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Abstract
In this paper, we study the number of limit cycles that can bifurcate from a period 
annulus in discontinuous planar piecewise linear Hamiltonian differential system 
with three zones separated by two parallel straight lines. More precisely, we consider 
the case where the period annulus, bounded by a heteroclinic orbit or homoclinic 
loop, is obtained from a real center of the central subsystem, i.e. the system defined 
between the two parallel lines, and two real saddles of the others subsystems. Denot‑
ing by H(n) the number of limit cycles that can bifurcate from this period annulus by 
polynomial perturbations of degree n, we prove that if the period annulus is bounded 
by a heteroclinic orbit then H(1) ≥ 2 , H(2) ≥ 3 and H(3) ≥ 5 . Now, if the period 
annulus is bounded by a homoclinic loop then H(1) ≥ 3 , H(2) ≥ 4 and H(3) ≥ 7 . 
For this, we study the number of zeros of a Melnikov function for piecewise Hamil‑
tonian system.
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1 � Introduction and main result

The most important problem in the qualitative theory of ordinary differential equations 
is to determine the number and position of limit cycles of differential systems. The clas‑
sic formulation of such a problem was proposed by Hilber in 1900 for polynomial differ‑
ential systems and became known as the Hilbert’s 16th problem, see [9]. Currently this 
problem has been considered for piecewise differential systems. This class of differen‑
tial systems have piqued the attention of researchers in qualitative theory of differential 
equations, mainly by their numerous applications, for instance in mechanics, electrical 
circuits, control theory, neurobiology, etc (see the book [4] and the papers [3, 5, 19, 20]).

For continuous planar piecewise differential systems with two zones, Freire, Ponce, 
Rodrigo and Torres in [7] proved that such systems have at most one limit cycle. In the 
discontinuous case, the maximum number of limit cycles is not known, but important par‑
tial results about this problem have been obtained, see for instance [1, 2, 8, 14]. Of course, 
the problem becomes more complicated when we have more than two zones, and there 
are few works that deal with the discontinuous case (see [10, 11, 17, 21–24]). However, 
when restrictive hypotheses such as symmetry and linearity are imposed on the system, 
the problem becomes more accessible and good results on the number of limit cycles have 
been obtained. More precisely, for symmetric continuous piecewise linear differential sys‑
tems with three zones, conditions for nonexistence and existence of one, two or three limit 
cycles have been obtained (see for instance the book [15]). For the nonsymmetric case, 
examples with two limit cycles surrounding the only singular point at the origin was found 
in [12, 16].

Recently, some researchers have been study the number of limit cycles that 
emerging from a period annulus in a discontinuous piecewise linear near-Hamilto‑
nian differential systems with three zones, given by

with

(1)
{

ẋ = Hy(x, y) + 𝜖f (x, y),

ẏ = −Hx(x, y) + 𝜖g(x, y),

H(x, y) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

HL(x, y) =
bL
2
y2 −

cL
2
x2 + aLxy + �Ly − �Lx, x ≤ −1,

HC(x, y) =
bC
2
y2 −

cC
2
x2 + aCxy + �Cy − �Cx, −1 ≤ x ≤ 1,

HR(x, y) =
bR
2
y2 −

cR
2
x2 + aRxy + �Ry − �Rx, x ≥ 1,

f (x, y) =
⎧

⎪

⎨

⎪

⎩

fL(x, y), x ≤ −1,
fC(x, y), −1 ≤ x ≤ 1,
fR(x, y), x ≥ 1,

g(x, y) =
⎧

⎪

⎨

⎪

⎩

gL(x, y), x ≤ −1,
gC(x, y), −1 ≤ x ≤ 1,
gR(x, y), x ≥ 1,
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where the functions Hi , fi and gi are ℂ∞ , for i = L,C,R , and 0 ≤ 𝜖 << 1 . When 
� = 0 we say that system (1) is a piecewise Hamiltonian differential system. We call 
system (1) of left subsystem for x ≤ −1 , right subsystem for x ≥ 1 and central sub-
system for −1 ≤ x ≤ 1.

In this direction, i.e. when we have a discontinuous piecewise linear near-Ham‑
iltonian differential system with three zones separated by two parallel straight 
lines, the best lower bound for its the number of limit cycles is seven. This lower 
bound was obtained by linear perturbations of a piecewise linear differential sys‑
tem with subsystems without singular points and a boundary pseudo–focus, see 
[23]. As far as we know, all other papers that estimate the number of limit cycles 
for these class of piecewise linear differential systems have found at most 1 or 3 
limit cycles, see [6, 11, 18, 22]. Now, in [25], 7 and 12 limit cycles were obtained 
in discontinuous piecewise linear near-Hamiltonian differential systems with 
three zones perturbed by piecewise quadratic and cubic polynomials, respectively. 
But, in this paper, the period annulus of the unperturbed piecewise linear Hamil‑
tonian differential system was obtained from a real saddle of the central subsys‑
tem and two virtual centers of the others subsystems. For the same type of period 
annulus, in [22], 10 limit cycles were obtained through cubic perturbations.

The search for examples that present the best quota for the number of limit 
cycles that a piecewise linear system with three zones can have is what motivates 
most of the works found in the literature about this topic. However, all cases are 
interesting in themselves, that is, the search for better quotas for number of limit 
cycles cannot be used to neglect the study of particular families. We believe that 
the question of the number of limit cycles must be answered for all subclass of 
piecewise linear systems with three zones. So the type of singular points of the 
subsystems and their positions, that is, whether they are real or virtual, is impor‑
tant. Furthermore, there is not much work in the literature dealing with the dis‑
continuous case for these piecewise systems.

In this work, we contribute along these lines. Our goal is to estimated the lower 
bounds for the number of crossing limit cycles of system (1) that bifurcated from 
a period annulus of system (1)|�=0 , bounded by a heteroclinic orbit or homoclinic 
loop, obtained by a real center of the central subsystem and two real saddles of the 
others subsystem, in the cases that f(x, y) and g(x, y) are polynomial functions of 
degree n, for n = 1, 2, 3 . More precisely, the main result in this paper is the follow.

Theorem 1  The number of crossing limit cycles of system (1) which can bifurcate 
from the period annulus of the unperturbed system (1)|�=0 bounded by a homoclinic 
loop (resp. heteroclinic orbit) is at least three (resp. two) if n = 1 , four (resp. three) 
if n = 2 and seven (resp. five) if n = 3.

For prove the Theorem 1 we will study the number of zeros of the first order Mel‑
nikov function associated to system (1), see the Sect. 2 in this paper or [22, 23] for 
more details about the Melnikov function. Our study is concentrated in the neigh‑
borhoods of the homoclinic loop and heteroclinic orbit, since to estimate the zeros 
of the Melnikov function we consider its expansion at the point corresponding to 
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this orbit. The rest of the paper is organized as follows. In Sect. 3 we obtain a nor‑
mal form to system (1)|�=0 that simplifies the computations and in Sect. 4 we will 
prove Theorem 1.

2 � Melnikov function

In this section, we will introduce the first order Melnikov function associated to sys‑
tem (1), which will be needed to prove the main result of this paper.

For this purpose, suppose that unperturbed system (1)|�=0 has a period annulus 
consisting of a family of crossing periodic orbits surrounding the origin such that 
each orbit of this family passes thought the three zones with clockwise orientation, 
satisfies the following two hypotheses: 

	(H1)	 There exists an open interval J = (�, �) such that for each h ∈ J we have 
four points, A(h) = (1, a(h)) , A1(h) = (1, a1(h)) , with a1(h) < a(h) , and 
A2(h) = (−1, a2(h)) , A3(h) = (−1, a3(h)) , with a2(h) < a3(h) , which are deter‑
mined by the following equations 

 satisfying, for h ∈ J , 

 and 

	(H2)	 The unperturbed system (1)|�=0 has only crossing periodic orbit 
Lh = LR

h
∪ L̄C

h
∪ LL

h
∪ LC

h
 passing through these points with clockwise orienta‑

tion (see Figure 1), where 

Assuming the hypotheses (H1) and (H2), consider the solution of right subsystem 
from (1) starting at the point A(h). Let A�(h) = (1, a�(h)) be the first intersection point 
of this orbit with straight line x = 1 . Denote by B�(h) = (−1, b�(h)) the first intersection 

(2)

HR(A(h)) = HR(A1(h)),

HC(A1(h)) = HC(A2(h)),

HL(A2(h)) = HL(A3(h)),

HC(A3(h)) = HC(A(h)),

HR

y
(A(h))HR

y
(A1(h))H

L

y
(A2(h))H

L

y
(A3(h)) ≠ 0,

HC

y
(A(h))HC

y
(A1(h))H

C

y
(A2(h))H

C

y
(A3(h)) ≠ 0.

LR

h
=
{
(x, y) ∈ ℝ

2 ∶ HR(x, y) = HR(A(h)), x > 1
}
,

L̄C

h
= {(x, y) ∈ ℝ

2 ∶ HC(x, y) = HC(A1(h)),−1 ≤ x ≤ 1 and y < 0},

LL

h
= {(x, y) ∈ ℝ

2 ∶ HL(x, y) = HL(A2(h)), x < −1},

LC

h
= {(x, y) ∈ ℝ

2 ∶ HC(x, y) = HC(A3(h)),−1 ≤ x ≤ 1 and y > 0}.
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point of the orbit from central subsystem from (1) starting at A�(h) with straight line 
x = −1 , C�(h) = (−1, c�(h)) the first intersection point of the orbit from left subsystem 
from (1) starting at B�(h) with straight line x = −1 and D�(h) = (1, d�(h)) the first inter‑
section point of the orbit from central subsystem from (1) starting at C�(h) with straight 
line x = 1 (see Figure 2).

We define the Poincaré map of piecewise system (1) as follows,

where M(h) is called the first order Melnikov function associated to piecewise sys‑
tem (1). Then, using the same idea of the proof of Theorem 1.1 in [13], it is easy to 
prove the following theorem.

Theorem 2  Consider system (1) with 0 ≤ 𝜖 << 1 and suppose that the unperturbed 
system (1)|�=0 has a family of crossing periodic orbits surrounding the origin. Then 
the first order Melnikov function can be expressed as

HR(D�(h)) − HR(A(h)) = �M(h) +O(�2),

M(h) =
HR

y
(A)

HC

y
(A)

I
C
+

HR

y
(A)HC

y
(A3)

HC

y
(A)HL

y
(A3)

I
L

+
HR

y
(A)HC

y
(A3)H

L

y
(A2)

HC

y
(A)HL

y
(A3)H

C

y
(A2)

Ī
C

+
HR

y
(A)HC

y
(A3)H

L

y
(A2)H

C

y
(A1)

HC

y
(A)HL

y
(A3)H

C

y
(A2)H

R

y
(A1)

I
R
,

x = 1x = −1

A(h)

A1(h)
A2(h)

A3(h)

LR
hLL

h

LC
h

L̄C
h

Fig. 1   The crossing periodic orbit of system (1)|�=0
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where

Furthermore, if M(h) has a simple zero at h∗ , then for 0 < 𝜖 << 1 , the system (1) has 
a unique limit cycle near Lh∗.

3 � Normal form

In order to prove Theorem  1, we will do a continuous linear change of variables 
which transform system (1)|�=0 in a new system with few parameters. The pro‑
posed change of variables is a homeomorphism which keeps invariant the straight 
lines x = ±1 . Furthermore, this homeomorphism will be a topological equivalence 
between the systems. More precisely, we have the follow result.

Proposition 3  Suppose that the central subsystem from (1)|�=0 has a center and the 
other two subsystems have two saddles. Then, after a linear change of variables 
and a rescaling of the independent variable, we can assume that �

L
= a

L
 , �

R
= −a

R
 , 

b
C
= 1 , c

C
= −1 and a

C
= �

C
= 0.

I
C
=
∫�A3A

g
C
dx − f

C
dy, I

L
=
∫�A2A3

g
L
dx − f

L
dy,

Ī
C
=
∫�A1A2

g
C
dx − f

C
dy and I

R
=
∫�AA1

g
R
dx − f

R
dy.

x = 1x = −1

A(h)

A (h)B (h)

C (h)
D (h)

Fig. 2   Poincaré map of system (1)
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Proof  As the central subsystem from (1)|�=0 has a center with clockwise orienta‑
tion of the orbits, then a2

C
+ b

C
c
C
< 0 and b

C
> 0 . Note that bi ≠ 0 , for i = L,R . 

In fact, if bi = 0 then the saddle of right or left subsystem have a separatrix par‑
allel to straight line x = 0 . System (1)|�=0 has four tangent points given by 
P1 = (1,−(a

C
+ �

C
)∕b

C
) , P2 = (1,−(a

R
+ �

R
)∕b

R
) , P3 = (−1, (a

C
− �

C
)∕b

C
) and 

P4 = (−1, (a
L
− �

L
)∕b

L
) . By hypothesis (H2), we have that the system (1)|�=0 have 

only crossing points on the straight lines x = ±1 , except in the tangent points. 
Hence, for all y ∈ ℝ ⧵ {(±a

C
− �

C
)∕b

C
,−(a

R
+ �

R
)∕b

R
), (a

L
− �

L
)∕b

L
)} , we must have

and

But this implies that b
L
b

C
> 0 , b

R
b

C
> 0 , P1 = P2 and P3 = P4 . Therefore, as b

C
> 0 , 

we have that

Assuming the conditions (3), consider the change of variables

with �
C
=
√

−a2
C
− b

C
c
C
 . Applying this change of variables and rescaling the time 

by t̃ = 𝜔
C
t , we obtain the results after rewriting the parameters. 	�  ◻

Remark 4  Consider the system (1)|�=0 in its normal form, i.e. with �
L
= a

L
 , �

R
= −a

R
 , 

b
C
= c

C
= 1 and a

C
= �

C
= 0 . Note that when �

C
= 0 , we have that the singular point 

of the central subsystem from (1)|�=0 is at the origin. In this case, assuming the 
hypotheses (H1) and (H2), the period annulus of system (1)|�=0 has all its periodic 
orbits passing through the three zones bounded by the orbit L0 of the central subsys‑
tem tangent to straight lines x = ±1 in the points P

R
= (1, 0) and P

L
= (−1, 0) (see 

Fig. 3 (a)).
If �

C
≠ 0 , after a reflection around the straight line x = 0 (if necessary), we 

can assuming without loss of generality that −1 < 𝛽
C
< 0 . In this case, the period 

annulus of system (1)|�=0 has all its periodic orbits passing through the three zones 
bounded by the orbit L̃0 of the central subsystem tangent to straight lines x = 1 in 
the point P

R
= (1, 0) . Note that, L̃0 intercept crosswise the straight line x = −1 in 

two distinct points. Moreover, the period annulus has periodic orbits passing by 
two zones, which are bounded by L̃0 and L̂0 , where L̂0 is the orbit of the central 

⟨X
L
(−1, y), (1, 0)⟩⟨X

C
(−1, y), (1, 0)⟩ > 0

⟨X
R
(1, y), (1, 0)⟩⟨X

C
(1, y), (1, 0)⟩ > 0.

(3)
𝛼

L
=

a
L
b

C
+ b

L
(𝛼

C
− a

C
)

b
C

, b
L
> 0,

𝛼
R
=

−a
R
b

C
+ b

R
(a

C
+ 𝛼

C
)

b
C

and b
R
> 0.

�
u

v

�
=

⎛⎜⎜⎝

1 0

a
C

�
C

b
C

�
C

⎞⎟⎟⎠

�
x

y

�
+

⎛⎜⎜⎝

0

�
C

�
C

⎞⎟⎟⎠
,
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subsystem tangent to straight lines x = −1 in the point P
R
= (−1, 0) . Observe that L̂0 

is contained in the region bounded by L̃0 (see Fig. 3 (b)).
In this paper we will study only the case where �

C
= 0 . The compute for the case 

�
C
≠ 0 are more complicated and leave for future work.

In what follows, we will consider the piecewise linear near–Hamiltonian sys‑
tem system (1) such that (1)|�=0 is in its normal form and the singular point of 
the central subsystem from (1)|�=0 is at the origin, i.e. we assume system (1) with 
�

L
= a

L
 , �

R
= −a

R
 , b

C
= 1 , c

C
= −1 , a

C
= �

C
= 0 , �

C
= 0 and

for n = 1, 2, 3.

(4)f (x, y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

f
L
(x, y) =

n∑
i+j=0

rijx
iyj, x ≤ −1,

f
C
(x, y) =

n∑
i+j=0

uijx
iyj, −1 ≤ x ≤ 1,

f
R
(x, y) =

n∑
i+j=0

pijx
iyj, x ≥ 1,

(5)g(x, y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

g
L
(x, y) =

n∑
i+j=0

sijx
iyj, x ≤ −1,

g
C
(x, y) =

n∑
i+j=0

vijx
iyj, −1 ≤ x ≤ 1,

g
R
(x, y) =

n∑
i+j=0

qijx
iyj, x ≥ 1,

x = 1x = −1 x = 1x = −1

A

A1

A2

A3

PRPL

L̃0

L̂0

A

A1A2

A3

PL PR

L0

)b()a(

Fig. 3   Periodic orbits tangent to straight lines x = ±1 of the system (1)|�=0 with �
L
= a

L
 , �

R
= −a

R
 , 

b
C
= c

C
= 1 and a

C
= �

C
= 0 when �

C
= 0 (a) and �

C
≠ 0 (b)
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4 � Proof of Theorem 1

In order to compute the zeros of the first order Melnikov function, it is necessary to 
find the open interval J, where it is define. For this, consider the follow proposition.

Proposition 5  Consider the system (1) satisfying the hypotheses (Hi), i = 1, 2 . Then 
J = (0, �

R
) , where �

R
= (a2

R
− b

R
�
R
− �2

R
)∕b

R
�

R
 with �

R
=
√

a2
R
+ b

R
c
R
 , and the period 

annulus are equivalents to one of the figures of Figs. 4 and 5.

Proof  Firstly, note that if the saddles of the right or left subsystem from (1)|�=0 are vir‑
tual or if they are under the straight lines x = ±1 , then we have not periodic orbits pass‑
ing through the three zones. Let Wu

R
 and Ws

R
 (resp. Wu

L
 and Ws

L
 ) be the unstable and stable 

separatrices of the saddles of the right (resp. left) subsystems from (1)|�=0 , respectively. 
Denote by Pi

L
= Wi

L
∩ {(−1, y) ∶ y ∈ ℝ} and Pi

R
= Wi

R
∩ {(1, y) ∶ y ∈ ℝ} , for i = u, s . 

After some compute, is possible to show that

where �
R
= (a2

R
− b

R
�
R
− �2

R
)∕b

R
�

R
 , �

L
= (a2

L
+ b

L
�
L
− �2

L
)∕b

L
�

L
 , �

R
=
√

a2
R
+ b

R
c
R
 

and �
L
=
√

a2
L
+ b

L
c
L
 . Note that we have a symmetry between the points Pu

L
 and Ps

L
 

(resp. Pu
R
 and Ps

R
 ) with respect to x-axis. Let � be the smallest ordinate value between 

the points Ps
R
 and Pu

L
 , i.e. � = min{�

R
, �

L
} . Then, less than one reflection around the 

y-axis, we can assuming that � = �
R
.

As the vector field X
C
 associated with the central subsystem from (1)|�=0 is 

X
C
(x, y) = (y,−x) , if the ordinates of the points Ps

R
 and Pu

L
 are distinct, i.e. �

R
≠ �

L
 

(see Fig. 4), then we have a homoclinic loop passing through the points Ps
R
 and Pu

R
 . 

Otherwise, if the ordinates of points Ps
R
 and Pu

L
 are the same, i.e. �

R
= �

L
 (see Fig. 5), 

then we have a hetoclinic orbit passing through the points Ps
R
 , Pu

R
 , Ps

L
 and Pu

L
 . Moreo‑

ver, the central subsystem from (1)|�=0 has a periodic orbit tangent to straight lines 
x = ±1 in the points P

R
= (1, 0) and P

L
= (−1, 0) . The Figs. 4 and 5 shows the pos‑

sibles phase portraits of the system (1)|�=0.
Consider a initial point of form A(h) = (1, h) , with h ∈ (0, �

R
) . By the hypoth‑

esis (H2), the system (1)|�=0 has a family of crossing periodic orbits that intersects 
the straight lines x = ±1 at four points, A(h), A1(h) = (1, a1(h)) , with a1(h) < h , and 
A2(h) = (−1, a2(h)) , A3(h) = (−1, a3(h)) , with a2(h) < a3(h) satisfying

where HR , HC and HL are given by normal form from Proposition 3. More precisely, 
we have the equations

Pu
L
= (−1, �

L
), Ps

L
= (−1,−�

L
), Pu

R
= (1,−�

R
), Ps

R
= (1, �

R
),

HR(A(h)) = HR(A1(h)),

HC(A1(h)) = HC(A2(h)),

HL(A2(h)) = HL(A3(h)),

HC(A3(h)) = HC(A(h)),
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As a1(h) < h , a2(h) < a3(h) , bR
> 0 and b

L
> 0 , the only solution of system above 

is a1(h) = −h , a2(h) = −h and a3(h) = h , i.e. we have the four points given by 
A(h) = (1, h) , A1(h) = (1,−h) , A2(h) = (−1,−h) and A3(h) = (−1, h) . Moreover, 
system (1)|�=0 has a periodic orbit Lh passing through these points, for all h ∈ (0, �

R
) . 

If h ∈ [�
R
,∞) then the orbit of the system (1)|�=0 with initial condition in A(h) do not 

return to straight line x = 1 to positive times, i.e. the system (1)|�=0 has no periodic 
orbit passing thought the point A(h). Therefore, if h ∈ (0, �

R
) the system (1)|�=0 has 

a period annulus, formed by the periodic orbits Lh , limited by one periodic orbit L0 
tangent to the straight lines x = ±1 and a homoclinic loop if �

R
≠ �

L
 (see Fig. 4) or 

heteroclinic orbit if �
R
= �

L
 (see Fig. 5). This complete the proof. 	�  ◻

b
R

2
(h − a1(h))(h + a1(h)) = 0,

1

2
(a1(h) − a2(h))(a1(h) + a2(h)) = 0,

b
L

2
(a2(h) − a3(h))(a2(h) + a3(h)) = 0,

1

2
(a3(h) − h)(a3(h) + h) = 0.

x = 1x = −1

P s
R

P u
R

P u
L

P s
L

A

A1A2

A3

PRPL

Fig. 4   Phase portrait of system (1)|�=0 with �
R
≠ �

L
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As A(h) = (1, h) , A1(h) = (1,−h) , A2(h) = (−1,−h) and A3(h) = (−1, h) , we have 
the follow immediate corollary.

Corollary 6  Let J be the interval of definition of Melnikov function (2). For h ∈ J,

and

Then, the first order Melnikov function associated to system (1) can be written as

HR

y
(A)

HC

y
(A)

= b
R
,

HR

y
(A)HC

y
(A3)

HC

y
(A)HL

y
(A3)

=
b

R

b
L

,
HR

y
(A)HC

y
(A3)H

L

y
(A2)

HC

y
(A)HL

y
(A3)H

C

y
(A2)

= b
R

HR

y
(A)HC

y
(A3)H

L

y
(A2)H

C

y
(A1)

HC

y
(A)HL

y
(A3)H

C

y
(A2)H

R

y
(A1)

= 1.

M(h) = b
R
∫Â3A

g
C
dx − f

C
dy +

b
R

b
L
∫Â2A3

g
L
dx − f

L
dy

+ b
R
∫Â1A2

g
C
dx − f

C
dy +

∫ÂA1

g
R
dx − f

R
dy.

x = 1x = −1

P s
R

P u
R

P u
L

P s
L

A

A1A2

A3

PRPL

Fig. 5   Phase portrait of system (1)|�=0 with �
R
= �

L



943

1 3

São Paulo Journal of Mathematical Sciences (2022) 16:932–956	

In what follows, we will simplify the expression to the first order Melnikov func‑
tion associated to system (1) when n = 1, 2, 3 . For this, we will distinguish two 
cases. In the first one, we consider the case when n = 1 . In this case, we will find an 
expression for the Melnikov function associated with system (1) without assuming 
specific values for its parameters. For the second one, i.e. when n = 2, 3 , we assum‑
ing the values b

L
= a

L
= b

R
= c

R
= 1 , c

L
= a

R
= 0 and �

R
= −2 for the parameters of 

system (1). This was necessary due to the complexity of the compute involved.
For this, we define the functions:

with h ∈ (0, 1) for fi(h) , i = 0,… , 7 , and h ∈ (0, �
R
) for f S

j
(h) , j = R, L.

Theorem 7  The first order Melnikov function M(h) associated with system (1) when 
n = 1 can be expressed as

if �
R
≠ �

L
 , or

if �
R
= �

L
 , with h ∈ (0, �

R
) . The functions f0, f1, f SR , f

S

L
 are given in (6). Here the coef-

ficients k0 , k1 , kR
 and k

L
 depend on the parameters of system (1).

Proof  The orbit (x
R
(t), y

R
(t)) of the system (1)|�=0 , such that (x

R
(0), y

R
(0)) = (1, h) , is 

given by

(6)

f0(h) = h,

f1(h) = (h2 + 1) arccos

(
h2 − 1

h2 + 1

)
,

f2(h) = (h2 − 1) log

(
1 + h

1 − h

)
,

f3(h) = (h2 − 4) log

(
2 + h

2 − h

)
,

f4(h) = h3,

f5(h) = h2(h2 + 1) arccos

(
h2 − 1

h2 + 1

)
,

f6(h) = h2(h2 − 1) log

(
1 + h

1 − h

)
,

f7(h) = h2(h2 − 4) log

(
2 + h

2 − h

)
,

f S
R
(h) = (h2 − �2

R
) log

(
h + �

R

�
R
− h

)
,

f S
L
(h) = (h2 − �2

L
) log

(
h + �

L

�
L
− h

)
,

(7)M11(h) = k0f0(h) + k1f1(h) + k
R
f S
R
(h) + k

L
f S
L
(h),

(8)M12(h) = k0f0(h) + k1f1(h) + k
R
f S
R
(h),



944	 São Paulo Journal of Mathematical Sciences (2022) 16:932–956

1 3

The flight time of the orbit (x
R
(t), y

R
(t)) , from A(h) = (1, h) to A1(h) = (1,−h) , is

Now, for g
R
 and f

R
 defined in (4) and (5), respectively, we have

with

The orbit (x
C1
(t), y

C1
(t)) of the system (1)|�=0 , such that (x

C1
(0), y

C1
(0)) = (1,−h) , is 

given by

The flight time of the orbit (x
C1
(t), y

C1
(t)) , from A1(h) = (1,−h) to A2(h) = (−1,−h) , 

is

Now, for g
C
 and f

C
 defined in (4) and (5), respectively, we obtain

x
R
(t) = −

e−t�R

2�
R

(b
R
h − b

R
e2t�Rh − 2et�R�

R
+ b

R
�
R
− 2b

R
et�R�

R

+ b
R
e2t�R�

R
),

y
R
(t) = −

e−t�R

2�
R

(−a
R
h + a

R
e2t�Rh − �

R
h − e2t�R�

R
h − a

R
�
R

+ 2a
R
et�R�

R
− a

R
e2t�R�

R
− �

R
�
R
+ e2t�R�

R
�
R
).

t
R
=

1

�
R

log

(
h + �

R

�
R
− h

)
.

(9)

I1
R
=
∫ÂA1

g
R
dx − f

R
dy

=
∫

tR

0

(g
R
(x

R
(t), y

R
(t))x�

R
(t) − f

R
(x

R
(t), y

R
(t))y�

R
(t))dt

= �1f0(h) + �2f
S

R
(h),

�1 =
1

�
R

(2(p00 + p10)�R
+ b

R
(p10 + q01)�R

) and �2 =
b

R

2�
R

(p10 + q01).

x
C1
(t) = cos(t) − h sin(t),

y
C1
(t) = −h cos(t) − sin(t).

t
C1
= arccos

(
h2 − 1

h2 + 1

)
.

(10)

Ī1
C
=
∫�A1A2

g
C
dx − f

C
dy

=
∫

tC1

0

(g
C
(x

C1
(t), y

C1
(t))x�

C1
(t) − f

C
(x

C1
(t), y

C1
(t))y�

C1
(t))dt,

= − 2v00 + 𝛼3f0(h) + 𝛼4f1(h),
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with

The orbit (x
L
(t), y

L
(t)) of the system (1)|�=0 , such that (x

L
(0), y

L
(0)) = (−1,−h) , is 

given by

The flight time of the orbit (x
L
(t), y

L
(t)) , from A2(h) = (−1,−h) to A3(h) = (−1, h) , is

Now, for g
L
 and f

L
 defined in (4) and (5), respectively, we have

with

The orbit (x
C2
(t), y

C2
(t)) of the system (1)|�=0 , such that (x

C2
(0), y

C2
(0)) = (−1, h) , is 

given by

The flight time of the orbit (x
C2
(t), y

C2
(t)) , from A3(h) = (−1, h) to A(h) = (1, h) , is

Now, for g
C
 and f

C
 defined in (4) and (5), respectively, we obtain

�3 = v01 − u10 and �4 =
u10 + v01

2
.

x
L
(t) =

e−t�L

2�
L

(b
L
h − b

L
e2t�Lh − 2et�L�

L
+ b

L
�
L
− 2b

L
et�L�

L

+ b
L
e2t�L�

L
),

y
L
(t) =

e−t�L

2�
L

(−a
L
h + a

L
e2t�Lh − �

L
h − e2t�L�

L
h − a

L
�
L

+ 2a
L
et�L�

L
− a

L
e2t�L�

L
− �

L
�
L
+ e2t�L�

L
�
L
).

t
L
=

1

�
L

log

(
h + �

L

�
L
− h

)
.

(11)

I1
L
=
∫Â2A3

g
L
dx − f

L
dy

=
∫

tL

0

(g
L
(x

L
(t), y

L
(t))x�

L
(t) − f

L
(x

L
(t), y

L
(t))y�

L
(t))dt

= �
5
f
0
(h) + �

6
f S
L
(h),

�5 =
1

�
L

(2(r10 − r00)�L
+ b

L
(r10 + s01)�L

) and �6 =
b

L

2�
L

(r10 + s01).

x
C2
(t) = − cos(t) + h sin(t),

y
C2
(t) = h cos(t) + sin(t).

t
C2
= arccos

(
h2 − 1

h2 + 1

)
.
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Hence, by Corollary 6, the first order Melnivov function associated to system (1) is 
given by

Replacing (9), (10), (11) and (12) in (13) we obtain (7), with

Finally, replacing �
L
= �

R
 on function M11(h) in (7) we obtain the expression (8) with

	�  ◻

For the study of the case when n = 2, 3 , let us consider system (1), with

for � ∈ {1, 2} . We can see that the central subsystem from (1)|�=0 has a center at the 
origin, the right subsystem has a saddle at the point (2, 0) and if � = 1 (resp. � = 2 ) 
the left subsystem has a saddle at the point (−2, 1) (resp. (−3, 2) ). Moreover, we have 
that if � = 1 (resp. � = 2 ) then Pu

L
= (−1, 1) (resp. Pu

L
= (−1, 2) ), Ps

L
= (−1,−1) (resp. 

Ps
L
= (−1,−2) ), Pu

R
= (1,−1) , Ps

R
= (1, 1) and the central subsystem from (1)|�=0 has a 

periodic orbit tangent to straight lines x = ±1 in the points P
R
= (1, 0) and P

L
= (−1, 0).

For A(h) = (1, h) , with h ∈ (0, 1) , the system (1)|�=0 has a family of crossing peri‑
odic orbits Lh that intersects the straight lines x = ±1 at four points, i.e. the hypoth‑
esis (H1) is satisfied. More precisely, by equations on (2), for each h ∈ (0, 1) we 
have the four points given by A(h) = (1, h) , A1(h) = (1,−h) , A2(h) = (−1,−h) , 
A3(h) = (−1, h) and a periodic orbit

(12)

I1
C
=
∫Â3A

g
C
dx − f

C
dy

=
∫

tC2

0

(g
C
(x

C2
(t), y

C2
(t))x�

C2
(t) − f

C
(x

C2
(t), y

C2
(t))y�

C2
(t))dt

= 2v00 + �3f0(h) + �4f1(h).

(13)M11(h) = b
R
I1
C
+

b
R

b
L

I1
L
+ b

R
Ī1
C
+ I1

R
.

k0 = �1 + 2b
R
�3 +

b
R

b
L

�5, k1 = 2b
R
�4, k

R
= �2 and k

L
=

b
R

b
L

�6.

k0 = �1 + 2b
R
�3 +

b
R

b
L
�

L

(2(r10 − r00)�L
+ b

L
(r10 + s01)�R

),

k1 = 2b
R
�4, and k

R
= �2 +

b
R

b
L

�6.

(14)H(x, y) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

HL(x, y) =
y2

2
+ xy + y − �x, x ≤ −1,

HC(x, y) =
x2

2
+

y2

2
, −1 ≤ x ≤ 1,

HR(x, y) =
y2

2
−

x2

2
+ 2x, x ≥ 1,
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passing through these points. Therefore, if h ∈ (0, 1) the system (1)|�=0 has a period 
annulus, formed by the periodic orbits Lh , limited by one periodic orbit tangent to 
the straight lines x = ±1 , when h = 0 , and a heteroclinic orbit (resp. homoclinic 
loop) if � = 1 (resp. � = 2 ) when h = 1.

The next theorem provide us a simpler formula for the Melnikov function associated 
to system (1) with f(h), g(h) and H(h) given by (4), (5) and (14), respectively, when 
n = 2, 3 and � ∈ {1, 2} . Its proof follows exactly the same steps of the proof of Theo‑
rem 7, (with the obvious changes, of course) and will be omitted to simplify the text.

Theorem 8  The first order Melnikov function associated with system (1), with H(h) 
given in (14), can be expressed when � = 1 as

and when � = 2 as

for h ∈ (0, 1) , where the functions fi , for i = 0,… , 7 are given in (6). Here the coef-
ficients ki , for i = 0,… , 7 , depend on the parameters of system (1).

Before proving the Theorem 1, we will need the following results.
Consider the function F ∶ ℝ → ℝ given by

with � ≥ 0 and the coefficients Cj(�) , j = 0,… , n , depending on the parameters 
� = (�1,… , �m) ∈ ℝ

m . Then we have the follow proposition.

Lh =
{
(x, y) ∈ ℝ

2 ∶ HR(x, y) =
(3 + h2)

2
, x > 1

}

∪
{
(x, y) ∈ ℝ

2 ∶ HC(x, y) =
(1 + h2)

2
, −1 ≤ x ≤ 1 and y < 0

}

∪
{
(x, y) ∈ ℝ

2 ∶ HL(x, y) =
(2𝛼 + h2)

2
, x < −1

}

∪
{
(x, y) ∈ ℝ

2 ∶ HC(x, y) =
(1 + h2)

2
, −1 ≤ x ≤ 1 and y > 0

}

M21(h) =

2∑
i=0

kifi(h) + k4f4(h), if n = 2,

M31(h) =

2∑
i=0

kifi(h) +

6∑
i=4

kifi(h), if n = 3,

M22(h) =

4∑
i=0

kifi(h), if n = 2,

M32(h) =

7∑
i=0

kifi(h), if n = 3,

(15)F(h) =

n∑
j=0

Cj(�)(h − �)j +O((h − �)n+1),



948	 São Paulo Journal of Mathematical Sciences (2022) 16:932–956

1 3

Proposition 9  Suppose that there exist an integer k ≥ 1 and 𝛿 ∈ ℝ
m with m ≥ k + 1 

such that

and

Then the function (15) has exactly k real positive simple roots in a neighborhood of 
h = � for all � near 𝛿.

Proof  By the condition (16) we can assume that

Then the change of parameters C̃i = Ci(𝛿1,… , 𝛿k+1, 𝛿k+2,… , 𝛿m) , i = 0,… , k , has 
inverse 𝛿j(C̃0,… , C̃k) , j = 1,… , k + 1 , and can write (15) as

with C̃k(𝛿) ≠ 0 and C̃j(𝛿) = 0 , j = 0,… , k − 1.
Let 0 < |C̃k − Ck(𝛿)| ≪ 1 and 0 < 𝜏 − hk ≪ 1 such that

Take C̃k−1 such that |C̃k−1| ≪ |C̃k| , C̃k−1C̃k < 0 and

Now, as C̃k−1C̃k < 0 , we can choose hk−1 , such that 0 < 𝜏 − hk−1 ≪ 𝜏 − hk ≪ 1 and

Therefore, the equation

has a root h∗
k
 , with hk < h∗

k
< hk−1 . Continuing with this reasoning, there are 

C̃0,… , C̃k , such that

and the equation (17) has k real positive roots. Moreover, as C̃k(𝛿) ≠ 0 and by Rolle’s 
theorem, for all � near 𝛿 we can choose the C̃j and hj , j = 0,… , k , such that equation 
(17) has exactly k real positive simple roots near h = � . 	�  ◻

Lemma 10  Let f ∶ ℝ → ℝ be a function of class ℂk+1 , k ≥ 1 . Then

Cj(𝛿) = 0, j = 0,… , k − 1, Ck(𝛿) ≠ 0

(16)rank
𝜕(C0,… ,Ck)

𝜕(𝛿1,… , 𝛿m)
̃(𝛿) = k + 1.

det
𝜕(C0,… ,Ck)

𝜕(𝛿1,… , 𝛿k+1)
(𝛿) ≠ 0,

(17)F(h) = C̃0 + C̃1(h − 𝜏) +⋯ + C̃k(h − 𝜏)k +O((h − 𝜏)k+1),

C̃k(hk − 𝜏)k > 0.

C̃k−1(hk − 𝜏)k−1 + C̃k(hk − 𝜏)k > 0.

C̃k−1(hk−1 − 𝜏)k−1 + C̃k(hk−1 − 𝜏)k < 0.

C̃k−1(h − 𝜏)k−1 + C̃k(h − 𝜏)k = 0

C̃
0
C̃
1
< 0, C̃

1
C̃
2
< 0,… , C̃k−1C̃k < 0, |C̃

0
| ≪ |C̃

1
| ≪ ⋯ ≪ |C̃k|,
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where P(x) =
∑k

i=0

f (i)(�)

i!
(x − �)i is the Taylor’s polynomial of f at x = � of degree k 

and R(x) = log(� − x)(f (x) − P(x)) . Moreover, limx→� R(x) = 0.

Proof  To prove the lemma, it suffices to show that limx→� R(x) = 0 . By the Taylor’s 
formula with Lagrange remainder, there is c ∈ ℝ such that

By the L’Hospital rule

	�  ◻

Proof of Theorem 1  To prove the Theorem 1, firstly, we begin with the case n = 1 . 
For this case, we have two sub-cases. The first one is when �

R
= �

L
 (i.e. we have a 

heteroclinic orbit) and the second one is when �
R
≠ �

L
 (i.e. we have an homoclinic 

loop). For the cases n = 2, 3 , again, we have two sub-cases. The first one is when 
� = 1 (i.e. we have a heteroclinic orbit) and the second one is when � = 2 (i.e. we 
have an homoclinic loop).

Case n = 1 . Consider the Melnikov functions M11(h) and M12(h) given by the 
Theorem 7. By Lemma 10 we can expand these functions at h = �

R
 as

where

f (x) log(� − x) = P(x) log(� − x) +R(x),

R(x) =
f (k+1)(c)

(k + 1)!
log(� − x)(x − �)k+1.

lim
x→�

R(x) =
f (k+1)(c)

(k + 1)!
lim
x→�

log(� − x)(x − �)k+1

=
f (k+1)(c)

(k + 1)!
lim
x→�

log(� − x)

(x − �)−(k+1)

=
f (k+1)(c)

(k + 1)!
lim
x→�

(� − x)−1

(k + 1)(x − �)−(k+2)

= −
f (k+1)(c)

(k + 1)!(k + 1)
lim
x→�

(x − �)(k+1) = 0.

(18)M11(h) =

3∑
j=0

C
j

11
(h − �

R
)j +

2∑
j=1

D
j

11
log(�

R
− h)(h − �

R
)j

(19)

+O((h − �
R
)4),

M12(h) =

2∑
j=0

C
j

12
(h − �

R
)j +

2∑
j=1

D
j

12
log(�

R
− h)(h − �

R
)j

+O((h − �
R
)3),
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and Dj

1i
 , i = 1, 2 and j = 1, 2 , depending on the parameters of system (1), whose 

expressions have been omitted for simplicity. Moreover, as

C0
11

= �
R

(
2b

R

b
L

(r10 − r00) + 2(p00 + p10 + b
R
(v01 − u10)) +

�
L
b
R

�
L

(r10 + s01) +
�
R
b
R

�
R

(p10 + q01)

)
+ b

R
(u10 + v01)(1 + �2

R
)

arccos

(
�2
R
− 1

�2
R
+ 1

)
+

b
R

2�
L

(r10 + s01)(�R
− �

L
)(�

L
+ �

R
)

log

(
�
L
+ �

R

�
L
− �

R

)
,

C1
11

=
2b

R

b
L

(r10 − r00) + 2(p00 + p10 − 2b
R
u10) +

�
L
b
R

�
L

(p10

+ q01) + b
R
�
R

(
2(u10 + v01) arccos

(
�2
R
− 1

�2
R
+ 1

)
+

log(2�
R
)

�
R

(p10

+ q01) +
1

�
L

(r10 + s01) log

(
�
L
+ �

R

�
L
− �

R

))
,

C2
11

=
b
R

2

(
2(u10 + v01)

(
arccos

(
�2
R
− 1

�2
R
+ 1

)
−

2�
R

1 + �2
R

)
+

1

�
R

(p10 + q01)

(1 + log(2) + log(�
R
)) +

1

�
L

(r10 + s01)

(
2�

R
�
L

�2
L
− �2

R

+ log

(
�
L
+ �

R

�
L
− �

R

)))
,

C3
11

=
b
R

8�
R
�
R

(p10 + q01) +
2b

R

3

(
�3
L

�
L
(�2

L
− �2

R
)2
(r10 + s01) −

2

(1 + �2
R
)2

(u10 + v01)

)
,

C0
12

= �
R

(
2b

R

b
L

(r10 − r00) + 2(p00 + p10 + b
R
(v01 − u10)) +

�
R
b
R

�
L

(r10 + s01) +
�
R
b
R

�
R

(p10 + q01)

)
+ b

R
(u10 + v01)(1 + �2

R
)

arccos

(
�2
R
− 1

�2
R
+ 1

)
,

C1
12

=
2b

R

b
L

(r10 − r00) + 2(p00 + p10 + b
R
(v01 − u10)) +

�
R
b
R

�
L

(r10

+ s01) +
�
R
b
R

�
R

(p10 + q01) + 2�
R
b
R
(u10 + v01)

(
arccos

(
�2
R
− 1

�2
R
+ 1

)
−

�2
R
+ 1

�
R

)
+

�
R
b
R
log(2�

R
)

�
R
�

L

((p10 + q01)�L
+ (r10 + s01)�R

),

C2
12

= b
R
(u10 + v01)

(
arccos

(
�2
R
− 1

�2
R
+ 1

)
−

2�
R

�2
R
+ 1

)

+
b
R

2�
R
�

L

((p10 + q01)�L
+ (r10 + s01)�R

)(1 + log(2) + log(�
R
)).
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the factors of the expansions in (18)–(19) that have log(�i − h) , i = R, L , can be dis‑
regarded in the study of the number of zeros. Therefore, will consider only the coef‑
ficients Cj

1i
 , i = 1, 2 and j = 0, 1, 2, 3.

When �
R
≠ �

L
 , for

we have that

This implies, by Proposition 9, that C0
11

 , C1
11

 , C2
11

 and C3
11

 can be taken as free coef‑
ficients, satisfying

and

such that the function M11(h) has exactly three positive roots near h = �
R
 . Therefore, 

the number of limit cycles from system (1) that can bifurcate of the period annulus 
near the homoclinic loop in h = �

R
 , for n = 1 and �

R
≠ �

L
 , is at least three.

When �
R
= �

L
 , for

lim
h→�R

log(�
R
− h)(h − �

R
)j = 0, j = 1, 2,

p00 = −p10 +
b
R

b
L

(r00 − r10 + b
L
(u10 − v01)) −

b
R
�
L

2�
L

(r10 + s01)

−
b
R
�
R

2�
R

(p10 + q01) −
b

R

2�
R

(u10 + v01)(1 + �2
R
) arccos

(
�2
R
− 1

�2
R
+ 1

)

+
b
R

4�
L
�
R

(r10 + s01)(�
2
L
− �2

R
) log

(
�
L
+ �

R

�
L
− �

R

)
,

q01 = −
1

2�
L
�2
R
log(2�

R
)

(
(−4(u10 + v01)�L

− 2(r10 + s01)�L
)�

R
�
R
+ 2(u10

+ v01)�L
�

R
(�2

R
− 1) arccos

(
�2
R
− 1

�2
R
+ 1

)
+ 2p10�L

�2
R
log(2�

R
)

+ (r10 + s01)�R
(�2

R
+ �2

L
) log

(
�
L
+ �

R

�
L
− �

R

))
,

s01 = −r10 and u10 ≠ −v01,

C0
11

= C1
11

= C2
11

= 0, C3
11

≠ 0 with rank
�(C0

11
,C1

11
,C2

11
,C3

11
)

�(p00, q10, s01, u10)
= 4.

C0
11
C1
11

< 0, C1
11
C2
11

< 0, C2
11
C3
11

< 0

0 < |C0

11
| ≪ |C1

11
| ≪ |C2

11
| ≪ |C3

11
|,
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we have that

As in the previous case, by Proposition 9, we can choose C0
12
,C1

12
, and C2

12
 such that 

the function M12(h) has exactly two positive roots near h = �
R
 . Therefore, the num‑

ber of limit cycles from system (1) that can bifurcate of the period annulus near the 
heteroclinic orbit in h = �

R
 , for n = 1 and �

R
= �

L
 , is at least two.

Case n = 2, 3and � = 1 . Consider the Melnikov functions M21 and M31 given by 
the Theorem 8. By Lemma 10 we can expand these functions at h = 1 as

where

p00 = −p10 +
b

R

b
R

(r00 − r10 + b
L
(u10 − v01)) −

b
R
�
R

2�
L

(r10 + s01)

−
b
R
�
R

2�
R

(p10 + q01) −
b

R

2�
R

(u10 + v01)(1 + �2
R
) arccos

(
�2
R
− 1

�2
R
+ 1

)
,

s01 = −r10 −
�

L

�
R

(p10 + q01) +
�

L

�2
R
log(2�

R
)
(u10 + v01)

(
2(�

R
+ �3

R
)

− (�2
R
− 1) arccos

(
�2
R
− 1

�2
R
+ 1

))
,

u10 ≠ −v01,

C0
12

= C1
12

= 0, C2
12

≠ 0 with rank
�(C0

12
,C1

12
,C2

12
)

�(p00, s01, u10)
= 3.

M21(h) =

3∑
j=0

C
j

21
(h − 1)j +

2∑
j=1

D
j

21
log(1 − h)(h − 1)j

+ O((h − 1)4),

M31(h) =

5∑
j=0

C
j

31
(h − 1)j +

4∑
j=1

D
j

31
log(1 − h)(h − 1)j

+ O((h − 1)6),
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and Dj

n1
 , n = 2, 3 and j = 1,… , 4 , depending on the parameters of system (1), with 

H(h) given in (14), whose expressions have been omitted for simplicity. As in the 
case n = 1 , will consider only the coefficients Ci

n1
 , n = 2, 3 and i = 0,… , 5.

C
0
21

= 2p00 +
1

3
(2p02 + 9p10 + 14p20 + 3q01 + 4q11 − 6r00 − 2r02 + 9r10 + r11 − 14r20 + 3s01

+ 2s02 − 4s11) + (� − 2)u10 + (2 + �)v01,

C
1
21

= 2p00 + 2p02 + 3p10 + q01 − 2r00 − 2r02 + 3r10 − r11 − 2r20 + s01 − 2s02 − 4u10

+ �u10 + �v01 + (p10 + q01 + r10 + r11 − 4r20 + s01) log(2) + (q11 + s02 − s11)

log(4) + p20(2 + log(16)),

C
2
21

=
1

2
(4p02 + p10 + q01 − 2q11 − 4r02 + r10 − 3r11 + 4r20 + s01 − 6s02 + 2s11 + (� − 2)

(u10 + v01) + (p10 + q01 + r10 + r11 − 4r20 + s01) log(2) + (q11 + s02 − s11)

log(4) + p20(log(16) − 4)),

C
3
21

=
1

24
(16p02 + 3p10 − 20p20 + 3q01 − 10q11 − 16r02 + 3r10 − 13r11 + 20r20 + 3s01

− 26s02 + 10s11 − 8(u10 + v01)),

C
0
31

=
1

6
(12p00 + 4p02 + 18p10 + 5p12 + 28p20 + 45p30 + 6q01 + 3q03 + 8q11 + 11q21 − 12r00

− 4r02 + 18r10 + 2r11 + 6r12 − 28r20 − 6r21 + 45r30 + 6s01

+ 4s02 + 6s03 − 8s11 − 6s12 + 11s21 + 3(4v01 − 8u30 + 8v03 + 2(� − 2)u10

+ �(u12 + 3u30 + 2v01 + 3v03 + v21))),

C
1
31

= 2p00 + 2p02 + 3p10 + 3p12 + 2p20 − 7p30 + q01 + 3q03 − 3q21 − 2r00 − 2r02 + 3r10

− r11 + r12 − 2r20 + 6r21 − 7r30 + s01 + 6s12 − 3s21 + (� − 4)u10 − 2(u12 + 5u30 − 3v03 + v21)

+ �(u12 + 3u30 + v01 + 3v03 + v21) + (p10 + 12p30 + q01 + r10 + r11 + r12 − 4r20 − 4r21 + 12r30

+ s01 − 4s12) log(2) + s02(log(4) − 2) + q11 log(4) − s11 log(4) + s03(log(8) − 3) + (p20 + q21 + s21) log(16),

C
2
31

=
1

4
(8p02 + 2p10 + 13p12 − 8p20 − 63p30 + 2q01 + 15q03 − 4q11 − 21q21 − 8r02 + 2r10

− 6r11 + 2r12 + 8r20 + 34r21 − 63r30 + 2s01 − 12s02 − 18s03 + 4s11 + 34s12 − 21s21 + 2(� − 2)u10 + 2�(2u12

+ 6u30 + v01 + 6v03 + 2v21) − 4(3u12 + 9u30 + v01 − 3v03 + 3v21) + (p10 + p12 + 4p20 + 9p30 + q01 + r10

+ r11 + r12 − 4r20 − 2r21 + 9r30 + s01 − 2(s11 + s12)) log(4) + (q11 + s02) log(16) + (q03 + q21 + s03 + s21) log(64)),

C
3
31

=
1

24
(16p02 + 3p10 − 20p20 − 156p30 + 3q01 + 48q03 − 10q11 − 52q21 − 16r02 + 3r10 − 13r11

+ 3r12 + 20r20 + 84r21 − 156r30 + 3s01 − 26s02 − 39s03 + 10s11 + 84s12 − 52s21 − 8u10 + 4(3� − 10)u12 + 12�(v21

+ 3(u30 + v03)) − 8(15u30 + v01 + 3v03 + 5v21) − 12(3p30 − 3q03 + q21 − 2r21 + 3r30

− 2s12 + s21) log(2) + 4p12(8 + log(8))),

C
4
31

=
1

48
(4r20 − p10 − 4p20 − q01 − 2q11 − 13q21 − r10 − r11 − r12 + 22r21 − 39r30 − s01 − 2s02 − 3s03 + 2s11 + 22s12 − 13s21

+ 8u10 + 2(3� − 8)u12 + 6(3� − 8)u30 + 8v01 + 2(3� − 8)(3v03 + v21) − 6(q21 − 2r21 + 3r30 − 2s12 + s21) log(2) + 9q03

(3 + log(4)) + p12(9 + log(64)) − 3p30(13 + log(64))),

C
5
31

=
1

960
(5p10 + 20p12 + 20p20 + 5q01 + 60q03 + 10q11 + 5r10 + 5r11 + 5r12 − 20r20 + 20r21 + 5s01 + 10s02 + 15s03 − 10s11

+ 20s12 − 32(2u10 + u12 + 3u30 + 2v01 + 3v03 + v21)),
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When n = 2 , for

we have that

As in the previous cases, by Proposition 9, we can choose C0
21
,C1

21
,C2

21
 and C3

21
 such 

that the function M21(h) has exactly three positive roots near h = 1 . Therefore, the 
number of limit cycles from system (1) (with f(h), g(h) and H(h) given by (4), (5) 
and (14), respectively) that can bifurcate of the period annulus near the heteroclinic 
orbit in h = 1 , for n = 2 and � = 1 , is at least three.

When n = 3 , it is possible choose parameters value p00 , p10 , p12 , p20 , u12 and u10 , 
such that

with

As in the previous cases, the number of limit cycles from system (1) (with f(h), g(h) 
and H(h) given by (4), (5) and (14), respectively) that can bifurcate of the period 
annulus near the heteroclinic orbit in h = 1 , for n = 3 and � = 1 , is at least five.

Case n = 2, 3and � = 2 . Consider the Melnikov functions M22 and M32 given by 
Theorem 8. By Lemma 10 we can expand these functions at h = 1 as

p00 =
1

6
(6r00 − 2p02 − 9p10 − 14p20 − 3q01 − 4q11 + 2r02 − 9r10 − r11

+ 14r20 − 3s01 − 2s02 + 4s11 + 6u10 − 3�u10 − 6v01 − 3�v01),

p10 =
1

log(8)
(8p20 − 4p02 + 4q11 + 4r02 + 4r11 − 8r20 + 8s02 − 4s11

+ 6(u10 + v01) − (4p20 + q01 + r10 + r11 + s01) log(8) − (q11 − 2r20

+ s02 − s11) log(64)),

p20 =
1

8(2 log(2) − 1)
(4q11 − 4p02 + 4r02 + 4r11 − 8r20 + 8s02 − 4s11

+ 6u10 + 6v01 + log(2)(−8q11 − 8r02 − 8r11 + 16r20 − 16s02

+ 8s11) + 4p02 log(4) + log(8)(�u10 + �v01)),

u10 ≠ −v01,

C0
21

= C1
21

= C2
21

= 0, C3
21

≠ 0 with rank
�(C0

21
,C1

21
,C2

21
,C3

21
)

�(p00, p10, p20, u10)
= 4.

C0
31

= C1
31

= C2
31

= C3
31

= C4
31

= 0, C5
31

≠ 0

rank
�(C0

31
,C1

31
,C2

31
,C3

31
,C4

31
,C5

31
)

�(p00, p10, p12, p20, u12, u10)
= 6.
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where Ci
n2

 and Dj

n2
 , n = 2, 3 , i = 0,… , 7 and j = 1,… , 4 , depending on the param‑

eters of system (1), with H(h) given in (14), whose expressions have been omitted 
for simplicity. As in the case � = 1 , will consider only the coefficients Ci

n2
 , n = 2, 3 

and i = 0,… , 7.
When n = 2 , it is possible choose parameters value p00 , p10 , p20 , s01 and u10 , such 

that

with

As in the previous cases, the number of limit cycles from system (1) (with f(h), g(h) 
and H(h) given by (4), (5) and (14), respectively) that can bifurcate of the period 
annulus near the homoclinic loop in h = 1 , for n = 2 and � = 2 , is at least four.

Finally, when n = 3 , it is possible choose parameters value p00 , p10 , p12 , p20 , s01 , 
u12 , r10 and u10 , such that

with

As in the previous cases, the number of limit cycles from system (1) (with f(h), g(h) 
and H(h) given by (4), (5) and (14), respectively) that can bifurcate of the period 
annulus near the homoclinic loop in h = 1 , for n = 3 and � = 2 , is at least seven. 	� ◻
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j

22
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