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Abstract
In this paper, we discuss normality of two families of meromorphic functions con-
cerning partially shared values. Precisely, we proved: Let F  and G be two families 
of meromorphic functions on a domain D such that all zeros of each f ∈ F  have 
multiplicities at least k + 1, where k ≥ 1 is an integer and let a, b and c be three finite 
distinct complex numbers. Assume that G is normal in D and for each f ∈ F, there 
exists g ∈ G such that a, b, c are partially shared values of f (k) and g. Then F  is nor-
mal in D. We also give examples to show that various conditions in the hypothesis 
of this theorem cannot be weakened. Furthermore, we introduce a notion of proxi-
mate values of meromorphic functions and obtain some normality criteria involving 
partially proximate values which generalize an established result of Liu, Li and Pang 
(Acta Math Sinica English series 29 (1) (2013), 151-158.)

Keywords Normal families · Partially shared values · Partially proximate values · 
Meromorphic functions

1  Introduction and main results

We set the following notations throughout the paper:

• H(D) ∶ the class of all holomorphic functions on the domain D ⊆ ℂ

• M(D) ∶ the class of all meromorphic functions on the domain D ⊆ ℂ

• ℂ∞ ∶ the extended complex plane
• � ∶ the open unit disk in ℂ.
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A subfamily F ⊂ M(D) is said to be normal in D if each sequence {fn} ⊆ F  even-
tuates a locally uniformly convergent subsequence on D with respect to the spher-
ical metric. It is not difficult to see that the limit functions of the aforementioned 
subsequences are either meromorphic on D or identically ∞. Normality of a sub-
family of H(D) is defined similarly with respect to the Euclidean metric (see [10, 
12]).

Pioneered by a French mathematician Paul Montel [8], the theory of normal 
families of meromorphic functions has played a significant role in complex analy-
sis ever since its creation in 1912. One of the most fascinating sufficient con-
ditions for a family F  of meromorphic functions to be normal in a domain D 
is that each f ∈ F  omits three fixed distinct values in ℂ∞. Schiff [10, page 74] 
documented this result as the Fundamental Normality Test (FNT). Subsequently, 
Carathéodory [5, page 202] proved that the omitted values do not need to be fixed 
and they may depend on the particular function in the family as long as these 
omitted values are uniformly separated (see [1, Theorem 8.4]). Recently, Beardon 
and Minda [2] exposed that Montel had published an extension to his three omit-
ted value theorem which gave a necessary and sufficent condition for a family 
of meromorphic functions to be normal: A family F ⊂ M(D) is normal in D iff 
there exists four �-separated values in ℂ∞ such that their preimages are equi-sep-
arated on compacta. However, this result was not well documented and there was 
a small error in Montel’s proof which was ameliorated by Beardon and Minda 
(see [2, Theorem 4]).

Another intriguing idea is to look at normality from a perspective of 
shared values. A value a ∈ ℂ∞ is said to be a shared value of functions 
f , g ∈ M(D) if f (z) = a ⟺ g(z) = a on D (without regard to multiplicities). If 
f (z) = a ⇒ g(z) = a, then we say that a is a partially shared value of f and g. In 
this direction, Schwick [11] was the first to evince correspondence between nor-
mality and shared values. Precisely, he proved that

Theorem  1 [11, Theorem  2] Let F ⊂ M(D) and a1, a2, a3 be three distinct finite 
complex numbers. If for every f ∈ F, f and f ′ share the values a1, a2, a3, then F  is 
normal in D.

Furthermore, a value b ∈ ℂ∞ is said to be a proximate value of f and g on D if 
there exists an 𝜖 > 0 such that 𝜎(f (z), b) < 𝜖 ⟺ 𝜎(g(z), b) < 𝜖 on D. Similarly, 
we call b a partially proximate value of f and g if there exists an 𝜖 > 0 such that 
𝜎(f (z), b) < 𝜖 ⇒ 𝜎(g(z), b) < 𝜖, where � denotes the spherical metric. It is easy to 
see that every shared (partially shared) value is a proximate (partially proximate) 
value.

In [7], Liu, Li and Pang posed the following interesting problem:

Problem 2 Given two families of meromorphic functions which share some values. 
If one is normal, is the other normal?

An affirmative answer to Problem 2 is obtained as below:
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Theorem  3 [7, Theorem  1.1] Let F,G ⊂ M(D) and a1, a2, a3, a4 be four distinct 
complex numbers. If G is normal, and for every f ∈ F, there exists g ∈ G such that f 
and g share the values a1, a2, a3, a4, then F  is normal in D.

It is natural to ask whether Problem  2 has an affirmative answer if instead 
of shared values, we only have partially shared or proximate or even partially 
proximate values. In this paper, we dealt with such problems and obtained the 
following:

Theorem 4 Let F,G ⊂ H(D) be such that all zeros of each f ∈ F  have multiplicities 
at least k + 1, where k ≥ 1 is an integer. Let a and b be two nonzero finite distinct 
complex numbers. Assume that G is normal in D and for each f ∈ F, there exists 
g ∈ G such that a and b are partially shared values of f (k) and g,  that is, 

 (i) f (k)(z) = a ⇒ g(z) = a; and
 (ii) f (k)(z) = b ⇒ g(z) = b.

Then F  is normal in D.
The following examples corroborate that various conditions in the hypothesis 

of Theorem 4 are not redundant.

Example 1 Let k = 1. Take F =
{
fn
}
 and G =

{
gn
}
, where

on the domain D =

{
z ∶ |z| > 1

2

}
. Clearly, the family G is normal in D and each 

fn ∈ F  has a single zero of multiplicity 2. Furthermore, f �
n
(z) = 2n(z − 1). By sim-

ple calculation, it is easy to see that

But F  is not normal in D.

This example shows that none of the conditions (i) and (ii) in Theorem 4 can 
be dropped.

Example 2 Let k = 1, F =
{
fn ∶ fn(z) = enz

}
 and G =

{
gn
}
, where gn ≡ b, b ≠ 0, 

b ∈ ℂ on �. Since f �
n
(z) = nenz is a transcendental entire function which omits 0,  it 

assumes every nonzero finite complex value infinitely often. Therefore, it follows 
vacuously that f �

n
(z) = 0 ⇒ gn(z) = 0 and f �

n
(z) = b ⇒ gn(z) = b. But G is normal 

and F  is not normal in �.

Thus the condition that a and b are nonzero distinct complex numbers is 
necessary.

fn(z) = n(z − 1)2 and gn(z) =
(

2n

2n + 1

)
z

f �
n
(z) = 1 ⇒ gn(z) = 1.
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Example 3 Let k = 2. Consider F =
{
fn ∶ fn(z) = nz2

}
 and G =

{
gn
}
, where gn(z) = zn, 

on the domain �. Then f (k)
n
(z) = 2n. Obviously, f (k)

n
(z) = ai ⇒ gn(z) = ai, where 

ai (i = 1, 2) is any odd integer. However, G is normal in � and F  is not normal in �.

This example shows that multiplicities of zeros of each f ∈ F  cannot be less than 
k + 1. Moreover, a simple modification of Example 2 reveals that Theorem 4 does 
not hold for k = 0. It is readily seen from the following:

Example 4 Let F =
{
fn
}
, where fn(z) = enz + 1 and let G =

{
gn
}
, where 

gn(z) ≡ b, b ≠ 1, b ∈ ℂ on the domain �. By the same token as in Example 2, we 
have fn(z) = 1 ⇒ gn(z) = 1 and fn(z) = b ⇒ gn(z) = b. But G is normal and F  is not 
normal in �.

The meromorphic analogue of Theorem 4 obtained as below:

Theorem 5 Let F,G ⊂ M(D) be such that all zeros of each f ∈ F  have multiplici-
ties at least k + 1, where k ≥ 1 is an integer. Let a, b and c be three finite distinct 
complex numbers. Assume that G is normal in D and for each f ∈ F, there exists 
g ∈ G such that 

 (i) f (k)(z) = a ⇒ g(z) = a;

 (ii) f (k)(z) = b ⇒ g(z) = b; and
 (iii) f (k)(z) = c ⇒ g(z) = c.

Then F  is normal in D.
Example 5 The idea behind this example is inspired by [6, Example 1.4]. Let n, k be 
positive integers and define an by

Set

and let F =
{
fn
}
 on �. Clearly, each function in F  has a single zero of multiplicity 

k + 1. Also,

Evidently, f (k)
n
(z) ≠ 1, ∀ fn ∈ F.

Take G =
{
gn
}
 such that gn(z) = b, b ≠ 1, b ∈ ℂ for all z ∈ � and n ∈ ℕ. Then G 

is normal in �. It follows that f (k)
n
(z) = 1 ⇒ gn(z) = 1.

Also, in particular for k = 2, f (2)
n

(z) = b ⇒ gn(z) = b. But F  is not normal in �.

k! ak+1
n

n
= 1.

fn(z) =
(anz + 1)k+1

nz
, n ∈ ℕ

f (k)
n
(z) = 1 +

(−1)k k!

nzk+1
.
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This example shows that the requirement of three partially shared values of f (k) 
and g in Theorem 5 is necessary.

Example 6 Let F =
{
fn
}
 and G =

{
gn
}
, where

on the domain �. Clearly 

 (i) fn(z) = i ⇒ gn(z) = i;

 (ii) fn(z) = −i ⇒ gn(z) = −i; and
 (iii) fn(z) = b ⇒ gn(z) = b.

But F  is not normal in � and G is normal in �.
Example 6 shows that Theorem 5 does not hold if k = 0. In view of Example 3, it 

follows immediately that the condition ‘all zeros of each f ∈ F  have multiplicities 
at least k + 1, k ≥ 1 ’ in Theorem 5 cannot be weakened.

What follows is an generalization of Theorem 3:

Theorem 6 Let F,G ⊂ M(D) and 𝜖 > 0. Assume that G is normal on D and for each 
f ∈ F, there exist g ∈ G and four distinct values a1, a2, a3, a4 in ℂ with 𝜎(ai, aj) > 𝜖, 
(i ≠ j, i, j ∈ {1, 2, 3, 4}) such that

Then F  is normal in D.

Note that in Theorem 6, a1, a1, a3, a4 are partially proximate values of each f ∈ F  
and g ∈ G. If these four values happen to be shared values, then Theorem 6 reduces 
to Theorem 3. In fact, Theorem 6 is a special case of the following more general 
result which shows that the four partially proximate values in Thoerem 6 may 
change with change of f ∈ F.

Theorem 7 Let F,G ⊂ M(D) and 𝜖 > 0. Assume that G is normal in D and for each 
f ∈ F, there exist g ∈ G and four distinct values a1f , a2f , a3f , a4f  with 𝜎(aif , ajf ) > 𝜖, 
(i ≠ j, i, j ∈ {1, 2, 3, 4}) such that

Then F  is normal in D.

The following theorem asserts that the requirement of four values in Theorem 7 
can be reduced to three under suitable conditions.

Theorem  8 Let F,G ⊂ M(D) and 𝜖 > 0. Suppose that a is a totally ramified 
value of f for each f ∈ F. Further, assume that G is normal in D and for each 

fn(z) = tan nz and gn(z) = b, b ∈ ℂ, b ≠ i,−i

𝜎(f (z), ai) <
𝜖

3
⇒ 𝜎(g(z), ai) <

𝜖

3
, i = 1, 2, 3, 4.

𝜎(f (z), aif ) <
𝜖

3
⇒ 𝜎(g(z), aif ) <

𝜖

3
, i = 1, 2, 3, 4.
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f ∈ F, there exist g ∈ G and three distinct values a1f , a2f , a3f  with 𝜎(aif , ajf ) > 𝜖, 
(i ≠ j, i, j ∈ {1, 2, 3}) and 𝜎(aif , a) > 𝜖 such that

Then F  is normal in D.

2  Preparations for the proof of main results

In this section, we describe some preliminary results that are crucial to prove 
main results of this paper. First recall that if f be a meromorphic function in ℂ and 
a ∈ ℂ∞, then a is said to be totally ramified value of f if f − a has no simple zeros. 
Nevanlinna (see [3, page 84]) proved the following widely known result concerning 
multiplicities of a-points of a meromorphic function. This result plays a pivotal role 
in the proof of Theorem 8:

Theorem 9 (Nevanlinna’s Theorem) Let f be a non-constant meromorphic function, 
a1, a2,… , aq ∈ ℂ∞ and m1,m2,… ,mq ∈ ℕ. Suppose that all aj-points of f have mul-
tiplicity at least mj, for j = 1, 2,… , q. Then

If f omits the value aj , then mj = ∞.

Lemma 10 [9, Lemma 2] Let F  be a family of meromorphic functions on the unit 
disk �, all of whose zeros have multiplicities at least k,  and suppose that there exists 
M ≥ 1 such that for each f ∈ F, |f (k)(z)| ≤ M whenever f (z) = 0. If F  is not normal 
on �, then for each 0 ≤ � ≤ k, there exist 

 (i) a number 0 < r < 1;

 (ii) points zn ∶ |zn| < r;

 (iii) functions fn ∈ F; and
 (iv) positive numbers �n ⟶ 0+,

such that gn(�) = �−�
n
fn(zn + �n�)

�

⟶g(�) locally uniformly on ℂ, where 
g is a non-constant meromorphic function on ℂ such that for every � ∈ ℂ, 
g#(�) ≤ g#(0) = kM + 1.

Here g#(�) = |g�(�)|∕[1 + |g(� )|2] is the spherical derivative of g and �

⟶ indi-
cates that the convergence is with respect to the spherical metric.

Lemma 10 is commonly known as Zalcman-Pang Lemma.

𝜎(f (z), aif ) <
𝜖

3
⇒ 𝜎(g(z), aif ) <

𝜖

3
, i = 1, 2, 3.

q∑

j=1

(
1 −

1

mj

)
≤ 2.
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Lemma 11 [4, Theorem 3] Let f be a transcendental meromorphic function of finite 
order on ℂ, all of whose zeros have multiplicity at least k + 1, where k is a positive 
integer, then f (k) assumes every nonzero complex number b infinitely many times on 
ℂ.

Lemma 12 [6, Lemma 2.2] Let k be a positive integer and f be a meromorphic func-
tion on ℂ such that f (k) omits two values in ℂ. Then f (k) is constant.

3  Proof of main theorems

Proof of Theorem  4 Suppose that F  is not normal on D. Then by Lemma 10, 
there exist sequences 

{
zn
}
⊂ D, zn ⟶ z0 ∈ D,

{
fn
}
⊂ F  and positive numbers 

�n ⟶ 0+ such that

where h is a non-constant entire function, all of whose zeros have multiplicity at 
least k + 1.

By hypothesis, there exists gn ∈ G such that

Also, since G is normal on D,  we can obtain a subsequence of 
{
gn
}
, again denoted 

by 
{
gn
}
, such that gn ⟶ g locally uniformly on D. Now we consider the following 

two cases:
Case I: If h is a polynomial, then h(k) is also a non-constant polynomial owing 

to the fact that each zero of h has multiplicity at least k + 1. Thus h(k) assume the 
values a and b on ℂ. Suppose h(k)(�0) = a and h(k)(�∗

0
) = b. Then by Hurwitz’s 

theorem, there exist sequences �n ⟶ �0 and �∗
n
⟶ �∗

0
 such that h(k)

n
(�n) = a and 

h(k)
n
(�∗

n
) = b. This implies that f (k)

n
(zn + �n�n) = a and f (k)

n
(zn + �n�

∗
n
) = b. Hence 

gn(zn + �n�n) = a and gn(zn + �n�
∗
n
) = b. Taking the limit as n ⟶ ∞, we find that 

g(z0) = a and g(z0) = b, a contradiction.
Case II: If h is a transcendental entire function, then in view of Lemma 11, h(k) 

assumes a and b on ℂ. By a similar argument as in Case I, we get a contradiction.

Proof of Theorem  5 Suppose that F  is not normal on D. Then by Lemma 10, 
there exist sequences 

{
zn
}
⊂ D, zn ⟶ z0 ∈ D,

{
fn
}
⊂ F  and positive numbers 

�n ⟶ 0+ such that

locally uniformly, where h is a non-constant meromorphic function, all of whose 
zeros have multiplicity at least k + 1.

By hypothesis, there exists gn ∈ G such that 

hn(�) =
fn(zn + �n�)

�k
n

⟶ h(� ),

f (k)
n
(z) = a ⇒ gn(z) = a and f (k)

n
(z) = b ⇒ gn(z) = b.

hn(�) =
fn(zn + �n�)

�k
n

�

⟶h(�)
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 (i) f (k)
n
(z) = a ⇒ gn(z) = a;

 (ii) f (k)
n
(z) = b ⇒ gn(z) = b; and

 (iii) f (k)
n
(z) = c ⇒ gn(z) = c.

Also, since G is normal, we may assume that gn
�

⟶g normally. Furthermore, since 
zeros of h have multiplicity at least k + 1, we conclude that h(k) is also a non-constant 
meromorphic function. In view of Lemma 12, it follows that h(k) can omit at most 
one value in ℂ and hence it must assume at least two values from a,  b,  c. With-
out loss of generality, suppose that h(k)(�0) = b and h(k)(�∗

0
) = c. Then by Hurwitz’s 

theorem, there exist sequences �n ⟶ �0 and �∗
n
⟶ �∗

0
 such that h(k)

n
(�n) = b and 

h(k)
n
(�∗

n
) = c. This implies that f (k)

n
(zn + �n�n) = b and f (k)

n
(zn + �n�

∗
n
) = c. Hence 

gn(zn + �n�n) = b and gn(zn + �n�
∗
n
) = c. Taking the limit as n ⟶ ∞, we find that 

g(z0) = b and g(z0) = c, a contradiction.
Proof of Theorem 6 Follows immediately from Theorem 7.

Proof of Theorem 7 Suppose F  is not normal at z0 ∈ �. Then by Lemma 10, there 
are sequences 

{
zn
}
⊂ D with zn ⟶ z0; 

{
fn
}
⊂ F  and positive numbers �n ⟶ 0+ 

such that

locally uniformly, where h is a non-constant meromorphic function on ℂ. By 
given hypothesis, there exists gn ∈ G and four values a1fn , a2fn , a3fn , a4fn with 
𝜎(aifn , ajfn ) > 𝜖 (i ≠ j) such that

We may assume that aifn ⟶ ai. Since 𝜎(aifn , ajfn ) > 𝜖, it follows that a1, a2, a3 and a4 
are four distinct complex numbers. Moreover, since G is normal, we may assume that 
gn ⟶ g normally. We claim that h assumes at most one value from 

{
a1, a2, a3, a4

}
. 

Suppose on the contrary that h(�0) = a1 and h(�∗
0
) = a2. Then by Hurwitz’s theorem, 

there exist sequences �n ⟶ �0 and �∗
n
⟶ �∗

0
 such that fn(zn + �n�n) − a1fn = 0 and 

fn(zn + �n�
∗
n
) − a2fn = 0. Thus

By hypothesis, we have

Taking the limit as n ⟶ ∞, we obtain

hn(�) = fn(zn + �n�)
�

⟶h(�)

𝜎(fn(z), aifn ) <
𝜖

3
⇒ 𝜎(gn(z), aifn ) <

𝜖

3
(i = 1, 2, 3, 4).

𝜎(fn(zn + 𝜌n𝜁n), a1fn ) <
𝜖

3
and 𝜎(fn(zn + 𝜌n𝜁

∗

n
), a2fn ) <

𝜖

3
.

𝜎(gn(zn + 𝜌n𝜁n), a1fn ) <
𝜖

3
and 𝜎(gn(zn + 𝜌n𝜁

∗

n
), a2fn ) <

𝜖

3
.

�(g(z0), a1) ≤
�

3
and �(g(z0), a2) ≤

�

3
.
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Now �(a1, a2) ≤ �(a1, g(z0)) + �(g(z0), a2) ≤ 2�∕3 yields a contradiction. Therefore 
the claim is true and hence h is a constant, a contradiction.

Proof of Theorem 8 If F  is not normal in D,  then by the same token as in the proof 
of Theorem  7, we obtain sequences 

{
zn
}
⊂ D with zn ⟶ z0, 

{
fn
}
⊂ F, positive 

numbers �n ⟶ 0+ and values ai (i = 1, 2, 3) such that aif ⟶ ai and

locally uniformly, where h is a non-constant meromorphic function on ℂ. Moreover, 
h assumes at most one value from 

{
a1, a2, a3

}
. Without loss of generality, we may 

assume that h omits a1 and a2. Let m1 and m2 be the multiplicities of zeros of h − a1 
and h − a2 respectively. Then m1 = m2 = ∞. Since a is a totally ramified value of fn, 
it follows that a is a totally ramified value of h. If m3 is the multiplicity of zeros of 
h − a, then clearly m3 ≥ 2.

By simple calculation, we find that

a contradiction to Nevanlinna’s Theorem.
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