X ⊗ C,−])
≅
�������→ Γ([TX,−]) = C(TX,−)

𝛽X ∶ X ⊗ C
≅
�������→ TX,

T is a monad
[6 Prop. 3.1 ]

⟺ F is a comonad ⇔ C is a monoid.

� ∶ FF ⟶ F, � ∶ Id C ⟶ F, � ∶ T ⟶ TT , � ∶ T ⟶ Id C
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•	 the set of strong comonad structures on T,
•	 the set of strong monad structures on F,
•	 the set of comonoid structures on C.

Proof  Start with a comonad structure on T. We get a comultiplication and a counit 
on C by

Verification of the axioms is routine.
If (C, �, �) is a comonoid, we obtain a strong comonad structure on T by defining 

the natural transformations � , � explicitly:

Again, all the axioms are routine.
This gives the bijection between the set of comonoid structures on C to the class 

of strong comonad structures on T. In particular, this class is a set.
A proof for the set of strong monad structures is similar. 	�  ◻

2.5 � Accessibility and presentability

Occasionally we assume that C is accessible or locally presentable. We follow 
Adámek and Rosicky [1] with our terminology.

For the convenience of the reader, we recall the key definitions. Given a regu-
lar cardinal Λ , an object X of some category B is called Λ-presentable, if B(X,−) 
preserves Λ-directed colimits. An object X is presentable, if it is Λ-presentable 
for some regular cardinal Λ.

The category B is locally Λ-presentable, if it is cocomplete and admits a set Z 
of Λ-presentable objects such that every object is a Λ-directed colimit of objects 
from Z. The category B is locally presentable, if it is locally Λ-presentable for 
some regular cardinal Λ.

Similarly, the category B is Λ-accessible, if it has Λ-directed colimits and 
admits a set Z of Λ-presentable objects such that every object is a Λ-directed 
colimit of objects from Z. The category B is accessible, if it is Λ-accessible for 
some regular cardinal Λ . The following facts are useful: 

(1)	 B is locally presentable if and only if B is accessible and cocomplete [by defini-
tion].

(2)	 B is locally presentable if and only if B is accessible and complete [1, Cor. 2.47].
(3)	 If B is accessible, then each X ∈ B is presentable [19, Cor. 2.3.12].

C
≅
�������→ I ⊗ C

𝛿I
�������→ C⊗ C and C

≅
�������→ I ⊗ C

𝜖I
�������→ I .

𝛿X ∶ TX = X ⊗ C
Id X⊗𝛿
��������������������������→ X ⊗ (C⊗ C)

𝛼−1

�������������→ TTX,

𝜖X ∶ TX
Id X⊗𝜀
��������������������������→ X ⊗ I ≅ X.
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Finally, a functor H ∶ A → B is Λ-accessible if both categories A and B are Λ
-accessible and H preserves Λ-directed colimits. The functor H is accessible if it 
is Λ-accessible for some regular cardinal Λ . Since  is locally presentable, 
the functor B(X,−) is accessible for any object X of an accessible category B.

2.6 � Categories of comodules and contramodules

By comodules we understand objects in the category of T-comodules BT . By con-
tramodules we understand objects in the category F-modules BF.

Lemma 2.6  Let (T ⊣ F) be an adjoint comonad-monad pair on a complete cocom-
plete category B . Then BT is cocomplete and BF is complete.

Proof  Since F is a monad on B , the forgetful functor GF ∶ BF
→ B creates limits [2, 

Th. 3.4.2]. Hence, as B is complete, so is BF . Similarly, since T is a comonad, the 
forgetful functor GT ∶ BT → B creates colimits. Hence, BT is cocomplete [8]. 	�  ◻

The questions of cocompleteness of BF and completeness of BT require additional 
assumptions.

Proposition 2.7  Let (T ⊣ F) be an enriched adjoint strong comonad-monad pair on 
a locally presentable, complete, cocomplete left closed monoidal category C . Then 
the categories CT and CF are complete, cocomplete and locally presentable.

Proof  By Lemma 2.6, CT is cocomplete and CF is complete.
The chief C is presentable, hence F is accessible (Sect. 2.5). The accessibility of 

F implies that CF is accessible [1, Th. 2.78]. Hence, CF is cocomplete and locally 
presentable (Sect. 2.5).

The functor T is cocontinuous since it is left adjoint. Hence, T is accessible. By 
[14, Cor. 2.8], CT is accessible. A cocomplete accessible category is complete and 
locally presentable (Sect. 2.5). 	�  ◻

2.7 � Comodules and contramodules as enriched categories

The categories of comodules and contramodules admit enrichments in C that interact 
with the cofree comodule functor T♯ and the free contramodule functor F♯ [29, 31]

where the comonad structure of T gives the structure map T(X) → TT(X) and ditto 
for F.

T♯ ∶ C → CT , T
♯(X) = T(X), F♯ ∶ C → CF, F♯(X) = F(X)
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Proposition 2.8  [29, Th. 15] Suppose a closed symmetric monoidal category C satis-
fies the weak version of completeness in Assumption 1. 

1.	 If T is a strong comonad on C , then the comodule category CT admits an enrich-
ment such that 

 is an enriched adjunction where GT is the forgetful functor.
2.	 If F is a strong monad on C , then the contramodule category CF admits an enrich-

ment such that 

 is an enriched adjoint pair where GF is the forgetful functor.

We denote the comodule maps object between objects (X, �X), (Y , �Y ) ∈ CT by 
[X, Y]T . It is defined in C , completely parallel to what one does to define homo-
morphisms of comodules or contramodules in the category of vector spaces (cf. 
Sect. 3.1). Let us consider the following two morphisms. The first morphism is the 
internal analogue of the composition with �Y:

The second morphism comes from the enrichment of T

The comodule maps object [X, Y]T is the equaliser of �T
X,Y

 and �T
X,Y

.
Similarly, the contramodule maps object between objects (X, �X), (Y , �Y ) ∈ CF is 

denoted [X, Y]F . Again consider the two morphisms

The contramodule maps object [X, Y]F is the equaliser of the maps �F
X,Y

 and �F
X,Y

 . 
Notice that both pairs of morphisms admit a common left inverse, coming from the 
counit of C . This is the reason behind Assumption 1.

(GT ⊣ T♯), GT ∶ CT ⇄ C ∶ T♯

(F♯ ⊣ GF), F♯ ∶ C ⇄ CF ∶ GF

(8)�T
X,Y

∶ [X, Y]
[ Id X ,�Y ]
�����������������������������→ [X, TY].

(9)�T
X,Y

∶ [X, Y] ⟶ [TX, TY]
[�X , Id TY ]
��������������������������������→ [X, TY].

(10)�F
X,Y

∶ [X, Y] ⟶ [FX,FY]
[ Id FX ,�Y ]
��������������������������������→ [FX, Y],

(11)�F
X,Y

∶ [X, Y]
[�X , Id Y ]
�����������������������������→ [FX, Y].
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2.8 � Comodule‑contramodule correspondence

If (T ⊣ F) is an adjoint monad-comonad pair, then the categories CT and CF are 
isomorphic. In the case of a comonad-monad pair, the relation between CT and CF 
is known as the comodule-contramodule correspondence. Notice that the co-con-
tra correspondence exists also in  situations not covered by the present set-up, for 
instance, comodules and contramodules over corings or semi-algebras [23]. We 
expect that our methods could be extended to cover such, more general situations.

Let us state the main results of Chapter  2. Their proofs can be found in 
Sects 4.2, 4.3. and 4.4 correspondingly.

Proposition 2.9  Let C be a closed symmetric monoidal category that satisfies the 
weak version of completeness in Assumption 1, C – a comonoid in C . Consider the 
enriched endofunctors T = − ⊗ C and F = [C,−] , together with their enriched 
adjunction (T ⊣ F) . 

1.	 If X ∈ CT , then the hom-object [C,X]T admits a contramodule structure.
2.	 The assignment X ↦ [C,X]T determines an enriched functor R ∶ CT → CF.

In the case when C is the category of vector spaces the functor R admits a left 
adjoint functor L, given by the contratensor product Y ↦ C ⊙C Y  (cf. Example 3.1). 
Pushing it through in general categories requires coequalisers as well as equalisers. 
Given (Y , �Y ) ∈ CF , consider the following morphisms in C:

Proposition 2.10  Under the assumptions of Proposition 2.9, suppose further that C 
satisfies the weak version of cocompleteness in Assumption  2. The assignment of 
the coequaliser of �Y and �Y to any contramodule Y determines an enriched functor 
L ∶ CF → CT.

Theorem 2.11  Under the assumptions of Proposition 2.10, (L ⊣ R) is a C-enriched 
adjoint pair.

2.9 � Connection with Kleisli categories

Let C̃T  and C̃F be the Kleisli categories. These are full subcategories of CT and CF 
spanned by the cofree comodules TX and the free contramodules FX correspond-
ingly. These categories are isomorphic [4, 2.6]. The isomorphisms are given by

(12)�Y ∶ TFY
T�Y
��������������→ TY , �Y ∶ TFY

�FY
���������������→ TTFY

T� Id Y

����������������������→ TY .

(13)C̃T ⟷ C̃F, TX ⟷ FX .
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Notice that R(TX) ≅ FX but L(FX) appears to be different from TX.
The following question is interesting. A referee has sketched an approach to it via 

Kan extensions.

Question 2.12  What is the relation between the functors L and R and the category 
isomorphisms (13)?

3 � Examples

Now we examine concrete examples of comodules and contramodules.

3.1 � Complexes of vector spaces

Let  be the category of chain complexes over a field � . The tensor 
product X ⊗ Y  is just the tensor product of vector spaces. The internal hom is

Both are chain complexes. The unit object I is the complex �[0] , concentrated in 
degree zero. The zero degree cycles yield both the global sections and the hom sets:

A comonoid C in C is just a DG-coalgebra C. Then

If (X, �X) is a C-comodule, we write its structure map in Sweedler’s Σ-notation

so that the two maps (8) and (9) are

It follows that the category CT (as defined in Sect 2.7) is isomorphic as an ordinary 
category to the category of DG-comodules over C.

Consider C-contramodules (X, �X) and (Y , �Y ) , also known as DG-contramod-
ules over C. Let us inspect the square 

[X, Y] =

∞⨁

d=−∞

[X, Y]d where [X, Y]d ∶=
∏

i

hom
�
(Xi, Yi+d) .

Γ(X) = Z0(X) and C(X, Y) = Z0([X, Y]).

T(X) = X ⊗ C, F(X) = [C,X].

𝜌X(x) =
∑

(x)

x(0) ⊗ x(1) ,

𝜙T
X,Y

(f )(x) =
∑

(f (x))

f (x)(0) ⊗ f (x)(1), 𝜓T
X,Y

(f )(x) =
∑

(x)

f (x(0))⊗ x(1).
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 that depends on a linear map f ∶ X → Y  . The left-bottom path of the square is 
�F
X,Y

(f ) and the top-right path of the square is �F
X,Y

(f ) . Thus, [X, Y]F is a complex that 
consists of those f ∈ [X, Y] that make (14) commutative.

Now a linear map f ∶ X → Y  is a homomorphism of DG-contramodules 
if f is a map of complexes (degree zero, commutes with differential) such that 
(14) is commutative. In other words, the homomorphisms are the elements of 
Z0([X, Y]

F) . By definition, CF(X, Y) = Z0([X, Y]
F) . It follows that CF is isomorphic 

as an ordinary category to the category of DG-contramodules over C.
The adjoint functors L and R are described by Positselski in this case [23]. They 

define an equivalence between the coderived category of C-comodules and the contra-
derived category of C-contramodules.

3.2 � Specific coalgebra

Let us consider the polynomial coalgebra C = �[z] , Δ(z) = 1⊗ z + z⊗ 1 as a DG-
coalgebra with zero differentials. Let the degree of z be d ∈ ℤ . A C-comodule is a chain 
complex V with a countable family of chain complex maps �n ∶ V → V[nd], n ∈ ℕ 
(V[n] is the degree shift of V) such that

It needs to satisfy the unitality and the associativity conditions

as well as the finiteness condition

In characteristic zero (16) is equivalent to

so that a C-comodule is just a chain complex with a locally nilpotent chain complex 
operator �1.

Similarly, a C-contramodule is a chain complex X with a family of chain complex 
maps �n ∶ X → X[nd], n ∈ ℕ such that

(15)𝜌 ∶ V → V ⊗ C, 𝜌(v) =
∑

n

𝜌n(v)⊗ zn.

(16)�0(v) = v, �m(�n(v)) =

(
m + n

n

)
�m+n(v),

(17)∀v ∈ V ∃N ∀n > N 𝜌n(v) = 0.

(18)�n =
1

n!
�n
1
(∶= �

(n)

1
)
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The unitality and the associativity conditions for � are (16), the same as for � . In 
characteristic zero, it becomes (18), that is, �n = �

(n)

1
 for all n. The finiteness condi-

tion is different: since f (zn) can be an arbitrary sequence of elements of X, the con-
dition can be stated as

Such well-definedness may or may not result from series convergence in some topol-
ogy. Positselski [24, 0.2] emphasises this point: in general, it is an algebraic infinite 
summation operation. It is convenient to think that a C-contramodule is equipped 
with (U, s) where U is a subspace of X[[t]] and s ∶ U → X is a linear map such that 
for all f ∈ [C,X]

Let � be of characteristic zero and d = 0 . A contramodule of “topological” nature is 
�[[x−1]] where �n = �(n)

x
 . Algebraically,

and s is well-defined because the calculation of the coefficient in front of each x−n 
requires only a finite sum.

A contramodule of “non-topological” nature can be constructed similarly to [23, 
A.1.1] and [24, 1.5]. Let Ỹ  be a C-contramodule of sequences

Its summation operation comes from convergence in the x−1-adic topology. Alge-
braically, it is given by the formula (21) in each position. It has a subcontramodule 
of quickly convergent sequences Y and the quotient

The subcontramodule Y is dense in Ỹ  . Thus, the induced topology on X is antidis-
crete and cannot be used to define the summation operation. Yet it can be under-
stood algebraically:

(19)� ∶ [C,X] → X, �(f ) =
∑

n

�n(f (z
n)).

(20)∀ sequence (an), an ∈ X the sum
∑

n

�n(an) is well-defined .

∑

n

�n(f (z
n))tn ∈ U and �(f ) = s

(∑

n

�n(f (z
n))tn

)
.

(21)U = {
∑

n

hnt
n ∣ hn ∈ (x−n) ⊲ �[[x−1]]} , s(

∑

n

hnt
n) =

∑

n

hn

Ỹ = {(ai) ∣ ai ∈ �[[x−1]]} , �1 = �x .

Y ∶= {(ai) ∈ Y ∣ xiai → 0} , X ∶= Ỹ∕Y .

U = {
∑

n

((an,i) + Y)tn ∣ an,i ∈ (x−n)} , s(
∑

n

((an,i) + Y)tn) = (
∑

n

an,i) + Y .
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3.3 � Comonoids and their comodules in the category of sets

Let  be the category of sets. This category has a closed symmetric monoidal 
structure where the product of sets defines the monoidal structure, and the unit is 
a one point set {p} . In this category the internal hom and the external hom are the 
same set which we will denote by [X, Y]. Let � = (�1,�2) ∶ X → X × X be a comul-
tiplication. The counitality axiom immediately shows that both �1 and �2 are the 
identity and so � is equal to the diagonal map Δ . Thus, any set has a unique como-
noid structure. We will fix a base set C and identify this with the comonoid (C,Δ, �) 
where Δ is the diagonal map C → C × C and � ∶ C → {p} is the unique map.

By definition, a (right) C-comodule structure on a set C is a map � ∶ X → X × C 
satisfying the usual coassociativity and counitality conditions. We will use the 
usual notation  for the category of comodules over the monoid C. The 
counitality immediately shows that there is a unique map � ∶ X → C such that 
� = 1 × � ∶ X → X × C.

By definition, a set over C is a pair (X,�) where X is a set and � ∶ X → C is a 
function. A morphism of sets over C is a function f such that the following diagram 
commutes. 

 We use the notation  for the category of sets over C. If (X,�) 
is a set over C then it defines a right C-comodule structure on X by setting 
� = 1 × � ∶ X → X × C.

Evidently the correspondence � ⟷ 1 × � gives a bijection between the C-comod-
ule structures on X and the C-set structures on X. We state this as a formal proposition.

Proposition 3.1  The above constructions define an isomorphism from the category 

 to the category .

There is one further point to make. Let X =
∐

a∈C Xa be a disjoint union of a family 
of sets indexed by C. Then the set X has a natural map � ∶ X → C defined by

This, in turn, defines a C-comodule structure on X. Then every C-comodule is 
canonically isomorphic to such a disjoint union.

�(x) = a for all x ∈ Xa .
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3.4 � Contramodules in the category of sets

Contramodules over C are a bit more intricate. By definition, a contramodule over a set 
C is a set X equipped with a function � ∶ [C,X] → X satisfying the usual contraasso-
ciativity and contraunitality conditions. Now [C,X] =

∏
a∈C X and we will sometimes 

identify a function � ∶ C → X with a list (�(a))a∈C of elements in X. We can think of 
�(�) as the �-product of the (probably infinite) list of elements (�(a))a∈C in X.

Contraunitality tells us that if f ∶ C → X is the constant function with value x , 
then �(f ) = x . The contraassociativity condition can be rephrased as follows. Let 
� ∶ C × C → X be a function. We can think of � as a C × C matrix with entries in X. 
The row of � labelled by a fixed element b ∈ C is the function

Now we define the row function of � by

In other words, �� (a) ∈ X is the �-product of the elements in the row of the matrix � 
labelled by a. We also require the diagonal function of �:

Using these two functions, the contraassociativity condition turns into the equation

We often refer to this equation as the row-diagonal identity.
For example, let C be the set {1, 2} . We identify � with a function � ∶ X × X → X 

and write the function � ∶ C × C → X in the usual matrix notation

In this case, the row-diagonal identity is

3.5 � Product contramodules

Let Y be set over C with a surjective structure map � ∶ Y → C . The set X = [C, Y]C 
of sections of p is a non-empty contramodule. Note that

where Ya ∶= 𝜙−1(a) ⊆ Y  . In particular, any product indexed by C is a contramod-
ule over C. The contramodule structure map � ∶ [C, [C, Y]C] → [C, Y]C can be 

rb(�) ∶ C → X, defined by rb(�)(a) = �(b, a).

�� ∶ C → X, �� (a) = �(ra(�)).

�� ∶ C → X, �� (a) = �(a, a).

(22)�(�� ) = �(�� ) .

� =

(
x11 x12
x21 x22

)

(23)�(�(x11, x12), �(x21, x22)) = �(x11, x22).

Y =
∐

a∈C

Ya, X = [C, Y]C =
∏

a∈C

Ya
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described as follows. A function � ∶ C → [C, Y]C is a list � = (�a)a∈C of sections of 
� ∶ X → C , i.e., �a ∈ [C, Y]C for all a ∈ C . Then �(�) ∈ [C, Y]C is the function

For example, take C = {1, 2} . Then the product Y = Y1 × Y2 equipped with the 
binary operation

is a contramodule over {1, 2}.

3.6 � Every contramodule is isomorphic to a product contramodule

We divide this argument into two steps. The first is the special case of a contramod-
ule over a set with two elements. The second is the general case as an adaptation of 
the special case.

3.6.1 � Contramodules over a set with two elements

Let X be a contramodule over the set C = {1, 2} with structure map � ∶ X × X → X . 
Fix u ∈ X and define �1,�2 ∶ X → X by

Now set

Let us first establish some elementary formulas.

Lemma 3.2  The following formulas hold for all x, y1, y2 ∈ X and a, b ∈ {1, 2} . 

1.	 �a(�b(x)) =

{
�a(x) if a = b,

u if a ≠ b.

2.	 �a(�(x1, x2)) = �a(xa).
3.	 If, furthermore, (x1, x2) ∈ X1 × X2 , then �a(�(x1, x2)) = xa.

Proof  The row-diagonal identity, combined with the unitality condition applied to 
the matrix

gives the formula �1�1(x) = �1(x) . The same argument using the matrix

�(�)(a) = �a(a).

�((y1, y2), (z1, z2)) = (y1, z2)

�1(x) = �(x, u), �2(x) = �(u, x).

X1 ∶= im (𝜋1) ⊆ X , X2 ∶= im (𝜋2) ⊆ X.

(
x u

u u

)
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gives the formula �2�1(x) = u . The other formulas follow in a similar fashion. This 
proves (1).

The proof of (2) when a = 1 (or a = 2 ) is a similar argument using the matrix

Finally, (3) follows directly from (1) and (2). 	�  ◻

Let us define

to be the map with components �1 , �2 and

to be the restriction of � ∶ X × X → X to X1 × X2 ⊆ X × X.

Lemma 3.3  The maps � and � are inverse isomorphisms of contramodules.

Proof  Observe that for each x ∈ X

The row-diagonal identity applied to the matrix

shows that �(�(x, u), �(u, x)) = �(x, x) and the unitality condition yields that 
�(x, x) = x . Therefore, �� is the identity.

Next for x1 ∈ X1 and x2 ∈ X2 , Lemma 3.2 ensures that

Therefore, �� is also the identity.
Finally, a simple argument using part (3) of Lemma 3.2 and the formula for the 

structure map of X1 × X2 shows that � is a map of contramodules. 	�  ◻

3.6.2 � The general case

The argument in the general case is exactly the same as in the case where C has 
two elements except that we must replace 2 × 2 matrices by the appropriate C × C 

(
u u

x u

)

(
x1 x2
u u

)
(correspondingly

(
u u

x1 x2

)
).

� = (�1,�2) ∶ X → X1 × X2

� = � ∣X1×X2
∶ X1 × X2 → X

��(x) = �(�(x, u), �(u, x)) .

(
x u

u x

)

�1�(x1, x2) = x1, �2�(x1, x2) = x2.
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matrices. So let X be a contramodule over C. Fix a point u ∈ X . For each a ∈ C and 
x ∈ X define

Now define �a ∶ X → X by

and set Xa ∶= im (𝜋a) ⊆ X . The following elementary formulas is a version of 
Lemma 3.2 for the general case.

Lemma 3.4  The following formulas hold for all x ∈ X , � ∈ [C,X] and a, b ∈ C . 

1.	 �a(�b(x)) =

{
�a(x) if a = b,

u if a ≠ b.

2.	 �a(�(�)) = �a(�(a)).
3.	 If, furthermore, �(a) ∈ Xa for all a ∈ C , then �a(�(�)) = �(a).

Proof  The proofs follow by writing down the C × C matrices which are the obvious 
analogues of the 2 × 2 matrices in Lemma 3.2. We will write down these general 
matrices and leave the argument using the unitality and the row-diagonal identities 
to the reader. 

1.	 To compute �a(�a(x)) we use the matrix (zc,d) with za,a = x and all other entries 
equal to u . To compute �a(�b(x)) we use the matrix (zc,d) with za,b = x and all other 
entries equal to u.

2.	� To prove (2) we use the C × C matrix (zc,d) with all entries u except in the row   
labelled a. In this row za,b = �(b).

Finally, to prove (3), note that since �(a) ∈ Xa it follows that �(a) = �a(z) for some 
z ∈ X . The formula follows from (1) and (2). 	�  ◻

As above we write

for the map with components �a and

for the restriction of the contramodule structure map � ∶
∏

�∈C X → X . In terms of 
functions, this subset of [C,X] =

∏
a∈C X corresponds to the set of such functions 

� ∶ C → X that �(a) ∈ Xa.

�a,x ∶ C → X by �a,x(b) =

{
x if a = b,

u if a ≠ b.

�a(x) = �(�a,x)

� = (�a) ∶ X →
∏

a∈C

Xa

� = � ∣∏
a∈C Xa

∶
�

a∈C

Xa → X
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Theorem 3.5  The maps � and � are inverse isomorphisms of contramodules.

Proof  It follows immediately from the definitions of � and � that

To compute this by the row-diagonal identity, we introduce the C × C matrix 
� = (zab) defined by

The row labelled by a of � is ra(�) = �a,x and the corresponding row function is 
precisely

The diagonal entries of � are all equal to x and, by the unitality condition, it follows 
that �(�� ) = x . Now the row-diagonal identity inplies that �� is the identity:

The facts that � is a map of contramodules and that �� is the identity follow directly 
from Lemma 3.4. 	�  ◻

3.7 � The co‑contra correspondence in the category of sets

We now consider the functors  and  . 
If X is a comodule over C, R(X) = [C,X]C is the set of sections of the structure map 
� ∶ X → C . We will say that a comodule over C is degenerate if the structure map � 
is not surjective. Notice that R(X) is the empty set, if X is degenerate. By Theorem 3.5, 
every non-empty contramodule over C is isomorphic to R(X) for some C-comodule X.

The functor L is more intricate. Given Y, a contramodule over C, we have two 
maps

Then L(Y) is the coequaliser of these two maps. In this section we prove the follow-
ing theorem.

Theorem 3.6  Let C be a set. The functors L and R are quasi-inverse equivalences 
between the category of non-degenerate C-comodules and the category of non-
empty C-contramodules.

The coequaliser in the definition of L(Y) is the the quotient of Y × C by an 
equivalence relation. The key to the proof of the theorem is to understand this 

�(�(x)) = �(�((�a,x)a∈C)) .

zaa = x, zab = u if a ≠ b.

�� ∶ C → X, �� (a) = �(�a,x) = �a(x).

x = �(�� ) = �(�� ) = �(�((�a,x)a∈C)) = �(�(x)).

�, � ∶ [C, Y] × C → Y × C

�(�, a) = (�(a), a), �(�, a) = (�(�), a).
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equivalence relation in the case where Y = R(X) = [C,X]C . Let ∼ be the equiva-
lence relation on [C,X]C × C defined as follows:

Lemma 3.7  Let X be a comodule over C. Then

Proof  From the definition of the coequaliser, L(R(X)) is the quotient of [C,X]C × C 
by the equivalence relation generated by the binary relation ≈ . The relation ≈ is 
defined by one of the following equivalent three statements: 

1.	 (�, a) ≈ (� , b),
2.	 there exist � ∶ C → [C,X]C  and c ∈ C  such that �(� , c) = (�, a) and 

�(� , c) = (� , b),
3.	� a = b and there is a function � ∶ C → [C,X]C such that for all c ∈ C , 

�(a)(c) = �(c) and �(c)(c) = �(c).

The lemma immediately follows from the equivalence

that we are going to establish in the rest of this proof. The statement (3) from the list 
above tells us that

This proves the direct implication in  (25). To prove the reverse implication, pick 
�, � ∈ [C,X]C such that �(a) = �(a) . Define � ∶ C → [C,X]C by

Since �, � ∈ [C,X]C it is clear that �(c) ∈ [C,X]C for all c ∈ C . The statement (3) 
from the list implies that (�, a) ≈ (� , a) . This completes the proof. 	�  ◻

Now we prove Theorem 3.6.

Proof  Let X be a non-degenerate C-comodule. Consider the map

This map is surjective. Therefore, using the relation (24), we conclude that the quo-
tient map

is an isomorphism. By Lemma 3.7,

(24)(�, a) ∼ (� , b) ⟺ a = b and �(a) = �(b).

L(R(X)) = ([C,X]C × C)∕ ∼ .

(25)(�, a) ≈ (� , b) ⟺ (�, a) ∼ (� , b)

(�, a) ≈ (� , b) ⟹ �(a) = �(a)(a) = �(a).

�(a) = �, �(b) = � if a ≠ b.

�X ∶ [C,X]C × C → X, �X(�, a) = �(a).

�X ∶
(
[C,X]C × C

)
∕∼ ⟶ X
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and so we get a natural isomorphism

It is not difficult to check that this natural isomorphism is the counit of the adjunc-
tion (L ⊣ R).

Now let Y be a C-contramodule. We have a natural transformation Y → R(L(Y)) , 
the unit of the adjunction. Choose a C-comodule X and an isomorphism 
� ∶ R(X) → Y  . This gives a commutative diagram 

 The top horizontal arrow is an isomorphism as are the two vertical arrows. This 
proves that the map Y → R(L(Y)) is also an isomorphism. 	�  ◻

3.8 � Simplicial sets

Let S be the category of simplicial sets. This is a cartesian category, that is, the monoi-
dal product is the categorical product. It is a closed symmetric monoidal category:

at each level n, where Δ[n] ∈ S is the standard n-simplex. As in the start of Sect. 3.4, 
a comonoid in C is a simplicial set C = (Cn) with the diagonal map C → C × C.

Similarly to (34) and Proposition 3.1, ST is isomorphic to the overcategory (S↓C) 
(c.f. [11]). Thus, a C-comodule M = (Mn) is a simplicial set with a Cn-set structure 
�n ∶ Mn → Cn at each level n. The compatibility condition is commutation of � with 
the simplicial set structure maps:

for all non-decreasing functions f ∶ [n] → [m] . Here by [n] we denote the ordered 
set {0,… , n}.

Let us briefly examine a C-contramodule (X = (Xn), �) . Its structure map 
� = (�n) ∈ S([C,X],X) consists of functions for each n

satisfying the contraassociativity and contraunitality conditions.

L(R(X)) =
(
[C,X]C × C

)
∕ ∼

L(R(X)) → X

(X × Y)n = Xn × Yn, [Y ,X]n = S(Y × Δ[n],X)

�n◦M(f ) = C(f )◦�m

�n ∶ [C,X]n = S(C × Δ[n],X) → Xn
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4 � Deferred Proofs

4.1 � Enriched and ordinary (co)equalisers

Let C be a closed symmetric monoidal category. Both C and Cop are enriched in C:

The equaliser of a pair f , g ∶ X ⇉ Y  represents a functor

Similarly, the enriched equaliser of this pair is a map h ∶ K → X such that the 
functor

is represented by K with the natural isomorphism [−,K] → E given by the evalu-
ation h̃− . Dually, the enriched coequaliser of the pair f , g ∶ X ⇉ Y  is a map 
d ∶ Y → K such the functor

where Z f̃  and Zg̃ are evaluations on the other side, is represented by K with the natu-
ral isomorphism [K,−] → F is given by the evaluation −d̃.

Lemma 4.1  An equaliser is an enriched equaliser. A coequaliser is an enriched 
coequaliser.

Proof  Suppose h ∶ K → X is the equaliser of a pair f , g ∶ X ⇉ Y  . The functor [Z,−] 
preserves limits because it is a right adjoint. Thus, [Z, K] is the equaliser of the pair 
f̃Z , g̃Z ∶ [Z,X] ⇉ [Z,Y] . Hence, h ∶ K → X is the enriched equaliser. The proof for 
coequalisers is similar. 	�  ◻

4.2 � Functor from comodules to contramodules

We prove Proposition 2.9 in this section.
The map �T

C,X
∶ FX → FTX in (8) is a homomorphism of free contramodules. So 

is the map in (9). This becomes clear after rewriting it using the adjunctions

Since the forgetful functor GF ∶ CF → C is left adjoint, it preserves limits. Thus, RX 
is the equaliser in CF and a contramodule.

We need to show that R is an enriched functor. Let D(CF) be the category of 
diagrams

[X, Y]C = [X, Y] , [X, Y]Cop = [Y ,X] .

E ∶ Cop → C, Z ↦ eq (̃fZ , g̃Z ∶ [Z,X] ⇉ [Z, Y]).

F ∶ C → C, Z ↦ eq (Z f̃ , Zg̃ ∶ [Y , Z] ⇉ [X, Z]),

(26)�T
C,X

∶ FX = [C,X] ⟶ F2TX ⟶ FTX.
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By trivially enriching the index category J  , we make the category D(CF) enriched. 
Moreover, the equaliser eq ∶ D(CF) → CF becomes an enriched functor.

By inspection, the assignment X ↦ (�T
C,X

,�T
C,X

) is an enriched functor 
R0 ∶ CT → D(CF) . The functor R is a composition of two enriched functors R0 and 
eq , hence, enriched.

4.3 � Functor from contramodules to comodules

A proof of Proposition 2.10 is similar to the proof of Proposition 2.9. The maps �Y 
and �Y in the definition of LY (see (12)) are morphisms of cofree comodules. Their 
common right inverse is

By Assumption  2, �Y and �Y admit a coequaliser LY. Since the forgetful functor 
GT ∶ CT → C is right adjoint, it preserves colimits. Thus, LY is the coequaliser in CT 
and a comodule.

To show that L is enriched, consider D(CT ) (cf. (27)). By trivially enriching the 
index category J  , we make the category D(CT ) enriched. Moreover, the coequaliser 
coeq ∶ D(CT ) → CT becomes an enriched functor.

By inspection, the assignment X ↦ (�Y , �Y ) is an enriched functor 
RL ∶ CF → D(CT ) . The functor L is a composition of two enriched functors L0 and 
coeq , hence, enriched.

4.4 � Enriched adjunction

We start with a useful fact.

Lemma 4.2  (cf. [16, 1.7 and 1.8]) Let C be a closed symmetric monoidal category. 
Let A be a C-enriched category. 

1.	 If B is another C-enriched category and H ∶ A → B is a C-enriched functor, then 
the maps 

 are C-natural in both X and Y.
2.	 The internal hom [X, Y]A (cf. (3)) is C-natural in both X and Y.
3.	 The enriched composition cA

X,Y ,Z
 (cf. (3)) is C-natural in X and Z, and C-extranatu-

ral in Y.

We proceed with the proof of the adjunction (L ⊣ R) in Theorem 2.11.

(27)Ψ ∶ J ⟶ CF , J ∶= (∙ ⇉ ∙) .

TY
T�F(Y)
�����������������������→ TFY .

HX,Y ∶ A(X, Y) → B(HX,HY) (cf .(6))
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Proof  To show that (L, R) is a C-enriched adjoint pair we need to show that there is a 
C-natural isomorphism of bifunctors

Note that by Lemma 4.2 the internal hom bifunctor [−,−] is a C-natural transfor-
mation. Thus, the adjunction (T ⊣ F) becomes an isomorphism of C-enriched 
bifunctors

Moreover, we have [TX, Y]T ≅ [X,RY] and [LX, Y] ≅ [X,FY]F as objects in C . Note 
that the maps

are adjuncts of the maps

Observe that the functor [X,−] is a right adjoint and thus preserves kernels. Com-
bined with the fact that [TX, Y] ≅ [X,FY] is an isomorphism of bifunctors, we 
can deduce that every map which equalises the pair (�T

TX,TY
,�T

TX,TY
) also equalises 

([ Id ,�T
C,X

], [ Id ,�T
C,X

]) . This implies the isomorphism [TX, Y]T ≅ [X,RY].
Again, by Lemma 4.2 this isomorphism is, in fact, a C-enriched isomorphism of 

enriched bifunctors. The argument for [LX, Y] ≅ [X,FY]F is analogous.
We can complete the proof by observing that the following squares are cartesian 

in C : 

 Let d1 ∶= [�X , Id ]◦�
T
LX,Y

 and d2 ∶= [ Id , �T
C,X

]◦�F
X,RY

 . The maps d1 and d2 clearly 
equalise the pairs (�T

TX,TY
,�T

TX,TY
) and ([ Id ,�T

C,X
], [ Id ,�T

C,X
]) respectively. Thus, by 

definition d1 = �T
TX,Y

◦� , i.e., the left square commutes. The universal property of 
the equaliser implies that [LX, Y]T is a pullback. A similar argument shows that the 
square on the right is cartesian. The existence of the C-enriched isomorphisms of 
bifunctors explained above completes the proof.

	�  ◻

[LX, Y]T ≅ [X,RY]F.

[TX, Y] ≅ [X,FY] .

�T
TX,TY

,�T
TX,TY

∶ [TX, Y] ⇉ [TX, TY]

[ Id ,�T
C,X

], [ Id ,�T
C,X

] ∶ [X,FY] ⇉ [X,FTY] .
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4.5 � Change of comonoid

Now we collect standard technical facts on the behaviour of comodules and con-
tramodules under a morphism f ∶ C → Ĉ of comonoids in C . We omit the proofs.

We denote the two comonad-monad adjoint pairs with chiefs C and Ĉ by (T ⊣ F) 
and (�T ⊣ �F) . Clearly, we have restriction functors

Besides the comodules and the contramodules, we would like to consider the over-
category (or slice category) (C↓C) . Again, there is a restriction functor

All three functors deserve the same notation because they are essentially the “same” 
functor, at least they are the same on objects. The similarity breaks down when we 
consider the existence of induction functors, forcing us to use different notations.

We start with the overcategory because it is the easiest one to understand.

Proposition 4.3  Let C , Ĉ be any objects of C , f ∈ C(C, Ĉ) . Then

where �2 is the projection onto the second component, is a C-enriched functor, C
-enriched right adjoint to .

This proposition is an enriched version of the standard fact [10, Lemma 7.6.6].
Our comodules are right comodules since T = −⊗ C . Similarly, there is a cat-

egory of left comodules, TC , comodules over the comonad T � = C⊗ − . The como-
noid C is naturally an object of both TC and CT . In fact, it is a bicomodule in a suit-
able sense.

Proposition 4.4  Suppose that the symmetric monoidal category C satisfies 
Assumption 1. 

1.	 There exists a cotensor product, an enriched in C bifunctor 

 where M◻CN is the equaliser of the pair of maps 

−◻C− ∶ CT × TC → C,

𝜌M ⊗ Id N , a
−1
M,C,N

◦( IdM ⊗ 𝜌N) ∶ M ⊗ N ⇉ (M ⊗ C)⊗ N.
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2.	 If f is a morphism of comonoids and the monad T = − ⊗ C preserves equalisers 
of pairs of morphisms, then 

 is a C-enriched functor, where the structure morphism �̃  appears in the diagram 

 with equalisers in both rows and three commutative squares (the right square is 
commutative as soon as only the top or only the bottom arrows are taken). Fur-

thermore,  is an enriched adjunction.

For coalgebras over rings this proposition is well known [5, 11.9].
If T is continuous, then it preserves the equalisers. Similarly in Proposition 4.5 

below, if F is cocontinuous, then it preserves the coequalisers. In the category of 
chain complexes over a commutative ring � (see Sect. 5.7), these are conditions for 
C to be flat and projective correspondingly. See also Sect. 4.6.

Proposition 4.5  Suppose that the symmetric monoidal category C satisfies Assump-
tions 1 and 2. 

1.	 There exists a cohom, a C-enriched bifunctor 

 where Cohom C(M,P) is the coequaliser of the pair of maps 

 where adM,P is the internal adjunction map.
2.	 If f is a morphism of comonoids and the comonad F = [C,−] is cocontinuous, 

then 

 is a C-enriched functor, where the structure morphism �̃  appears in the diagram 

Cohom C(−,−) ∶ CT × CF → C,

adM,P◦[�M , Id P], [ IdM , �P] ∶ [M,F(P)] ⇉ [M,P],



1 3

São Paulo Journal of Mathematical Sciences	

 with coequalisers in both rows and three commutative squares (the leftt square is 
commutative as soon as only the top or only the bottom arrows are taken). Fur-

thermore,  is an enriched adjunction.

In the context of DG-coalgebras over rings this proposition was discovered by 
Positselski [22, 2.2]. We finish this section with a question, reminiscent of the stand-
ard cohom-defining property in linear categories:

Question 4.6  Suppose that the symmetric monoidal category C satisfies Assump-
tions  1 and  2. Does there exist a C-enriched natural equivalence of trifunctors 
CT × TC × C → C

4.6 � Induction for contrasets

Observe that in the category  the comonad T is continuous for any C . Thus, 
for any function f ∶ C → Ĉ , we have the induction functor for comodules as in 
Proposition 4.4.

This agrees well with the isomorphism of categories in Proposition 3.1. Indeed, 

the induction functor for the overcategories  does not require any addi-
tional assumptions (cf. Proposition 4.3).

On the other hand, F is not cocontinuous if |C| ≥ 2 . Let C be a 2-element set. In 
this case, F(X) = X2 for any set X. Look at the coequaliser of two maps from a point

Here X∕ ∼ is obtained from X by identifying the two image points. Apply F:

Thus, Proposition 4.5 gives us no coinduction for contramodules in .
Let us discuss restriction. In light of Theorem  3.5, a contramodule 

 is represented as a product (P, �P) =
∏

x∈C Px . Its restric-
tion has similar representation:

[M◻CN,X] ≅ Cohom C(M, [N,X]) ?

I ⇉ X
coeq.
⤏ X∕∼ .

F(I) = I ⇉ F(X)
coeq.
⤏ (X2)∕ ∼≠ (X∕∼)2 = F(X∕∼) .
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Notice that if z is not in the image of f, then P̂z is a 1-element set. Now it is time to 
address induction.

Proposition 4.7  Let  ,  . Then there exists a 
functor

left adjoint to .

Proof  A function f is a composition of a surjection f1 and an injection f2:

It suffices to define a left adjoint functor to  for injections and surjections sepa-
rately. Then  is a composition of these two functors.

If f is surjective, we can define the induction functor as a composition

In this case a non-degenerate comodule remains non-degenerate after induction. 
Thus, the non-empty contramodules turn into non-degenerate comodules and vice 
versa. The empty contramodule ∅ remains empty, going through these functors. It 
follows from Proposition 4.3 and Theorem 3.6 that this is a left adjoint.

Now let us assume that f is injective. We can define induction explicitly as

To prove that this is a left adjoint, we just need to translate the representation in 
Theorem 3.5 to an explicit calculation of homs:

where the equality  holds true because P̂y = Py if y ∈ Im (f ) and P̂y is a 1-ele-
ment set otherwise. 	�  ◻

(28)(P̂, �̂P) = Res(P, �P) =
∏

z∈Ĉ

P̂z , where P̂z =
∏

y∈f−1(z)

Py .

f ∶ C
f1
�������→ C̃ = Im (f )

f2
�������→ Ĉ .

(29)

(30)
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It follows from Proposition 4.7 that equation (30) essentially defines the induced 

contramodule for a general f as well. If  , then

5 � Model Categories

5.1 � Model structures

Let B be a model category, which we assume to be complete and cocomplete [10, 
13]. The structure classes of morphisms are denoted ℂ for cofibrations, � for weak 
equivalences and �  for fibrations. Given a morphism f, we write its factorisations in 
the following way:

Unlike [13, Def. 1.1.4], we do not automatically assume that the factorisations are 
endofunctors on the category of maps Map(B) (also called the category of squares 
or the category of arrows). Recall that Map(B) has the maps in B as objects and 
commutative squares in B as morphisms.

An object X ∈ B is cofibrant if the map from the initial object �X ∶ � → X is a 
cofibration. Similarly, an object X ∈ B is fibrant if the map to the terminal object 
1X ∶ X → 1 is a fibration. By X

ℂ
 and X

�
 we denote cofibrant and fibrant replace-

ments of X. The full subcategory of cofibrant (or fibrant, or cofibrant and fibrant) 
objects is denoted B

ℂ
 (or B

�
 , or B

ℂ𝔽
).

A model category B is called accessible if B is a locally presentable category and 
both factorisations can be realised by accessible endofunctors on Map(B).

5.2 � Model structures on closed monoidal categories

Suppose now that the closed symmetric monoidal category C is also a model cat-
egory. The category C is called a monoidal model category [13, Def. 4.2.6] if the 
model and monoidal structures are compatible in the sense that the following three 
conditions hold. 

1.	 The monoidal structure ⊗ ∶ C × C → C is a Quillen bifunctor [13, 4.2], i.e., given 
two cofibrations f , g ∈ ℂ , f ∈ C(U,V) , g ∈ C(X, Y) , their pushout 

 is a cofibration.

(31)

f ∶ X
f � ℂ
���������������→ Y

f �� 𝔽𝕎
�����������������������→ Z, f ∶ X

f � ℂ𝕎
����������������������→ Y

f �� 𝔽
����������������→ Z.

f□g ∶ (V ⊗ X)
∐

U⊗X

(U ⊗ Y) → V ⊗ Y
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2.	 If one of the cofibrations f, g is a trivial cofibration, then f□g is a trivial cofibra-
tion.

3.	 For all cofibrant X and cofibrant replacements of the monoidal unit 

 the maps 

 are weak equivalences.
Notice that condition (3) holds automatically if I is cofibrant.

The upshot of this definition is that the homotopy category Ho(C) becomes a 
closed symmetric monoidal category under the left derived tensor product ⊗L and 
the right derived internal homs R[−,−] and R[̃−,−] with the monoidal unit I [13, 
4.3.2].

5.3 � Induced model structures for modules and comodules

We would like to equip the category CT with a left induced model structure and the 
category CF with a right induced model structure. The forgetful functors to C are 
denoted GT and GF respectively. The maximal right (left) complementary class of a 

class of morphisms � is denoted  (   correspond-
ingly). Let us define the classes of maps

Even if the categories CT and CF are complete and cocomplete (cf. Sect. 2.6), these 
classes do not necessarily define model structures. The following proposition gives 
some sufficient conditions. Further sufficient conditions are known (cf. [8, Th. 5.8], 
[26, Th. 4.1]).

Proposition 5.1  Suppose that C is a closed symmetric monoidal model category such 
that the model category structure is accessible. Let (T ⊣ F) be an internally adjoint 
comonad-monad pair. 

1.	 If the category CT is locally presentable, then CT is complete and equation (32) 
defines an accessible model structure on CT , called (left)-induced.

2.	 If the category CF is cocomplete, then CF is locally presentable and equation (32) 
defines an accessible model structure on CF , called (right)-induced.

�I ∶ �
ℂ

�������→ I
ℂ

f 𝔽𝕎

�������������������→ I

f ⊗ Id X ∶ I
ℂ
⊗ X → I ⊗ X, Id X ⊗ f ∶ X ⊗ I

ℂ
→ X ⊗ I

(32)
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Proof  A locally presentable category is complete [1, Cor. 1.28]. Then part (1) fol-
lows immediately from [9, Cor. 3.3.4].

The category CF admits small limits and colimits by our assumptions (cf. 
Sect. 2.6). Now, the functor F ∶ C → C is a right adjoint, hence, accessible by [1, 
Prop. 2.23]. By [1, Th. 1.20], CF is accessible. Since CF is complete, it is locally pre-
sentable [1, Cor. 2.47].

The second statement in (2) follows from [9, Cor. 3.3.4]. 	�  ◻

We finish the section with the following fact:

Corollary 5.2  Suppose that, further to the conditions of Proposition 5.1, the category 
C is locally presentable. Then the following statements hold. 

1.	 Equation (32) defines an accessible (left-induced) model structure on CT and an 
accessible (right-induced) model structure CF.

2.	 If C is cofibrantly generated or right proper, with generating set of trivial cofibra-
tions � , and if the functor GF takes relative F�-complexes to weak equivalences, 
then CF is also cofibrantly generated or right proper, respectively.

Proof  The first statement follows from Proposition 5.1 and Proposition 2.7.
By Proposition 2.7 CF is locally presentable. Thus, combined with our assumption 

on GF , it follows that CF is cofibrantly generated by [10, Th. 11.3.2]. Since limits in 
CF are inherited from C , the model structure on CF is right proper. 	�  ◻

5.4 � Comodule‑contramodule correspondence for model categories

Let us consider the following diagram of categories and the three pairs of C-enriched 
adjoint functors (F ⊣ GF) , (GT ⊣ T) and (L ⊣ R) (cf. Theorem 2.11). 

 All these adjunctions are C-enriched. Assuming that equation  (32) defines model 
structures, the adjunctions (F ⊣ GF) and (GT ⊣ T) are Quillen adjunctions. What 
about the third adjunction (L ⊣ R)?
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Problem 5.3 

1.	 Find necessary and sufficient conditions for the adjunction (L ⊣ R) to be a Quil-
len adjunction (and/or a Quillen equivalence) between the right-induced model 
category CF and the left-induced model category CT.

2.	 Investigate existence of other model category structures on CF and CT (or their 
co(completions)) under which the adjunction (L ⊣ R) is a Quillen adjunction or 
a Quillen equivalence.

5.5 � An answer for cartesian closed categories

In this section we assume that C is a cartesian closed category. This means that the 
monoidal product ⊗ in C is the categorical product. It follows that C is symmetric 
and the unit object I is the terminal object. Similarly to the start of Sect. 3.4, all 
comonoids in such category are objects C with the diagonal map Δ ∶ C → C × C.

Let a comonoid C be a chief object of an internally adjoint comonad-monad 
pair on C . Similarly to Proposition 3.1, CT is isomorphic to the overcategory (or 
slice category) (C↓C) (c.f. [11]):

Proposition 5.4  The category CT is complete and cocomplete.

Proof  The slice category of a complete category is complete [18, IV.7, Th. 1]. 
Cocompleteness is immediate (Sect. 2.6). 	�  ◻

The left-induced model structure (see (32)) on CT is, in fact, induced:

Proposition 5.5  (cf. [11]) If C is cofibrantly generated, then the following is a cofi-
brantly generated model structure on CT:

If C is left or right proper, then so is CT.

Proof  We identify CT with (C↓C) . Since C is a cofibrantly generated model cate-
gory, so is (C↓C) under the model structure (35) [11, Th. 1.5]. This proves the first 
statement.

The second statement is [11, Th. 1.7]. 	�  ◻

We do not know any special description of CF in the cartesian case but the behav-
iour of the comodule-contramodule correspondence is distinctive.

(34)(M, � ∶ M → T(M)) ↔ (M,� ∶ M → C) where � = (�, IdM) .

(35)ℂT = G−1
T
(ℂ), 𝕎T = G−1

T
(𝕎), 𝔽T = G−1

T
(𝔽 ).
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Proposition 5.6  Suppose that C is cartesian closed, the left-induced model struc-
ture exists on CT and the right-induced model structure exists on CF . Then the pair 
(L ⊣ R) is a Quillen adjunction.

Proof  We need to show that the functor R ∶ CT → CF preserves fibrations and trivial 
fibrations. Let f ∶ (X,�X) → (Y ,�Y ) be a (trivial) fibration in CT . Since the model 
structure on CF is right-induced, we need to verify that Rf is a (trivial) fibration in C . 
Let us consider a commutative diagram in C

where the left down arrow is a trivial cofibration (correspondingly, a cofibration) 
in C . The diagonal filling h has not been found yet. Since RX is a subobject of 
FX = [C,X] , we have the adjunct commutative diagram 

where the left down arrow is also a trivial cofibration (a cofibration) in C . Since the 
model structure on CT is induced, f is a (trivial) fibration in C . Thus, there exists a 
diagonal filling ĥ , whose adjunct map h ∶ V → [C,X] would be a diagonal filling of 
the first diagram if it were to factor through RX ↪ FX . This would imply that Rf is a 
(trivial) fibration, finishing the proof.

To prove the outstanding claim we need to show that h equalises the pair of maps

defined in Sect. 2.7. The first components of these maps are equal so that we need to 
prove that

This follows from the fact that g ∶ V → RY  equalises the similar maps for Y and the 
commutativity of the following diagram: 

�T
C,X

,�T
C,X

∶ [C,X] ⇉ [C, TX] = [C,X × C] ≅ [C,X] × [C,C] ,

(�T
C,X

)1◦h = (�T
C,X

)2◦h ∶ [C,X] ⇉ [C,C] .
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	�  ◻

For the pair (L ⊣ R) to be a Quillen equivalence, the maps

for all X ∈ (CF)
ℂ
 , Z ∈ (CT )� , derived from the unit and the counit of adjunction, 

must be weak equivalences. For this to be true it suffices to localise at the classes of 
maps � and � as constructed below. First start with factorising the maps �X and �Z:

Taking fibrant and cofibrant replacements X′
�
 and Z′

ℂ
 of the objects X′ and Z′ respec-

tively, we obtain maps:

Factorising these gives us our desired classes:

Theorem 5.7  Let us make the following assumptions: 

1.	 C is a locally presentable category,
2.	 C is a cartesian closed monoidal model category,
3.	 C is a left and right proper model category,

Then there exist a right Bousfield localisation RBL
�
(CF) and a left Bousfield locali-

sation LBL
�
(CT ) , so that the co-contra correspondence (L ⊣ R) induces a Quillen 

equivalence between them.
Proof  We engineer the localisation classes so that (L ⊣ R) would induce a Quillen 
equivalence. The only thing we need to check is that the localisations exist.

First, instead of the localisation classes we can use localisation sets because the 
categories CT and CF are locally presentable by Proposition 2.7. We define

(37)�X ∶ X → R(LX) → R((LX)
𝔽
), �Z ∶ L((RZ)

ℂ
) → L(RZ) → Z

�X ∶ X
gX ℂ

�����������������→ X�
𝔽𝕎

�������������→ R((LX)
𝔽
)

�Z ∶ L((RZ)
ℂ
)

kZ ℂ𝕎

������������������������→ Z�
𝔽

���������→ Z.

rX ∶ X
gX
���������→ X� → X�

𝔽
and qZ ∶ Z�

ℂ
→ Z�

kZ
���������→ Z.

(38)
𝔸 ∶= {fX ∣ X

ℂ𝕎

��������������→ X
�� fX 𝔽

���������������→ X�
𝔽
},

𝔹 ∶= {hZ ∣ Z�
ℂ

ℂ

�������→ Z
�� 𝔽𝕎

�������������→ Z}.
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These are sets of maps. If these maps are turned into weak equivalences, the adjunc-
tion units and counits for Y and U become isomorphisms in the homotopy catego-
ries. Recall that the Quillen adjunction (L ⊣ R) descends to a pair of adjoint functors 
between the homotopy categories Ho(CF) and Ho(CT ).

Observe that Y belongs to the set of generating objects of CF . The cofibrant 
resolutions Y

ℂ
 form a set of generating objects of Ho(CF) . Thus, the adjunction unit 

is an isomorphism for all objects in Ho(CF) . A similar argument shows that the 
adjunction counit is an isomorphism for all objects in Ho(CT ).

It remains to show the existence of the localisations. Proposition 5.5 yields that 
CT is a left proper combinatorial model category and so LBL

�♭(CT ) exists. Similarly, 
all the conditions for existence of RBL

�♭ (C
F) , stated in [10, Rmk. 5.1.2], are met.

Finally, it is clear that LBL
�
(CT ) = L

�♭(CT ) and RBL
�
(CF) = R

�♭ (C
F) . 	�  ◻

5.6 � Simplicial sets

A good example of a category satisfying all conditions of Theorem 5.7 is the cat-
egory S of simplicial sets, briefly discussed in Sect. 3.8, with respect to the classical 
(Quillen) model structure (cf. [10, Def. 7.10.8]). The category S is locally present-
able as it is a presheaf category [1, 1.46], proper ( [10, Th. 13.1.13]) and cartesian 
closed.

Let C = (Cn) ∈ S , a comonoid under the diagonal map, be the chief of an inter-
nally adjoint comonad-monad pair (T ⊣ V) . Let us summarise its comodule-con-
tramodule correspondence:

Theorem 5.8 

1.	 The adjoint pair (L ⊣ R) is a Quillen adjunction between ST and SF.
2.	 The adjoint pair (L ⊣ R) is a Quillen equivalence between the right Bousfield 

localisation RBL
�
(SF) and the left Bousfield localisation LBL

�
(ST ).

3.	 All contramodules are cofibrant objects of SF.
4.	 A comodule (X,�) is a fibrant objects of ST ≅ (S↓C) if and only if � ∶ X → C is 

a Kan fibration.

Proof  Statement (1) is Proposition 5.6. Statement (4) is the definition.
It is clear that C is �-presentable where � is a regular cardinal greater than the car-

dinality of the union ∪nCn . Thus, statement (2) is Theorem 5.7
Let Δ[n] ∈ S be the n-dimensional simplex. Observe that F(Δ[1]) is a cylinder 

object in CF . This yields the cylinder decomposition of the empty map

𝔸
♭ ∶= {fY

ℂ
∈ 𝔸 ∣ Y is in the generator },

𝔹
♭ ∶= {hU

𝔽
∈ 𝔹 ∣ U is in the generator }.
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for all X ∈ CF . Since � × X = � , the second map Cyl(� → X) → X must be the iden-
tity. This proves statement (3). 	�  ◻

Notice that (L ⊣ R) is not a Quillen equivalence between ST and SF even for 
“nice” simplicial sets C . There exist C-comodules (X,�) such that the map of geo-
metric realisations |�| ∶ |X| → |C| has no continuous sections. It follows that RX is 
empty. See Sect. 6.5 for further discussion.

5.7 � Positselski’s answer

Let  be the category of chain complexes over a commutative ring � 
with the standard monoidal structure and the Quillen model structure [3, Th. 1.4], 
[13, Th. 2.3.11].

A comonoid in  is a DG-coalgebra. Since  is locally presentable, 
any DG-coalgebra is presentable. By Proposition 2.7,  and  are 
complete, cocomplete and locally presentable categories.

The Quillen model structure on  is compactly generated [3, Th. 1.4], hence, 
accessible. Proposition  5.1 yields the left-induced model structure (ℂT ,𝕎T , 𝔽T ) on 

 and the right-induced model structure (ℂF,𝕎F, 𝔽 F) on  . Posit-
selski calls them projective and injective correspondingly. Since the category of chain 
complexes is not cartesian closed, neither Proposition 5.6, nor Theorem 5.7 are applica-
ble. This makes the following variation of Problem 5.3 interesting.

Problem  5.9  Find necessary and sufficient conditions on the commutative ring � 
and the chief DG-coalgebra C for the adjunction (L ⊣ R) to be a Quillen adjunction 
(and/or a Quillen equivalence) between the injective model category  and 
the projective model category .

Instead of answering this question, Positselski gives an alternative answer to the part 
(2) of Question 5.3. He makes an additional assumption that

This assumption ensures that the categories  and  are abelian. 
Positselski proves that under this assumption  admits a semi-projective 
model structure (ℂp

T
,𝕎

p

T
, 𝔽

p

T
) [23, 9.1] (the letter p in the notation stands for Posit-

selski), while  admits a semi-injective model structure (ℂF
p
,𝕎F

p
, 𝔽 F

p
) with 

the following properties [23, Rmk. 9.2.2]: 

�X ∶ �
ℂ
F

�����������→ Cyl(� → X)
𝕎

F

�������������→ X

(39)C is �-projective and � is of finite global dimension.
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1.	 ℂ
p

T
= ℂT , �p

T
⊆ �T , � p

T
⊇ �T,

2.	 ℂ
F
p
⊇ ℂ

F , �F
p
⊆ �

F , � F
p
= �

F,
3.	 The co-contra correspondence (L ⊣ R) is a Quillen equivalence between 

 and .

A proof of this fact is only indicated in [23]. In our view, the model structures on 
 and  deserve a thorough investigation in the spirit of [3]. For 

instance, there are indications that imposing the condition (39) above is too strong.

Problem 5.10  For an arbitrary commutative ring � and a DG-coalgebra C , do there 
exist a semi-injective model category  and a semi-projective model cat-
egory  that satisfy the three properties just above?

6 � Topological spaces

6.1 � A convenient category of topological spaces W

The category of topological spaces T  is not closed monoidal. To remedy this issue, 
Steenrod suggested the notion of a convenient category [28]. The most common con-
venient category is the category W of compactly generated weakly Hausdorff topologi-
cal spaces, introduced by McCord [21]. We follow a modern exposition by Schwede 
[27, App. A]. Consider subcategories

where T  is the category of topological spaces, K is the category of compactly gener-
ated topological spaces. The embedding functors have adjoint functors the Kellifica-
tion functor k and the weak Hausdorffication functor w:

We use a subscript to denote the category in which a construction is taking place:

No subscript means that the construction is taking place in the default category W . 
Formula (40) tells us how the products in different categories relate. A similar rela-
tion holds for arbitrary limits:

On the other hand, the coproducts are the same in all three categories:

W
i

↪K
i

↪T

W
w
←������ K

k

←������ T , (i ⊣ k) , (w ⊣ i) .

(40)
X × Y ∶= X ×W Y = X ×K Y = k(X ×T Y) ,∏

Xn =
∏

K
Xn = k(

∏
T
Xn) .

lim
←����������

H = lim
←����������K

H = k(lim
←����������T

H) .
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Since quotients of weakly Hausdorff spaces are no longer weakly Hausdorff, the 
relation for colimits is this:

Both categories W and K are closed symmetric monoidal categories [27, A.22, 
A.23] with products X × Y  and X ×K Y  and internal homs

where C(X, Y) = C�(X, Y) = T(X, Y) is the set of continuous functions X → Y  . The 
difference is the topology. The space C(X,  Y) carries the compact open topology, 
while C�(X, Y) is equipped with the modified compact open topology. The basis of 
the latter is given by sets of the form

where U is open in Y, K is compact and h ∶ K → X is a continuous map. Notice that 
if X is weakly Hausdorff, then h(K) is closed and thus compact. So the two topolo-
gies on T(X, Y) coincide in this case.

6.2 � Homotopy theory in W

The Quillen model structure on W is defined as follows. 

�,	� weak equivalences. These are the maps f ∶ X → Y  satisfying

  

	 (i)	 f induces an isomorphism of sets �0(X)
≅
�������→ �0(Y),

	 (ii)	 and for  any x ∈ X  and n ≥ 1 the  induced homomor phism 
f∗ ∶ �n(X, x) → �n(Y , f (x)) is an isomorphism of groups.

� ,	� fibrations. The fibrations are the Serre fibrations, that is, those maps p ∶ E → B 
which have the homotopy lifting property with respect to any CW-complex.

ℂ,	� cofibrations. The cofibrations are the maps f ∶ X → Y  which are retracts of a 
map f � ∶ X → Y � , where Y ′ is a space obtained from X by attaching cells.

Note that W with the Quillen model structure is a cofibrantly generated model 
category with a set of generating cofibrations

∐
Xn =

∐
K
Xn =

∐
T
Xn .

lim
����������→

H = w(lim
����������→K

H) = w(lim
����������→T

H) .

[X, Y]W = k(C(X, Y)) = k(C�(X, Y)), [X, Y]K = k(C�(X, Y)),

N(h,U) ∶= {f ∶ X → Y | f is continuous, f (h(K)) ⊆ U},
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where Sn is an n-sphere and Dn is an n-disc, and a set of generating trivial 
cofibrations

6.3 � Cospaces

This is the name we will use for comodules in W.
Pick an internally adjoint comonad-monad pair (T ⊣ F) and its chief comonoid 

C ∈ W , with the diagonal as a comultiplication. Consider an object (X,�X) of 
(W↓C) . Here X is an object of W and �X ∶ X → C is a map in W . A morphism 
f ∶ (X,�X) → (Y ,�Y ) is a map f ∶ X → Y  over C , in the sense that �X = �Y f  . Now 
let

be the subset of maps over C . (c.f. [11]).

Proposition 6.1  [X, Y]C is a closed subset of [X, Y]W.

Proof  Pick f ∈ [X, Y]W ⧵ [X, Y]C . There exists x ∈ X such that �Y (f (x)) ≠ �X(x) . 
Since �−1

Y
(�X(x)) is closed, we can choose an open set U ⊆ Y  such that f (x) ∈ U 

and U ∩ �−1
Y
(�X(x)) = � . Then f ∈ N({x},U) ⊆ [X, Y]W ⧵ [X, Y]C so that 

[X, Y]W ⧵ [X, Y]C is open and [X, Y]C is closed. 	�  ◻

It follows that [X, Y]C with the induced topology belongs to W . This makes the 
category (W↓C) enriched in W.

The isomorphism of categories  (34) between (W↓C) and WT for the comonad 
TX = X × C is enriched in W . From now on we identify WT with (W↓C) and call its 
objects cospaces.

By Proposition  5.4 WT is complete and cocomplete. By Proposition  5.5, there 
exists a Quillen induced model structure on WT.

6.4 � Contraspaces

The cospaces reduce to something conceptually simple. At the moment we do not 
know any conceptually simpler definition of a contraspace other than the general 
one – a contraspace is a contramodule in W or a space X equipped with a map 
�X ∶ [C,X]W → X satisfying the usual properties.

The monad FX = [C,X]W , is defined by the diagonal comonoid (C,ΔC) . By 
Proposition  2.8, WF is a category enriched in W . As before, its enriched hom is 
denoted by [X, Y]F.

(41)� = {Sn−1 → Dn | n ≥ 0} ,

(42)� = {Dn × {0} → Dn × [0, 1] | n ≥ 0}.

[X, Y]C ⊆ [X, Y]W
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To understand the space [X, Y]F , we consider the subset

that consists of contramodule maps. Note that this subset is the ordinary hom 
WF(X, Y) . We equip [X, Y]C with the subspace topology.

Proposition 6.2 

1.	 [X, Y]C is a weakly Hausdorff space.
2.	 If Y is Hausdorff, then [X, Y]C is a closed subset of [X, Y]W . Consequently, 

[X, Y]C ∈ W.

Proof  Any subspace of [X, Y]W is weakly Hausdorff [27, Prop. A4(i)]. This proves 
(1).

To show (2), start with picking f ∈ [X, Y]W ⧵ [X, Y]C . There exists g ∈ [C,X]W 
such that �Y (fg) ≠ f (�X(g)) . Since Y is Hausdorff, we can find non-intersecting open 
sets U,V ⊆ Y  such that �Y (fg) ∈ U and f (�X(g)) ∈ V  . Then f belongs to the open set 
r−1
g
(�−1

Y
(U)) ∩ N({�X(g)},V) where r−1

g
(�−1

Y
(U)) is the inverse image of the open set 

𝜃−1
Y
(U) ⊆ [C, Y]W under the continuous map

Notice that no h ∈ r−1
g
(�−1

Y
(U)) ∩ N({�X(g)},V) can be a C-contramodule map 

since �Y (hg) ∈ U and h(�X(g)) ∈ V  . Hence, [X, Y]W ⧵ [X, Y]C is open and [X, Y]C is 
closed.

Finally, a closed subspace of a space in W is in W [27, Prop. A5(i)]. 	� ◻

Armed with this proposition, we can understand [X, Y]F now. A proof is left to 
the reader.

Corollary 6.3  There exists a natural homeomorphism between [X, Y]F and k([X, Y]C)
.

By Section 2.6 WF is complete and inherits limits from W.

Proposition 6.4  If C is connected, then WF inherits coproducts from W.

Proof  Let X =
∐

n(Xn, �n) be a coproduct in W of a family of contraspaces 
(Xn, �n) ∈ WF . Since C is connected, a continuous function f ∶ C → X takes values 
in one particular Xn0

 . This enables us to define the contramodule structure on X by 
�X(f ) ∶= �n0 (f ) or

[X, Y]C ⊆ [X, Y]W

rg ∶ [X, Y]W → [C, Y]W, h ↦ hg .

�X ∶ [C,X]W
≅
�������→

�
[C,Xn]W

∐
�n

�����������������→
�

Xn = X .
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This is a coproduct in WF : the universal property is immediate. 	�  ◻

A category with coproducts is cocomplete if and only it admits coequalisers. 
However, coequalisers are not inherited from W , even for a connected C.

Lemma 6.5  A space X is presentable if and only if X is discrete.

Proof  If X is discrete, then [X,−]W commutes with |X|-directed colimits.
Suppose that X is not discrete. Let Xd denote the set X with the discrete topology. 

Given a limit ordinal Λ and Ω ∈ Λ , let XΩ ∶= XΛ as a set and 
XΩ ∶= (

∏
Υ<Ω X) × (

∏
Υ≥Ω Xd) as a topological space. The colimit 

lim
����������→

(…XΩ

Id
����������→ XΩ+1 …) is XΛ as a topological space but the diagonal map 

Δ ∶ X → XΛ does not factor through any XΩ . 	�  ◻

We define a subcontraspace of (X, �X) as a subset Y of X such that �X(f ) ∈ Y  for 
any continuous function f ∶ C → Y  . We denote a subcontraspace by Y ≤ X.

Consider the subspace topology on Y ≤ X . Clearly, Y ∈ K . Since W is closed 
under closed subsets [27, A5], if Y is closed, Y is a contraspace itself. In general, 
k(Y) is a contraspace because K(C, Y) = W(C, k(Y)) due to the adjunction (i ⊣ k) . 
Thus, �Y is obtained by restricting �X to [C, k(Y)]W ⊆ [C,X]W . The continuity of �Y 
is clear.

The following lemma is obvious:

Lemma 6.6  An arbitrary intersection of subcontraspaces is a subcontraspace.

In particular, the empty set is a subcontraspace with the structure map 
Id � ∶ [C, �]W = � → � . Lemma 6.6 allows us to define, given a subset Z ⊆ X of a 
contraspace X, the subcontraspace generated by Z:

Let us describe ZC constructively. For an ordinal Ω we define the following sets by 
transfinite recursion:

Proposition 6.7  If Ω is a |C|-filtered ordinal, then ZC = ZΩ.

Proof  The inclusion ZC ⊇ ZΩ is obvious.
To prove the opposite inclusion, we need to show that ZΩ is a subcontramodule. 

A continuous function f ∶ C → ZΩ corestricts to a function f |ZΥ ∶ C → ZΥ for some 
Υ < Ω because Ω is |C|-filtered. Thus, 𝜃X(f ) = 𝜃X(f |ZΥ) ∈ ZΥ+1 ⊆ ZΩ . 	�  ◻

ZC ∶=
⋂

Z⊆Y≤X

Y .

Z0 ∶= Z, ZΩ ∶=

�
�X([C, ZΩ−1]T) if Ω is a successor ordinal,⋃

Υ≤Ω ZΥ if Ω is a limit ordinal.
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While C is not presentable in general (Lemma 6.5), the proof of Proposition 6.7 
uses the fact that [C,−]W commutes with special colimits (cf. [13, Lemma 2.4.1]). 
This can be sharpened to prove the following theorem.

Theorem 6.8  The category WF is cocomplete.

Proof  Let S ∶ D → WF be a small diagram, V its colimit in W . Hence, given 
a cocone ΨX ∶ SX → Y  , X ∈ D in WF , we have a unique mediating morphism 
Ψ♯ ∶ V → Y  in W.

Clearly, the cocone factors through the subcontramodule, generated by the image 
of Ψ♯:

The explicit construction in Proposition 6.7 gives an upper bound Ω on the cardinal-
ity of (Ψ♯(V))C . It depends on |C| and |V| but does not depend on |Y|.

Let us consider a category D∗ , whose objects are cocones ΨX ∶ SX → Y  in WC 
with |Y| < Ω . The morphisms from ΨX ∶ SX → Y  to ΦX ∶ SX → Z are such mor-
phisms f ∈ WC(Y , Z) that fΨX = ΦX for all X ∈ D . Since the cardinalities of the 
cocone targets in D∗ are bounded above, the skeleton D∗

0
 of D∗ is a small category. 

Then

is a small diagram, whose limit lim
←����������

S∗ is the colimit lim
����������→

S . 	�  ◻

We finish this section by right-inducing the Quillen model structure to WF . It 
does not follow from Proposition 5.1 because W is not accessible.

Proposition 6.9  There exists a Quillen right-induced model structure on WF , defined 
by equations (32). This structure is right proper.

Proof  Since the Quillen model structure on W is cofibrantly generated, a right 
induced model structure on WF exists if (cf. [10, Th. 11.3.2]) 

1.	 F(�) and F(�) permit the small object argument
2.	 and the forgetful functor GF takes relative F(�)-complexes to weak equivalences,

where � and � are the sets of generating cofibrations and generating trivial cofi-
brations as defined in (41) and (42) respectively. The second statement is obvious 
because the inclusions in

admit deformation retracts. Hence, relative F(�)-complexes are weak equivalences 
topologically.

ΨX ∶ SX
ΦX

�����������→ (Ψ♯(V))C ↪ Y .

S∗ ∶ D∗
0
→ WC, (ΨX ∶ SX → Y) ↦ Y

F(�) = {[C,Dn × {0}] → [C,Dn × [0, 1] ] | n ≥ 0}
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The first statement holds because relative F(�)-complexes and relative F(�)-com-
plexes are topological inclusions and every topological space is small relative to the 
inclusions [13, Lemma 2.4.1].

The model structure described above is cofibrantly generated [10, Th. 11.3.2]. 
Since the model structure on W is right proper, then so is the right-induced model 
structure on WF . 	� ◻

6.5 � Topological comodule‑contramodule correspondence

Since W is cartesian closed, the pair (L ⊣ R) is a Quillen adjunction by 
Proposition 5.6. An analogue of Theorem 5.7 encounters set-theoretic difficulties. 
We can sweep them under the carpet and have the following result with an identical 
proof.

Proposition 6.10  Suppose that all topological spaces are subsets of a Grothendieck 
universe. Then there exist a right Bousfield localisation RBL

�
(WF) and a left Bous-

field localisation LBL
�
(WT ) , where the sets � and � are defined similarly to classes 

in (38), so that the co-contra correspondence (L ⊣ R) induces a Quillen equivalence 
between the localisations.

Let C = S2 be the 2-sphere. As a cospace, consider the 3-sphere S3 with the Hopf 
fibration � ∶ S3 → S2 . The cospace (S3,�) is fibrant, yet RS3 = � . This shows that 
(L ⊣ R) in Proposition 6.10 is not a Quillen equivalence between WF and WT . This 
example suggests some “local” version of the functor R (using local sections as in 
the sheaf of sections) may still be an equivalence.

Another instructive example is the 1-sphere C = S1 and the figure-8 cospace 
(X = S1 ∨ S1,�X = Const ∨ Id S1) . Clearly, RX = { Id } is the one-element set and 
LRX = C . Taking local sections does not help: local sections near the singular point 
are not going to see the collapsing loop in X. On the other hand, the collapsing loop 
will be “seen” by the local sections of the fibrant replacement X

�
 . These phenomena 

deserve further investigation.

6.6 � Relation to simplicial sets

Most of the current chapter equally applies to the category K of compactly gener-
ated spaces, not only to W . An advantage of K is its direct relation to the cate-
gory of simplicial sets: there is a Quillen equivalence between simplicial sets and 
topological spaces [13, Th. 3.6.7]

where |Q∙| is the geometric realisation of a simplicial set Q∙ and SC (Y)n = K(Δ[n],Y) 
is the singular complex of a topological space Y. Let C∙ = (Cn) ∈ S , C = |C∙| ∈ W , 

(43)(| − | ⊣ S) , SC ∶ S ⇄ K ∶ | − |
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Ĉ∙ = SC (C) ∈ S , considered as comonoids in their categories. We denote the cor-
responding comonad-monad adjoint pairs by (T ⊣ F) , (T ⊣ F) and (�T ⊣ �F).

In light of the isomorphism of categories (34), we identify the overcategories 
with the comodule categories. The functors  (43) and the induction (Proposi-
tion 4.3) give rise to the following functors:

Similarly, we can use the functors (43). The induction functor from Proposition 4.7 
can be applied levelwise to some but not all simplicial contrasets (see Sect. 3.8). We 
expect that the induction exists in general. These considerations yield the functors 
between the contramodule categories:

We can package all these functors in the following conjectural worldview of 
the relation between the topological and the simplicial comodule-contramodule 
correspondences:

Conjecture 6.11  For any simplicial set C there exists a commutative (in an appro-
priate sense) square of categories and Quillen adjunctions 

 where the left adjoint functors are either on top or on the left and the vertical solid 
arrows are Quillen equivalences.

6.7 � Topological fact

We finish the paper with a useful fact about the topological co-contra correspond-
ence that does not follow from the general framework of model categories.

Proposition 6.12  Suppose X, Y ∈ (WT )� are CW-complexes. If f ∈ �T (X, Y) , then 
Rf ∈ WF(FX,FY) and Ff ∈ W([C,X], [C, Y]) are homotopy equivalences.
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Proof  By Whitehead Theorem, f is a homotopy equivalence. Moreover, f is a fibre-
wise homotopy equivalence [20, 7.5]. The rest of the argument is clear. 	� ◻

In particular, Rf ∈ �
F(RX,RY) . We would like to refine Proposition 6.12, replac-

ing the CW-complex condition on X and Y with a condition on C.
We need a standard topological lemma, which we could not find in the literature. 

Let X, Y be connected topological spaces in W , f ∈ W(X, Y) . If A ∈ W is another 
topological space, we write fA ∶ W(A,X) → W(A,Y) for the map of function spaces 
defined by composition with f (cf. Sect. 6.1). Next fix a map � ∶ A → X that will be 
a base point for W(A,X) . As a base point for W(A,Y) we use the map � = f◦� so 
that fA ∶ W(A,X) → W(A,Y) is a map of pointed spaces.

Lemma 6.13  Suppose that A is a CW-complex of finite type and f is a weak homot-
opy equivalence. Then (fA)n ∶ �n(W(A,X), �) → �n(W(A,Y), �) is an isomorphism 
for all n ≥ 1.

Proof  The first step in the proof is to show that the result is true for the sphere A = Sn 
where n ≥ 1 . In this case the space W(Sn,X) is usually denoted by Λn(X) . Choose a 
base point for Sn . Evaluating maps at the base point gives us a map Λn(X) → X . This 
map is a fibration and the fibre over x ∈ X is the space Ωn

x
(X) , the n-fold iterated 

based loop space of X, with base point x. The map f now gives a map of fibrations: 

The homotopy groups of Ωn
x
(X) are given by �k(Ωn

x
(X)) = �k+n(X, x) for k ≥ 0 and 

trivial for k < 0 . Under this identification, the map of homotopy groups �k induced 
by the map

is just

Since f∗ is a weak homotopy equivalence, it follows that the map of fibrations 
Λn(X) → Λn(Y) defines isomorphisms on the homotopy groups of the fibres. Since 
f is a weak homotopy equivalence this map of fibrations defines an isomorphism on 
the homotopy groups of the base spaces. A standard five lemma argument shows 
that it, therefore, gives an isomorphism on the homotopy groups of the total spaces.

The second step is to extend the result to finite CW-complexes by induction on 
the number of cells. Assume that the map (fA)∗ ∶ �n(W(A,X), �) → �n(W(A,Y), �) 

Ωn
x
(f ) ∶ Ωn

x
(X) → Ωn

f (x)
(Y)

fk+n ∶ �k+n(X, x) → �k+n(Y , f (x)).
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is an isomorphism for n ≥ 1 . Now replace A by B = A ∪� Dp+1 with � ∈ W(Sp,A) . 
This gives a cofibration sequence

Applying W(−,X) and W(−,Y) to this cofibration sequence and using the map 
f ∶ X → Y  , leads to the following commutative diagram: 

 The horizontal arrows are fibrations. The fibres of the top map are copies of 
W(Sp+1,X) . The fibres of the bottom one are copies of W(Sp+1, Y) . By assumption, 
this map of fibrations induces an isomorphism on the homotopy groups of the base 
spaces, and by the first step it induces an isomorphism on the homotopy groups 
of the fibres. It follows from the five lemma that it induces isomorphisms on the 
homotopy groups of the total spaces.

The final step is to extend the result to a CW-complex of finite type. Let An 
be the n-skeleton of A, in ∶ An → An+1 the inclusion. Then A is the direct limit of 
the An and each of the inclusions in is a cofibration. It follows that W(A,X) is the 
inverse limit of the sequence of maps W(An+1,X) → W(An) induced by in . Since 
each of the maps in is a cofibration, the maps in the inverse system are fibrations. 
Now suppose f ∶ X → Y  is a weak equivalence. We have proved that for each n 
the map fAn ∶ W(An,X) → W(An, Y) is a weak homotopy equivalence. The map 
fA ∶ W(A,X) → W(A,Y) is the map of inverse limits defined by the sequence fAn . 
Hence, fA is also a weak homotopy equivalence [12, Th. 2.2]. 	�  ◻

Given a topological space X and a point s ∈ X , by Xs we denote the connected 
component of X that contains s. A map f ∈ W(X, Y) yields a map fs ∈ W(Xs, Yf (s)) 
between components.

Theorem  6.14  Let C be a CW-complex of finite type. Suppose that 
(X,�), (Y ,�) ∈ (WT )� are fibrant cospaces and s ∈ RX . If f ∈ �T (X, Y) is a weak 
homotopy equivalence, then the map Rfs is also a weak homotopy equivalence.

Proof  Consider a part of the commutative diagram (36): 

A → B → Sp+1.
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Since both � and � are fibrations, both �∗ = [ Id C,�] and �∗ are also fibrations. 
Moreover, RXs is the fibre of �∗ over the identity and RYfs is the fibre of �∗ over the 
identity. All the spaces in the diagram have chosen base points. This yields a map 
from the homotopy exact sequence of �∗ to the homotopy exact sequence of �∗.

The map of the base spaces is the identity: it induces the identity of homotopy 
groups. By Lemma 6.13, the map of total spaces induces an isomorphism of homot-
opy groups. The five lemma tells us that it induces an isomorphism on the homotopy 
groups of the fibres. 	�  ◻

If one shows �0(Rf ) is an isomorphism, then Theorem 6.14 ensures that Rf is a 
weak homotopy equivalence. Such a proof would involve Topological Obstruction 
Theory and may require additional assumptions on C.

Theorem 6.14 is an indication that the co-contra correspondence is full of topo-
logical mysteries, waiting to be uncovered.
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