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Abstract
The purpose of this note is to point out that Chamberland’s theorem is implicitly 
contained in the elementary lore of the theory of orthogonal polynomials.
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In [1], Chamberland proved the following theorem:
Let P be a polynomial of degree n ≥ 2 with real coefficients. Then the zeros of P 

are real and distinct if and only if

for all x ∈ ℝ and j ∈ {1,… , n − 1}.
The purpose of this note is to point out that this result is implicitly contained in 

the elementary lore of the theory of orthogonal polynomials on the real line (OPRL).
(⇒) By Geronimus–Wendroff’s theorem [2,  Exercise 5.5, p. 30],1 there are prob‑

ability measures on ℝ , �j , with finite moments so that Pj+1 = P(n−j−1) and Pj = P�
j+1

 
are among the OPRL for �j . Since Pj+1 and Pj have leading coefficients of the same 
sign, then (see [2,  (4.13), p. 24])

(1)
(

(

P(n−j−1)(x)
)�
)2

− P(n−j−1)(x)
(

P(n−j−1)(x)
)��

> 0
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1  Geronimus–Wendroff’s theorem is just a footnote in [J. Geronimus, On the trigonometric problem, 
Ann. of Math. 47 (1946) 742–761] whose proof is immediate from Favard’s theorem.
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for all x ∈ ℝ and j ∈ {1,… , n − 1}.
(⇐) Set Pj = P(n−j) for all j ∈ {1,… , n} . Without loss of generality we can 

assume P monic. Suppose that the zeros of Pj are real and distinct. From (2) we 
see that Pj+1 has at least one zero between two zeros of Pj , and so Pj+1 has at least 
j − 1 real and distinct zeros. Suppose that the other two zeros of Pj+1 are not real, 
and therefore they appear as a complex conjugate pair. Let a be the largest zero of 
Pj . Clearly, Pj+1(x) > 0 for all x > a . However, by (2), we have Pj+1(a) < 0 , which 
leads to a contradiction. From this we conclude that if Pj has real and distinct zeros, 
then the same holds for Pj+1 . Since P1 = P(n−1) has a single real zero, we infer 
successively that P2,… ,Pn = P have real and distinct zeros.

We emphasize for the reader’s convenience that any polynomial with real and 
distinct zeros is an element of a sequence of OPRL, and so any sentence starting 
with “the zeros of a polynomial are real and distinct if and only if” is virtually 
talking about an element of a certain sequence of OPRL.
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